Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Saed Taha R, Ismail I, Zainal Z, Abdullah SN
    J Plant Physiol, 2012 Sep 01;169(13):1290-300.
    PMID: 22658816 DOI: 10.1016/j.jplph.2012.05.001
    The stearoyl-acyl-carrier-protein (ACP) desaturase is a plastid-localized enzyme that catalyzes the conversion of stearoyl-ACP to oleoyl-ACP and plays an important role in the determination of the properties of the majority of cellular glycerolipids. Functional characterization of the fatty acid desaturase genes and their specific promoters is a prerequisite for altering the composition of unsaturated fatty acids of palm oil by genetic engineering. In this paper, the specificity and strength of the oil palm stearoyl-ACP desaturase gene promoter (Des) was evaluated in transgenic tomato plants. Transcriptional fusions between 5' deletions of the Des promoter (Des1-4) and the β-glucuronidase (GUS) reporter gene were generated and their expression analyzed in different tissues of stably transformed tomato plants. Histochemical analysis of the Des promoter deletion series revealed that GUS gene expression was confined to the tomato fruits. No expression was detected in vegetative tissues of the transgenic plants. The highest levels of GUS activity was observed in different tissues of ripe red fruits (vascular tissue, septa, endocarp, mesocarp and columella) and in seeds, which harbored the promoter region located between -590 and +10. A comparison of the promoter-deletion constructs showed that the Des4 promoter deletion (314bp) produced a markedly low level of GUS expression in fruits and seeds. Fluorometric analysis of the GUS activity revealed a 4-fold increase in the activity of the full-length Des promoter compared to the CaMV35S promoter. RNA-hybridization analyses provided additional evidence of increased GUS expression in fruits driven by a Des fragment. Taken together, these results demonstrate the potential of the Des promoter as a tool for the genetic engineering of oil palms and other species, including dicots, in improving the quality and nutritional value of the fruits.
    Matched MeSH terms: Lycopersicon esculentum/enzymology*; Lycopersicon esculentum/genetics*
  2. Rivas-Cáceres RR, Luis Stephano-Hornedo J, Lugo J, Vaca R, Del Aguila P, Yañez-Ocampo G, et al.
    Microb Pathog, 2018 Feb;115:358-362.
    PMID: 29305184 DOI: 10.1016/j.micpath.2017.12.075
    This study explored the use of silver nanoparticle as a bactericidal against the propagation of Clavibacter michiganensis onto tomatoes (Lycopersicon esculentum Mill). In Mexico, tomato production covers about 73% of the total vegetable production but it is affected by outbreak of bacteria canker caused by Clavibacter michiganensis subspecies michiganensis (Cmm). Silver ions possess inhibitor properties, bactericides and high specter antimicrobials. In this study, 6 groups of culture were prepared using 6 different petri dishes where silver nanoparticles of varying concentrations (120, 84, 48, 24, 12 and 0 μg) were added. Furthermore, each group was observed for 20 min, 1, 2, 12 and 24 h. The optimum concentration is 84 μg, which shows an average of 2 Cmm colonies after 20 min. Further increase to 120 μg shows no significant change. However, the average colonies was observed for 48 μg after 1, 2, 12, and 24 h. The obtained results indicate that silver nanoparticles are a promising inhibitor, bactericide and high a specter antimicrobial for treatment or prevention of Cmm.
    Matched MeSH terms: Lycopersicon esculentum/microbiology*
  3. Ali S, Li Y, Haq IU, Abbas W, Shabbir MZ, Khan MM, et al.
    PLoS One, 2021;16(12):e0260470.
