Displaying publications 1 - 20 of 267 in total

Abstract:
Sort:
  1. A Rahim AI, Ibrahim MI, Musa KI, Chua SL, Yaacob NM
    PMID: 34574835 DOI: 10.3390/ijerph18189912
    Social media is emerging as a new avenue for hospitals and patients to solicit input on the quality of care. However, social media data is unstructured and enormous in volume. Moreover, no empirical research on the use of social media data and perceived hospital quality of care based on patient online reviews has been performed in Malaysia. The purpose of this study was to investigate the determinants of positive sentiment expressed in hospital Facebook reviews in Malaysia, as well as the association between hospital accreditation and sentiments expressed in Facebook reviews. From 2017 to 2019, we retrieved comments from 48 official public hospitals' Facebook pages. We used machine learning to build a sentiment analyzer and service quality (SERVQUAL) classifier that automatically classifies the sentiment and SERVQUAL dimensions. We utilized logistic regression analysis to determine our goals. We evaluated a total of 1852 reviews and our machine learning sentiment analyzer detected 72.1% of positive reviews and 27.9% of negative reviews. We classified 240 reviews as tangible, 1257 reviews as trustworthy, 125 reviews as responsive, 356 reviews as assurance, and 1174 reviews as empathy using our machine learning SERVQUAL classifier. After adjusting for hospital characteristics, all SERVQUAL dimensions except Tangible were associated with positive sentiment. However, no significant relationship between hospital accreditation and online sentiment was discovered. Facebook reviews powered by machine learning algorithms provide valuable, real-time data that may be missed by traditional hospital quality assessments. Additionally, online patient reviews offer a hitherto untapped indication of quality that may benefit all healthcare stakeholders. Our results confirm prior studies and support the use of Facebook reviews as an adjunct method for assessing the quality of hospital services in Malaysia.
    Matched MeSH terms: Machine Learning
  2. Abba SI, Pham QB, Saini G, Linh NTT, Ahmed AN, Mohajane M, et al.
    Environ Sci Pollut Res Int, 2020 Nov;27(33):41524-41539.
    PMID: 32686045 DOI: 10.1007/s11356-020-09689-x
    In recent decades, various conventional techniques have been formulated around the world to evaluate the overall water quality (WQ) at particular locations. In the present study, back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), and one multilinear regression (MLR) are considered for the prediction of water quality index (WQI) at three stations, namely Nizamuddin, Palla, and Udi (Chambal), across the Yamuna River, India. The nonlinear ensemble technique was proposed using the neural network ensemble (NNE) approach to improve the performance accuracy of the single models. The observed WQ parameters were provided by the Central Pollution Control Board (CPCB) including dissolved oxygen (DO), pH, biological oxygen demand (BOD), ammonia (NH3), temperature (T), and WQI. The performance of the models was evaluated by various statistical indices. The obtained results indicated the feasibility of the developed data intelligence models for predicting the WQI at the three stations with the superior modelling results of the NNE. The results also showed that the minimum values for root mean square (RMS) varied between 0.1213 and 0.4107, 0.003 and 0.0367, and 0.002 and 0.0272 for Nizamuddin, Palla, and Udi (Chambal), respectively. ANFIS-M3, BPNN-M4, and BPNN-M3 improved the performance with regard to an absolute error by 41%, 4%, and 3%, over other models for Nizamuddin, Palla, and Udi (Chambal) stations, respectively. The predictive comparison demonstrated that NNE proved to be effective and can therefore serve as a reliable prediction approach. The inferences of this paper would be of interest to policymakers in terms of WQ for establishing sustainable management strategies of water resources.
    Matched MeSH terms: Machine Learning
  3. Abdar M, Wijayaningrum VN, Hussain S, Alizadehsani R, Plawiak P, Acharya UR, et al.
    J Med Syst, 2019 Jun 07;43(7):220.
    PMID: 31175462 DOI: 10.1007/s10916-019-1343-0
    Wart disease (WD) is a skin illness on the human body which is caused by the human papillomavirus (HPV). This study mainly concentrates on common and plantar warts. There are various treatment methods for this disease, including the popular immunotherapy and cryotherapy methods. Manual evaluation of the WD treatment response is challenging. Furthermore, traditional machine learning methods are not robust enough in WD classification as they cannot deal effectively with small number of attributes. This study proposes a new evolutionary-based computer-aided diagnosis (CAD) system using machine learning to classify the WD treatment response. The main architecture of our CAD system is based on the combination of improved adaptive particle swarm optimization (IAPSO) algorithm and artificial immune recognition system (AIRS). The cross-validation protocol was applied to test our machine learning-based classification system, including five different partition protocols (K2, K3, K4, K5 and K10). Our database consisted of 180 records taken from immunotherapy and cryotherapy databases. The best results were obtained using the K10 protocol that provided the precision, recall, F-measure and accuracy values of 0.8908, 0.8943, 0.8916 and 90%, respectively. Our IAPSO system showed the reliability of 98.68%. It was implemented in Java, while integrated development environment (IDE) was implemented using NetBeans. Our encouraging results suggest that the proposed IAPSO-AIRS system can be employed for the WD management in clinical environment.