    PMID: 34852006 DOI: 10.1371/journal.pone.0260470
    Helicoverpa armigera (Hub.) is a destructive pest of the tomato (Lycopersicon esculentum Mill) crop in Pakistan. Although insecticides are the primary management strategy used to control H. armigera, most of them are not effective due to considerable toxic residual effects on the fruits. Nonetheless, H. armigera is rapidly evolving resistance against the available pesticides for its management. This situation calls upon the need of alternative management options against the pest. Different plant extracts have been suggested as a viable, environment-friendly option for plant protection with minimal side effects. Furthermore, the plant extracts could also manage the insect species evolving resistance against pesticides. This study evaluated the efficacy of different plant extracts (i.e., Neem seed, turmeric, garlic and marsh pepper) against H. armigera. Furthermore, the impact of the plant extracts on growth and yield of tomato crop was also tested under field conditions. The results revealed that all plant extracts resulted in higher mortality of H. armigera compared to control. Similarly, the highest plant height was observed for the plants treated with the plant extracts compared to untreated plants. Moreover, the highest tomato yield was observed in plants treated with plant extracts, especially with neem seed (21.013 kg/plot) followed by pepper extract (19.25 kg/plot), and garlic extract 18.4 kg/plot) compared to the untreated plants (8.9 kg/plot). It is concluded that plant extracts can be used as eco-friendly approaches for improving tomato yield and resistance management of H. armigera.
    Matched MeSH terms: Lycopersicon esculentum/growth & development*
  4. Noor Atiqah, A.A.K., Maisarah, A.M., Asmah, R.
    MyJurnal
    The emerging studies suggest antioxidant may represent an important role in defence against certain diseases outlined the necessity of determining their contents in tamarillo (Cyphomandra betacea), cherry tomato (Solanum lycopersicum var. cerasiforme), and tomato (Lycopersicon esculentum). This study aims to determine the antioxidant capacity, total phenolic content and total flavonoid content in tamarillo, yellow cherry tomato, red cherry tomato, and tomato in 70% ethanol and water extracts. The ethanol extract showed the highest scavenging activity, ferric reducing activity, phenolic and flavonoid contents, whereas, the water extract showed higher value for antioxidant activity in β-Carotene bleaching assay. Tamarillo showed the highest antioxidant activity (22.92 ± 3.60%, 28.89 ± 3.85%), scavenging activity (44.25 ± 0.82 μg/ml, 47.38 ± 1.11 μg/ml), ferric reducing activity (12.17 ± 0.53 μM Fe (II)/g, 3.72 ± 0.20 μM Fe (II)/g), phenolic content (7.63 ± 0.37 mg GAE/g edible portion, 1.83 ± 0.50 mg GAE/g edible portion) and flavonoid content (6.44 ± 0.16 mg CE/g edible portion, 2.22 ± 0.31 mg CE/g edible portion) in ethanol and water extracts respectively. For ethanol extracts a positive correlations existed (0.66 ≤ r ≥ 0.97) between ferric reducing activity, antioxidant activity, phenolic content and flavonoid content. While, in water extract correlation test revealed a positive correlations between antioxidant activity, ferric reducing activity and phenolic content (0.645 ≤ r ≥ 0.706) and between antioxidant activity and flavonoid content (r = 0.820). In conclusion, tamarillo exhibits the highest antioxidant capacity, phenolic content and also flavonoid content.
    Matched MeSH terms: Lycopersicon esculentum
  5. Intan Elya Suka, Nur Farhana Roslan, Zamri Zainal, Nurulhikma Md Isa, Bee LC
    Sains Malaysiana, 2018;47:1465-1471.
    Gen Proteolisis 6 (PRT6) merupakan gen yang memainkan peranan penting dalam tapak jalan N-end rule dan berfungsi
    sebagai enzim E3 ligase. PRT6 berperanan dalam pengenalan protein sasaran bagi proses degradasi. Objektif utama kajian
    ini adalah untuk mentransformasi konstruk RNAi PRT6 ke dalam tomato berperantarakan Agrobacterium tumefaciens.
    Ini bertujuan untuk memahami peranan tapak jalan N-end rule semasa proses pemasakan buah. Beberapa faktor yang
    memberi kesan kepada transformasi seperti masa ko-penanaman dan juga kepekatan antibiotik yang digunakan telah
    dioptimumkan. Keputusan kajian menunjukkan pengeraman kotiledon selama 48 jam pada medium ko-penanaman dapat
    meningkatkan penghasilan kalus sebanyak 61% manakala penggunaan 500 mg/L antibiotik karbenisilin dalam medium
    regenerasi pucuk dapat mengurangkan kontaminasi A. tumefaciens sehingga 5.2%. Selain itu, strain A. tumefaciens
    C58 merupakan strain A. tumefaciens yang paling sesuai digunakan sebagai perantara dalam kajian ini. Tindak balas
    berantai polimerase (PCR) telah dijalankan pada pucuk yang terhasil untuk mengesahkan integrasi fragmen PRT6 ke dalam
    genom tomato. Berdasarkan analisis PCR, kesemua tujuh pucuk putatif transgenik adalah merupakan transforman positif.
    Matched MeSH terms: Lycopersicon esculentum
  6. Tam SM, Samipak S, Britt A, Chetelat RT
    Genetica, 2009 Dec;137(3):341-54.
    PMID: 19690966 DOI: 10.1007/s10709-009-9398-3
    DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.
    Matched MeSH terms: Lycopersicon esculentum/genetics*
  7. Savadkoohi S, Hoogenkamp H, Shamsi K, Farahnaky A
    Meat Sci, 2014 Aug;97(4):410-8.
    PMID: 24769097 DOI: 10.1016/j.meatsci.2014.03.017
    The present investigation focuses on the textural properties, sensory attributes and color changes of beef frankfurter, beef ham and meat-free sausage produced by different levels of bleached tomato pomace. The texture and color profile were performed using an instrumental texture analyzer and colorimeter. The findings indicated that tomato pomace-added sausages had higher water holding capacity (WHC) compared to that of commercial samples. The frankfurters containing 5 and 7% (w/w) tomato pomace had the highest redness (a*), chroma (C*) and color differences (ΔE) values, while the meat-free sausages containing 7% (w/w) tomato pomace had significant (p<0.05) values for lightness (L*) and yellowness (b*). Furthermore, there were no significant (p>0.05) color differences between beef ham samples (with and without tomato pomace). A significant progression in the textural hardness and chewiness of systems containing tomato pomace was observed as well as higher sensory scores by panelists. According to sensorial evaluations, bleached tomato pomace improved the consumer acceptability and preference.
    Matched MeSH terms: Lycopersicon esculentum*
  8. Kamaladini H, Nor Akmar Abdullah S, Aziz MA, Ismail IB, Haddadi F
    J Plant Physiol, 2013 Feb 15;170(3):346-54.
    PMID: 23290536 DOI: 10.1016/j.jplph.2012.10.017
    Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T(0)). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T(1)) produced the highest GUS activity when treated with 150 μM Cu(2+) compared to the control (without Cu(2+)). However, Zn(2+) and Fe(2+) treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T(1) seedlings of tomato when subjected to Cu(2+) ions.
    Matched MeSH terms: Lycopersicon esculentum/enzymology; Lycopersicon esculentum/genetics*
  9. Nor Amerulah Nor Mohamad, Suhaida Salleh, Hamzah Abdul Aziz
    Borneo Akademika, 2019;3(2):12-22.
    MyJurnal
    Black pod rot is the most economically important disease of cocoa in Malaysia which is
    mainly caused by a highly polyphagous Phytophthora species, called Phytophthora palmivora.
    The fungus could attack all parts of the cocoa plant organs and caused various diseases at
    any growth stage from seedling until the mature stages, especially during raining season. The
    application of synthetic fungicides has been widely recommended to manage the disease but
    their repeated use had led to other problems such as environmental, human health and
    development of fungicide resistance issues. This study isolated and identified Phytopththora
    isolate from a cocoa pod sample based on micro-morphological characters. Besides, the
    present investigation was undertaken to screen for the antifungal potency of different weed
    extracts against the Phytophthora pathogen using poisoned food technique. The fungal isolate
    was successfully recovered from pod tissues of clone PBC123 on 20% tomato juice agar
    culture (20T). Only one out of ten weed extracts tested showed a significant in vitro inhibitory
    effect towards mycelial growth of Phytophthora isolate, which was aqueous crude leaf extract
    of Solanum torvum (42.68%). This study indicated that the potential of weed extracts in the
    management of Phytophthora diseases, and may offer more natural, effective and economical
    control methods.