    Matched MeSH terms: Machine Learning*
  4. Abdu Masanawa Sagir, Saratha Sathasivam
    MyJurnal
    Medical diagnosis is the process of determining which disease or medical condition explains a person’s determinable signs and symptoms. Diagnosis of most diseases is very expensive as many tests are required for predictions. This paper aims to introduce an improved hybrid approach for training the adaptive network based fuzzy inference system (ANFIS). It incorporates hybrid learning algorithms least square estimates with Levenberg-Marquardt algorithm using analytic derivation for computation of Jacobian matrix, as well as code optimisation technique, which indexes membership functions. The goal is to investigate how certain diseases are affected by patient’s characteristics and measurement such as abnormalities or a decision about the presence or absence of a disease. In order to achieve an accurate diagnosis at this complex stage of symptom analysis, the physician may need efficient diagnosis system to classify and predict patient condition by using an adaptive neuro fuzzy inference system (ANFIS) pre-processed by grid partitioning. The proposed hybridised intelligent technique was tested with Statlog heart disease and Hepatitis disease datasets obtained from the University of California at Irvine’s (UCI) machine learning repository. The robustness of the performance measuring total accuracy, sensitivity and specificity was examined. In comparison, the proposed method was found to achieve superior
    performance when compared to some other related existing methods.
    Matched MeSH terms: Machine Learning
  5. Abdulrauf Sharifai G, Zainol Z
    Genes (Basel), 2020 06 27;11(7).
    PMID: 32605144 DOI: 10.3390/genes11070717
    The training machine learning algorithm from an imbalanced data set is an inherently challenging task. It becomes more demanding with limited samples but with a massive number of features (high dimensionality). The high dimensional and imbalanced data set has posed severe challenges in many real-world applications, such as biomedical data sets. Numerous researchers investigated either imbalanced class or high dimensional data sets and came up with various methods. Nonetheless, few approaches reported in the literature have addressed the intersection of the high dimensional and imbalanced class problem due to their complicated interactions. Lately, feature selection has become a well-known technique that has been used to overcome this problem by selecting discriminative features that represent minority and majority class. This paper proposes a new method called Robust Correlation Based Redundancy and Binary Grasshopper Optimization Algorithm (rCBR-BGOA); rCBR-BGOA has employed an ensemble of multi-filters coupled with the Correlation-Based Redundancy method to select optimal feature subsets. A binary Grasshopper optimisation algorithm (BGOA) is used to construct the feature selection process as an optimisation problem to select the best (near-optimal) combination of features from the majority and minority class. The obtained results, supported by the proper statistical analysis, indicate that rCBR-BGOA can improve the classification performance for high dimensional and imbalanced datasets in terms of G-mean and the Area Under the Curve (AUC) performance metrics.
    Matched MeSH terms: Machine Learning*
  6. Abu A, Leow LK, Ramli R, Omar H
    BMC Bioinformatics, 2016 Dec 22;17(Suppl 19):505.
    PMID: 28155645 DOI: 10.1186/s12859-016-1362-5
    BACKGROUND: Taxonomists frequently identify specimen from various populations based on the morphological characteristics and molecular data. This study looks into another invasive process in identification of house shrew (Suncus murinus) using image analysis and machine learning approaches. Thus, an automated identification system is developed to assist and simplify this task. In this study, seven descriptors namely area, convex area, major axis length, minor axis length, perimeter, equivalent diameter and extent which are based on the shape are used as features to represent digital image of skull that consists of dorsal, lateral and jaw views for each specimen. An Artificial Neural Network (ANN) is used as classifier to classify the skulls of S. murinus based on region (northern and southern populations of Peninsular Malaysia) and sex (adult male and female). Thus, specimen classification using Training data set and identification using Testing data set were performed through two stages of ANNs.

    RESULTS: At present, the classifier used has achieved an accuracy of 100% based on skulls' views. Classification and identification to regions and sexes have also attained 72.5%, 87.5% and 80.0% of accuracy for dorsal, lateral, and jaw views, respectively. This results show that the shape characteristic features used are substantial because they can differentiate the specimens based on regions and sexes up to the accuracy of 80% and above. Finally, an application was developed and can be used for the scientific community.

    CONCLUSIONS: This automated system demonstrates the practicability of using computer-assisted systems in providing interesting alternative approach for quick and easy identification of unknown species.

    Matched MeSH terms: Machine Learning*
  7. Aburas MM, Ahamad MSS, Omar NQ
    Environ Monit Assess, 2019 Mar 05;191(4):205.
    PMID: 30834982 DOI: 10.1007/s10661-019-7330-6
    Spatio-temporal land-use change modeling, simulation, and prediction have become one of the critical issues in the last three decades due to uncertainty, structure, flexibility, accuracy, the ability for improvement, and the capability for integration of available models. Therefore, many types of models such as dynamic, statistical, and machine learning (ML) models have been used in the geographic information system (GIS) environment to fulfill the high-performance requirements of land-use modeling. This paper provides a literature review on models for modeling, simulating, and predicting land-use change to determine the best approach that can realistically simulate land-use changes. Therefore, the general characteristics of conventional and ML models for land-use change are described, and the different techniques used in the design of these models are classified. The strengths and weaknesses of the various dynamic, statistical, and ML models are determined according to the analysis and discussion of the characteristics of these models. The results of the review confirm that ML models are the most powerful models for simulating land-use change because they can include all driving forces of land-use change in the simulation process and simulate linear and non-linear phenomena, which dynamic models and statistical models are unable to do. However, ML models also have limitations. For instance, some ML models are complex, the simulation rules cannot be changed, and it is difficult to understand how ML models work in a system. However, this can be solved via the use of programming languages such as Python, which in turn improve the simulation capabilities of the ML models.
    Matched MeSH terms: Machine Learning
  8. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP
    Comput Methods Programs Biomed, 2018 Jul;161:103-113.
    PMID: 29852953 DOI: 10.1016/j.cmpb.2018.04.012
    In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).
    Matched MeSH terms: Machine Learning
  9. Acharya UR, Hagiwara Y, Adeli H
    Epilepsy Behav, 2018 11;88:251-261.
    PMID: 30317059 DOI: 10.1016/j.yebeh.2018.09.030
    In the past two decades, significant advances have been made on automated electroencephalogram (EEG)-based diagnosis of epilepsy and seizure detection. A number of innovative algorithms have been introduced that can aid in epilepsy diagnosis with a high degree of accuracy. In recent years, the frontiers of computational epilepsy research have moved to seizure prediction, a more challenging problem. While antiepileptic medication can result in complete seizure freedom in many patients with epilepsy, up to one-third of patients living with epilepsy will have medically intractable epilepsy, where medications reduce seizure frequency but do not completely control seizures. If a seizure can be predicted prior to its clinical manifestation, then there is potential for abortive treatment to be given, either self-administered or via an implanted device administering medication or electrical stimulation. This will have a far-reaching impact on the treatment of epilepsy and patient's quality of life. This paper presents a state-of-the-art review of recent efforts and journal articles on seizure prediction. The technologies developed for epilepsy diagnosis and seizure detection are being adapted and extended for seizure prediction. The paper ends with some novel ideas for seizure prediction using the increasingly ubiquitous machine learning technology, particularly deep neural network machine learning.
    Matched MeSH terms: Machine Learning/trends*
  10. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H
    Comput Biol Med, 2018 09 01;100:270-278.
    PMID: 28974302 DOI: 10.1016/j.compbiomed.2017.09.017
    An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.
    Matched MeSH terms: Machine Learning
  11. Acharya UR, Koh JEW, Hagiwara Y, Tan JH, Gertych A, Vijayananthan A, et al.
    Comput Biol Med, 2018 03 01;94:11-18.
    PMID: 29353161 DOI: 10.1016/j.compbiomed.2017.12.024
    Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.
    Matched MeSH terms: Machine Learning*
  12. Adnan MSG, Siam ZS, Kabir I, Kabir Z, Ahmed MR, Hassan QK, et al.
    J Environ Manage, 2023 Jan 15;326(Pt B):116813.
    PMID: 36435143 DOI: 10.1016/j.jenvman.2022.116813
    Globally, many studies on machine learning (ML)-based flood susceptibility modeling have been carried out in recent years. While majority of those models produce reasonably accurate flood predictions, the outcomes are subject to uncertainty since flood susceptibility models (FSMs) may produce varying spatial predictions. However, there have not been many attempts to address these uncertainties because identifying spatial agreement in flood projections is a complex process. This study presents a framework for reducing spatial disagreement among four standalone and hybridized ML-based FSMs: random forest (RF), k-nearest neighbor (KNN), multilayer perceptron (MLP), and hybridized genetic algorithm-gaussian radial basis function-support vector regression (GA-RBF-SVR). Besides, an optimized model was developed combining the outcomes of those four models. The southwest coastal region of Bangladesh was selected as the case area. A comparable percentage of flood potential area (approximately 60% of the total land areas) was produced by all ML-based models. Despite achieving high prediction accuracy, spatial discrepancy in the model outcomes was observed, with pixel-wise correlation coefficients across different models ranging from 0.62 to 0.91. The optimized model exhibited high prediction accuracy and improved spatial agreement by reducing the number of classification errors. The framework presented in this study might aid in the formulation of risk-based development plans and enhancement of current early warning systems.
    Matched MeSH terms: Machine Learning*
  13. Ahmad Loti NN, Mohd Noor MR, Chang SW
    J Sci Food Agric, 2021 Jul;101(9):3582-3594.
    PMID: 33275806 DOI: 10.1002/jsfa.10987
    BACKGROUND: Chili is one of the most important and high-value vegetable crops worldwide. However, pest and disease infections are among the main limiting factors in chili cultivation. These diseases cannot be eradicated but can be handled and monitored to mitigate the damage. Hence, the use of an automated identification system based on images will promote quick identification of chili disease. The features extracted from the images are of utmost importance to develop such an accurate identification system.