    Matched MeSH terms: Lycopersicon esculentum
  10. Amid A, Wan Chik WD, Jamal P, Hashim YZ
    Asian Pac J Cancer Prev, 2012;13(12):6319-25.
    PMID: 23464452
    We previously found cytotoxic effects of tomato leaf extract (TLE) on the MCF-7 breast cancer cell line. The aim of this study was to ascertain the molecular mechanisms associated with the usage of TLE as an anticancer agent by microarray analysis using mRNA from MCF-7 breast cancer cells after treatment with TLE for 1 hr and 48 hrs. Approximately 991 genes out of the 30,000 genes in the human genome were significantly (p<0.05) changed after the treatment. Within this gene set, 88 were significantly changed between the TLE treated cells and the untreated MCF-7 cells (control cells) with a cut-off fold change >2.00. In order to focus on genes that were involved in cancer cell growth, only twenty-nine genes were selected, either down-regulated or up-regulated after treatment with TLE. Microarray assay results were confirmed by analyzing 10 of the most up and down regulated genes related to cancer cells progression using real-time PCR. Treatment with TLE induced significant up-regulation in the expression of the CRYAB, PIM1, BTG1, CYR61, HIF1-α and CEBP-β genes after 1 hr and 48 hrs, whereas the TXNIP and THBS1 genes were up-regulated after 1 hr of treatment but down-regulated after 48 hrs. In addition both the HMG1L1 and HIST2H3D genes were down-regulated after 1 hr and 48 hrs of treatment. These results demonstrate the potent activity of TLE as an anticancer agent.
    Matched MeSH terms: Lycopersicon esculentum/chemistry*
  11. Siddiqui MW, Lara I, Ilahy R, Tlili I, Ali A, Homa F, et al.
    Compr Rev Food Sci Food Saf, 2018 Nov;17(6):1540-1560.
    PMID: 33350145 DOI: 10.1111/1541-4337.12395
    Tomato (Solanum lycopersicon L.) fruit is rich in various nutrients, vitamins and health-promoting molecules. Fresh tomatoes are an important part of the Mediterranean gastronomy, and their consumption is thought to contribute substantially to the reduced incidence of some chronic diseases in the Mediterranean populations in comparison with those of other world areas. Unfortunately, tomato fruit is highly perishable, resulting in important economic losses and posing a challenge to storage, logistic and supply management. This review summarizes the current knowledge on some important health-promoting and eating quality traits of tomato fruits after harvest and highlights the existence of substantial cultivar-to-cultivar variation in the postharvest evolution of the considered traits according to maturity stage at harvest and in response to postharvest manipulations. It also suggests the need for adapting postharvest procedures to the characteristics of each particular genotype to preserve the optimal quality of the fresh product.
    Matched MeSH terms: Lycopersicon esculentum
  12. Badai SS, Rasid OA, Masani MYA, Chan KL, Chan PL, Shaharuddin NA, et al.
    J Plant Physiol, 2023 Oct;289:154080.
    PMID: 37699261 DOI: 10.1016/j.jplph.2023.154080
    Modification of lipid composition in the mesocarp tissue of oil palm involves genetic manipulation of multiple genes. More than one mesocarp-preferential promoter is necessary for the expression of individual transgenes in the same plant to obviate transcriptional gene silencing. This study aimed to identify genes that are preferentially expressed in the mesocarp tissue and characterize selected candidate mesocarp-preferential promoters. Ten transcripts that were preferentially expressed in the mesocarp tissue were identified from the analysis of 82 transcriptome datasets of 12 different oil palm tissues. The expression of two candidate genes, MSP-C1 and MSP-C6, was verified to be preferentially expressed in the mesocarp tissues and shown to have a low expression level in non-mesocarp tissues by reverse transcription quantitative real-time PCR (RT-qPCR). MSP-C6 promoter fragments of different lengths were transformed into tomato plants for further characterization. Both unripe and ripe fruits of transgenic tomato plants transformed with a construct harboring the MSP-C6-F1 (2014 bp) promoter were shown to have high beta-glucuronidase (GUS) activities. The findings of this study suggest the potential applications of the MSP-C6 promoter as a molecular tool for genetic engineering of novel traits in fruit crops.