    RESULTS: In this research, chili pest and disease features extracted using the traditional approach were compared with features extracted using a deep-learning-based approach. A total of 974 chili leaf images were collected, which consisted of five types of diseases, two types of pest infestations, and a healthy type. Six traditional feature-based approaches and six deep-learning feature-based approaches were used to extract significant pests and disease features from the chili leaf images. The extracted features were fed into three machine learning classifiers, namely a support vector machine (SVM), a random forest (RF), and an artificial neural network (ANN) for the identification task. The results showed that deep learning feature-based approaches performed better than the traditional feature-based approaches. The best accuracy of 92.10% was obtained with the SVM classifier.

    CONCLUSION: A deep-learning feature-based approach could capture the details and characteristics between different types of chili pests and diseases even though they possessed similar visual patterns and symptoms. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Machine Learning
  14. Ahmad RF, Malik AS, Kamel N, Reza F, Amin HU, Hussain M
    Technol Health Care, 2017;25(3):471-485.
    PMID: 27935575 DOI: 10.3233/THC-161286
    BACKGROUND: Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful.

    METHODS: In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes.

    RESULTS: Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature.

    CONCLUSIONS: The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

    Matched MeSH terms: Machine Learning
  15. Ahmadi H, Gholamzadeh M, Shahmoradi L, Nilashi M, Rashvand P
    Comput Methods Programs Biomed, 2018 Jul;161:145-172.
    PMID: 29852957 DOI: 10.1016/j.cmpb.2018.04.013
    BACKGROUND AND OBJECTIVE: Diagnosis as the initial step of medical practice, is one of the most important parts of complicated clinical decision making which is usually accompanied with the degree of ambiguity and uncertainty. Since uncertainty is the inseparable nature of medicine, fuzzy logic methods have been used as one of the best methods to decrease this ambiguity. Recently, several kinds of literature have been published related to fuzzy logic methods in a wide range of medical aspects in terms of diagnosis. However, in this context there are a few review articles that have been published which belong to almost ten years ago. Hence, we conducted a systematic review to determine the contribution of utilizing fuzzy logic methods in disease diagnosis in different medical practices.

    METHODS: Eight scientific databases are selected as an appropriate database and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method was employed as the basis method for conducting this systematic and meta-analysis review. Regarding the main objective of this research, some inclusion and exclusion criteria were considered to limit our investigation. To achieve a structured meta-analysis, all eligible articles were classified based on authors, publication year, journals or conferences, applied fuzzy methods, main objectives of the research, problems and research gaps, tools utilized to model the fuzzy system, medical disciplines, sample sizes, the inputs and outputs of the system, findings, results and finally the impact of applied fuzzy methods to improve diagnosis. Then, we analyzed the results obtained from these classifications to indicate the effect of fuzzy methods in decreasing the complexity of diagnosis.

    RESULTS: Consequently, the result of this study approved the effectiveness of applying different fuzzy methods in diseases diagnosis process, presenting new insights for researchers about what kind of diseases which have been more focused. This will help to determine the diagnostic aspects of medical disciplines that are being neglected.

    CONCLUSIONS: Overall, this systematic review provides an appropriate platform for further research by identifying the research needs in the domain of disease diagnosis.

    Matched MeSH terms: Machine Learning
  16. Ahmed N, Abbasi MS, Zuberi F, Qamar W, Halim MSB, Maqsood A, et al.
    Biomed Res Int, 2021;2021:9751564.
    PMID: 34258283 DOI: 10.1155/2021/9751564
    Objective: The objective of this systematic review was to investigate the quality and outcome of studies into artificial intelligence techniques, analysis, and effect in dentistry.

    Materials and Methods: Using the MeSH keywords: artificial intelligence (AI), dentistry, AI in dentistry, neural networks and dentistry, machine learning, AI dental imaging, and AI treatment recommendations and dentistry. Two investigators performed an electronic search in 5 databases: PubMed/MEDLINE (National Library of Medicine), Scopus (Elsevier), ScienceDirect databases (Elsevier), Web of Science (Clarivate Analytics), and the Cochrane Collaboration (Wiley). The English language articles reporting on AI in different dental specialties were screened for eligibility. Thirty-two full-text articles were selected and systematically analyzed according to a predefined inclusion criterion. These articles were analyzed as per a specific research question, and the relevant data based on article general characteristics, study and control groups, assessment methods, outcomes, and quality assessment were extracted.

    Results: The initial search identified 175 articles related to AI in dentistry based on the title and abstracts. The full text of 38 articles was assessed for eligibility to exclude studies not fulfilling the inclusion criteria. Six articles not related to AI in dentistry were excluded. Thirty-two articles were included in the systematic review. It was revealed that AI provides accurate patient management, dental diagnosis, prediction, and decision making. Artificial intelligence appeared as a reliable modality to enhance future implications in the various fields of dentistry, i.e., diagnostic dentistry, patient management, head and neck cancer, restorative dentistry, prosthetic dental sciences, orthodontics, radiology, and periodontics.

    Conclusion: The included studies describe that AI is a reliable tool to make dental care smooth, better, time-saving, and economical for practitioners. AI benefits them in fulfilling patient demand and expectations. The dentists can use AI to ensure quality treatment, better oral health care outcome, and achieve precision. AI can help to predict failures in clinical scenarios and depict reliable solutions. However, AI is increasing the scope of state-of-the-art models in dentistry but is still under development. Further studies are required to assess the clinical performance of AI techniques in dentistry.