    Matched MeSH terms: Lycopersicon esculentum*
  13. Green SK, Tsai WS, Shih SL, Black LL, Rezaian A, Rashid MH, et al.
    Plant Dis, 2001 Dec;85(12):1286.
    PMID: 30831796 DOI: 10.1094/PDIS.2001.85.12.1286A
    Production of tomato (Lycopersicon esculentum) in Bangladesh, Malaysia, Myanmar, Vietnam, and Laos has been severely affected by yellow leaf curl disease. Tomato leaf samples were collected from symptomatic tomato plants from farmers' fields in the five countries from 1997 to 1999. DNA was extracted from all samples, four from Vietnam, two each from Malaysia, Laos, and Myanmar, and seven from Bangladesh. Virus DNA was amplified by polymerase chain reaction (PCR) using the begomovirus-specific degenerate primer pair PAL1v 1978/PAR1c 715(1), which amplifies the top part of DNA A. All samples gave the expected 1.4-kb PCR product. The PCR product of one sample per country was cloned and sequenced. Based on the sequences of the 1.4-kb DNA products amplified by the first primer pair, specific primers were designed to complete each of the DNA A sequences. Computer-assisted sequence comparisons were performed with begomovirus sequences available in the laboratory at the Asian Vegetable Research and Development Center, Shanhua, Tainan, and in the GenBank sequence database. The five DNA species resembled DNA A of begomoviruses. For the detection of DNA B two degenerate primer pairs were used, DNABLC1/DNABLV2 and DNABLC2/DNABLV2 (DNABLC1: 5'-GTVAATGGRGTDCACTTCTG-3', DNABLC2: 5'-RGTDCACTT CTGYARGATGC-3', DNABLV2: 5'-GAGTAGTAGTGBAKGTTGCA-3'), which were specifically designed to amplify DNA B of Asian tomato geminiviruses. Only the virus associated with yellow leaf curl of tomato in Bangladesh was found to contain a DNA B component, which was detected with the DNABLC1/DNABLV2 primer pair. The DNA A sequence derived from the virus associated with tomato yellow leaf curl from Myanmar (GenBank Accession No. AF206674) showed highest sequence identity (94%) with tomato yellow leaf curl virus from Thailand (GenBank Accession No. X63015), suggesting that it is a closely related strain of this virus. The other four viruses were distinct begomoviruses, because their sequences shared less than 90% identity with known begomoviruses of tomato or other crops. The sequence derived from the virus associated with tomato yellow leaf curl from Vietnam (GenBank Accession No. AF264063) showed highest sequence identity (82%) with the virus associated with chili leaf curl from Malaysia (GenBank Accession No. AF414287), whereas the virus associated with yellow leaf curl symptoms in tomato in Bangladesh (GenBank Accession No. AF188481) had the highest sequence identity (88%) with a tobacco geminivirus from Yunnan, China (GenBank Accession No. AF240675). The sequence derived from the virus associated with tomato yellow leaf curl from Laos (GenBank Accession No. AF195782) had the highest sequence identity (88%) with the tomato begomovirus from Malaysia (GenBank Accession No. AF327436). This report provides further evidence of the great genetic diversity of tomato-infecting begomoviruses in Asia. Reference: M. R. Rojas et al. Plant Dis. 77:340, 1993.
    Matched MeSH terms: Lycopersicon esculentum
  14. Agussabti A, Romano R, Rahmaddiansyah R, Isa RM
    Heliyon, 2020 Dec;6(12):e05847.