    Matched MeSH terms: Machine Learning
  17. Akhtar N, Khan N, Qayyum S, Qureshi MI, Hishan SS
    Front Public Health, 2022;10:869793.
    PMID: 36187628 DOI: 10.3389/fpubh.2022.869793
    The use of technology in the healthcare sector and its medical practices, from patient record maintenance to diagnostics, has significantly improved the health care emergency management system. At that backdrop, it is crucial to explore the role and challenges of these technologies in the healthcare sector. Therefore, this study provides a systematic review of the literature on technological developments in the healthcare sector and deduces its pros and cons. We curate the published studies from the Web of Science and Scopus databases by using PRISMA 2015 guidelines. After mining the data, we selected only 55 studies for the systematic literature review and bibliometric analysis. The study explores four significant classifications of technological development in healthcare: (a) digital technologies, (b) artificial intelligence, (c) blockchain, and (d) the Internet of Things. The novel contribution of current study indicate that digital technologies have significantly influenced the healthcare services such as the beginning of electronic health record, a new era of digital healthcare, while robotic surgeries and machine learning algorithms may replace practitioners as future technologies. However, a considerable number of studies have criticized these technologies in the health sector based on trust, security, privacy, and accuracy. The study suggests that future studies, on technological development in healthcare services, may take into account these issues for sustainable development of the healthcare sector.
    Matched MeSH terms: Machine Learning
  18. Al-Khaleefa AS, Ahmad MR, Isa AAM, Esa MRM, Aljeroudi Y, Jubair MA, et al.
    Sensors (Basel), 2019 May 25;19(10).
    PMID: 31130657 DOI: 10.3390/s19102397
    Wi-Fi has shown enormous potential for indoor localization because of its wide utilization and availability. Enabling the use of Wi-Fi for indoor localization necessitates the construction of a fingerprint and the adoption of a learning algorithm. The goal is to enable the use of the fingerprint in training the classifiers for predicting locations. Existing models of machine learning Wi-Fi-based localization are brought from machine learning and modified to accommodate for practical aspects that occur in indoor localization. The performance of these models varies depending on their effectiveness in handling and/or considering specific characteristics and the nature of indoor localization behavior. One common behavior in the indoor navigation of people is its cyclic dynamic nature. To the best of our knowledge, no existing machine learning model for Wi-Fi indoor localization exploits cyclic dynamic behavior for improving localization prediction. This study modifies the widely popular online sequential extreme learning machine (OSELM) to exploit cyclic dynamic behavior for achieving improved localization results. Our new model is called knowledge preserving OSELM (KP-OSELM). Experimental results conducted on the two popular datasets TampereU and UJIndoorLoc conclude that KP-OSELM outperforms benchmark models in terms of accuracy and stability. The last achieved accuracy was 92.74% for TampereU and 72.99% for UJIndoorLoc.
    Matched MeSH terms: Machine Learning
  19. Al-Saffar A, Awang S, Tao H, Omar N, Al-Saiagh W, Al-Bared M
    PLoS One, 2018;13(4):e0194852.
    PMID: 29684036 DOI: 10.1371/journal.pone.0194852
    Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach.
    Matched MeSH terms: Supervised Machine Learning/classification
  20. AlDahoul N, Md Sabri AQ, Mansoor AM
    Comput Intell Neurosci, 2018;2018:1639561.
    PMID: 29623089 DOI: 10.1155/2018/1639561
    Human detection in videos plays an important role in various real life applications. Most of traditional approaches depend on utilizing handcrafted features which are problem-dependent and optimal for specific tasks. Moreover, they are highly susceptible to dynamical events such as illumination changes, camera jitter, and variations in object sizes. On the other hand, the proposed feature learning approaches are cheaper and easier because highly abstract and discriminative features can be produced automatically without the need of expert knowledge. In this paper, we utilize automatic feature learning methods which combine optical flow and three different deep models (i.e., supervised convolutional neural network (S-CNN), pretrained CNN feature extractor, and hierarchical extreme learning machine) for human detection in videos captured using a nonstatic camera on an aerial platform with varying altitudes. The models are trained and tested on the publicly available and highly challenging UCF-ARG aerial dataset. The comparison between these models in terms of training, testing accuracy, and learning speed is analyzed. The performance evaluation considers five human actions (digging, waving, throwing, walking, and running). Experimental results demonstrated that the proposed methods are successful for human detection task. Pretrained CNN produces an average accuracy of 98.09%. S-CNN produces an average accuracy of 95.6% with soft-max and 91.7% with Support Vector Machines (SVM). H-ELM has an average accuracy of 95.9%. Using a normal Central Processing Unit (CPU), H-ELM's training time takes 445 seconds. Learning in S-CNN takes 770 seconds with a high performance Graphical Processing Unit (GPU).
    Matched MeSH terms: Machine Learning*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links