    PMID: 33426340 DOI: 10.1016/j.heliyon.2020.e05847
    In developing countries, farming businesses are dominated by small-scale farmers with limited resources. Such farmers are subjected to high risks, influencing the success rate of their agricultural endeavors. This study, conducted in Aceh Province, Indonesia, measured the risk tolerance among six groups of farmers with businesses based on the following seasonal commodities: paddy, corn, soy, chili, potato, and tomato. A total of 360 respondents were surveyed and 54 key respondents interviewed. A Likert scale was used to assess the risk tolerance levels of the farmers, and ordinal regression analysis to analyze the factors influencing risk tolerance. Paddy, chili, and potato farmers had a relatively high tolerance to farming risks, whereas corn and tomato farmers showed a moderate tolerance. Soy farmers were classified into the low risk tolerance category. Ordinal analysis indicated that the risk tolerance of farmers in each commodity group was influenced by specific factors. Overall, it was found that the farmers' attitudes to risk tolerance were significantly affected by the following factors: experience, education, farming income, capital, land status, and land size. An intervention strategy including improvements in the curriculum, actors, network, scope of clusters, and technology are among the strategies required to positively improve farmers' perceptions and increase their tolerance to farming risks.
    Matched MeSH terms: Lycopersicon esculentum
  15. Sani I, Jamian S, Saad N, Abdullah S, Mohd Hata E, Jalinas J, et al.
    PLoS One, 2023;18(5):e0285666.
    PMID: 37216342 DOI: 10.1371/journal.pone.0285666
    Entomopathogenic fungi (EPF) are natural enemies which affect insect population and have long been recognized as biological control agents against many insect pests. Some isolates have also been established as endophytes, benefiting their host plants without causing any symptoms or negative effects. Here we demonstrated two entomopathogenic fungal species, Isariajavanica (Frieder. & Bally) Samson & Hywel-jone 2005 and Purpureocillium lilacinum (Thom) Luangsa-ard, Hou-braken, Hywel-Jones & Samson (2011) as endophytes in tomato plants by using the seed inoculation method and examined their effect on plant growth, B. tabaci mortality, and adult emergence. Our study indicated that tomato seeds treated with a fungal suspension of I. javanica and P. lilacinum enabled their recovery from plant tissues (root, stem and leaf) up to 60 days after inoculation (DAI). Both endophytic isolates also caused significant mortality of adult B. tabaci on seedlings inoculated with, I. javanica (51.92±4.78%), and P. lilacinum (45.32±0.20%) compared to the control treatment (19.29±2.35). Adult emergence rates were significantly high in the control treatments (57.50±2.66%) compared to I. javanica (15.00±1.47%) and P. lilacinum (28.75±4.78%) treatments. This study provides evidence that endophytic isolates of I. javanica and P. lilacinum have a biocontrol potentials for used against whiteflies and could also explored as plant growth promoters.
    Matched MeSH terms: Lycopersicon esculentum*
  16. Ling Q, Sadali NM, Soufi Z, Zhou Y, Huang B, Zeng Y, et al.
    Nat Plants, 2021 05;7(5):655-666.
    PMID: 34007040 DOI: 10.1038/s41477-021-00916-y
    The maturation of green fleshy fruit to become colourful and flavoursome is an important strategy for plant reproduction and dispersal. In tomato (Solanum lycopersicum) and many other species, fruit ripening is intimately linked to the biogenesis of chromoplasts, the plastids that are abundant in ripe fruit and specialized for the accumulation of carotenoid pigments. Chromoplasts develop from pre-existing chloroplasts in the fruit, but the mechanisms underlying this transition are poorly understood. Here, we reveal a role for the chloroplast-associated protein degradation (CHLORAD) proteolytic pathway in chromoplast differentiation. Knockdown of the plastid ubiquitin E3 ligase SP1, or its homologue SPL2, delays tomato fruit ripening, whereas overexpression of SP1 accelerates ripening, as judged by colour changes. We demonstrate that SP1 triggers broader effects on fruit ripening, including fruit softening, and gene expression and metabolism changes, by promoting the chloroplast-to-chromoplast transition. Moreover, we show that tomato SP1 and SPL2 regulate leaf senescence, revealing conserved functions of CHLORAD in plants. We conclude that SP1 homologues control plastid transitions during fruit ripening and leaf senescence by enabling reconfiguration of the plastid protein import machinery to effect proteome reorganization. The work highlights the critical role of chromoplasts in fruit ripening, and provides a theoretical basis for engineering crop improvements.
    Matched MeSH terms: Lycopersicon esculentum/growth & development*; Lycopersicon esculentum/metabolism
  17. Okuda S, Prince JP, Davis RE, Dally EL, Lee IM, Mogen B, et al.
    Plant Dis, 1997 Mar;81(3):301-305.
    PMID: 30861775 DOI: 10.1094/PDIS.1997.81.3.301
    Phytoplasmas (mycoplasmalike organisms, MLOs) associated with mitsuba (Japanese hone-wort) witches'-broom (JHW), garland chrysanthemum witches'-broom (GCW), eggplant dwarf (ED), tomato yellows (TY), marguerite yellows (MY), gentian witches'-broom (GW), and tsu-wabuki witches'-broom (TW) in Japan were investigated by polymerase chain reaction (PCR) amplification of DNA and restriction enzyme analysis of PCR products. The phytoplasmas could be separated into two groups, one containing strains JHW, GCW, ED, TY, and MY, and the other containing strains GW and TW, corresponding to two groups previously recognized on the basis of transmission by Macrosteles striifrons and Scleroracus flavopictus, respectively. The strains transmitted by M. striifrons were classified in 16S rRNA gene group 16SrI, which contains aster yellows and related phytoplasma strains. Strains GW and TW were classified in group 16SrIII, which contains phytoplasmas associated with peach X-disease, clover yellow edge, and related phytoplasmas. Digestion of amplified 16S rDNA with HpaII indicated that strains GW and TW were affiliated with subgroup 16SrIII-B, which contains clover yellow edge phytoplasma. All seven strains were distinguished from other phytoplasmas, including those associated with clover proliferation, ash yellows, elm yellows, and beet leafhopper-transmitted virescence in North America, and Malaysian periwinkle yellows and sweet potato witches'-broom in Asia.
    Matched MeSH terms: Lycopersicon esculentum
  18. Samsi MS, Kamari A, Din SM, Lazar G
    J Food Sci Technol, 2019 Jun;56(6):3099-3108.
    PMID: 31205364 DOI: 10.1007/s13197-019-03809-3
    In the present study, gelatin-carboxymethyl cellulose blend film was synthesized, characterized and applied for the first time to preserve cherry tomatoes (Solanum lycopersicum var. cerasiforme) and grapes (Vitis vinifera). Gelatin (Gel) film forming solution was incorporated with carboxymethyl cellulose (CMC) at three volume per volume (Gel:CMC) ratios, namely 75:25, 50:50 and 25:75. CMC treatment has improved the transparency, tensile strength (TS), elongation at break (EAB), water vapor permeability and oxygen permeability of gelatin films. A pronounced effect was obtained for 25Gel:75CMC film. The TS and EAB values were increased from 25.98 MPa and 2.34% (100Gel:0CMC) to 37.54 MPa and 4.41% (25Gel:75CMC), respectively. A significant improvement in antimicrobial property of gelatin films against two food pathogens, namely Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was obtained in the presence of CMC. The effectiveness of gelatin-CMC blend films to extend the shelf life of agricultural products was evaluated in a 14-day preservation study. The gelatin-CMC films were successfully controlled the weight loss and browning index of the fruits up to 50.41% and 31.34%, respectively. Overall, gelatin-CMC film is an environmental friendly film for food preservation.
    Matched MeSH terms: Lycopersicon esculentum
  19. Nurul Izzah, A., Wan Rozita, W.M., Siti Fatimah, D., Aminah, A., Md Pauzi, A., Lee, Y.H.
    MyJurnal
    A survey was conducted to investigate patterns of fruits and vegetables consumption among Malaysian adults residing in Selangor, Malaysia. Two hundred forty two subjects comprises of male (28%) and female (72%) of major ethnics (Malays-52.3%; Chinese-30.5%; Indians-16.9%) with the mean age of 43.5±18 years were studied from July to November 2002. Consumption data for vegetables were collected using 24 hours duplicate samples method while for fruits 24-hour diet record was used. The results showed that most frequently consumed leafy, leguminous, root, brassica and fruits vegetables were celery (Apium graveolens), spinach (Spinacia oleracea), water spinach (Ipomoea aquatic), long beans (Vigna sesquipedolis), French beans (Phaseolus vulgaris), carrot (Daucas carota), potato (Solanum tuberosum), Chinese mustard (Brassica juncea), round cabbage (Brassica reptans), cauliflower (Brassica oleracea var cauliflora), chilies (red, green, small or dried) (Capsicum sp.), tomato (Lycopersicum esculentum), cucumber (Cucumis sativus), long eggplant (Solanum melongena) and okra (Hibiscus esculentus). While most consumed ulam and traditional vegetables were petai (Parkia speciosa), sweet leaves (Sauropus andragynus) and Indian pennywor (Hydrocotyle asiatica). Other vegetables inclusive spices and flavorings that were preferred by subjects were shallot (Allium fistulosum), garlic(Allium sativum), onion (Alium cepa), green bean sprout (Phaseolus aureus) and curry leaves (Murraya koenigii). The most preferred fruits were banana (Musa spp.) and apples (.Malus domestica). A total consumption of fruits and vegetables among adults in Selangor was 173 g/day and the consumption among Malays (202 g/day) was significantly higher (P
    Matched MeSH terms: Lycopersicon esculentum
  20. Nevame AYM, Xia L, Nchongboh CG, Hasan MM, Alam MA, Yongbo L, et al.
    Biomed Res Int, 2018;2018:8120281.
    PMID: 30105248 DOI: 10.1155/2018/8120281
    Tomato yellow leaf curl virus (TYLCV) responsible for tomato yellow leaf curl disease (TYLCD) causes a substantial decrease in tomato (Solanum lycopersicum L.) yield worldwide. The use of resistant variety as a sustainable management strategy has been advocated. Tremendous progress has been made in genetically characterizing the resistance genes (R gene) in tomato. Breeding tomato for TYLCV resistance has been based mostly on Ty-3 as a race-specific resistance gene by introgression originating from wild tomato species relatives. Improvement or development of a cultivar is achievable through the use of marker-assisted selection (MAS). Therefore, precise and easy use of gene-targeted markers would be of significant importance for selection in breeding programs. The present study was undertaken to develop a new marker based on Ty-3 gene sequence that can be used for MAS in TYLCV resistant tomato breeding program. The new developed marker was named ACY. The reliability and accuracy of ACY were evaluated against those of Ty-3 linked marker P6-25 through screening of commercial resistant and susceptible tomato hybrids, and genetic segregation using F2 population derived from a commercial resistant hybrid AG208. With the use of bioinformatics and DNA sequencing analysis tools, deletion of 10 nucleotides was observed in Ty-3 gene sequence for susceptible tomato variety. ACY is a co-dominant indel-based marker that produced clear and strong polymorphic band patterns for resistant plant distinguishing it from its susceptible counterpart. The obtained result correlates with 3:1 segregation ratio of single resistant dominant gene inheritance, which depicted ACY as gene-tag functional marker. This marker is currently in use for screening 968 hybrids varieties and one thousand breeding lines of tomato varieties stocked in Jiangsu Green Port Modern Agriculture Development Company (Green Port). So far, ACY has been used to identify 56 hybrids and 51 breeding lines. These newly detected breeding lines were regarded as potential source of resistance for tomato breeding. This work exploited the sequence of Ty-3 and subsequently contributed to the development of molecular marker ACY to aid phenotypic selection. We thus recommend this marker to breeders, which is suitable for marker-assisted selection in tomato.
    Matched MeSH terms: Lycopersicon esculentum/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links