Displaying publications 1 - 20 of 440 in total

Abstract:
Sort:
  1. Ab Razak NH, Praveena SM, Aris AZ, Hashim Z
    Public Health, 2016 Feb;131:103-11.
    PMID: 26715317 DOI: 10.1016/j.puhe.2015.11.006
    Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk.
    Matched MeSH terms: Metals, Heavy/analysis*
  2. Ab Razak NH, Praveena SM, Aris AZ, Hashim Z
    J Epidemiol Glob Health, 2015 Dec;5(4):297-310.
    PMID: 25944153 DOI: 10.1016/j.jegh.2015.04.003
    Malaysia has abundant sources of drinking water from river and groundwater. However, rapid developments have deteriorated quality of drinking water sources in Malaysia. Heavy metal studies in terms of drinking water, applications of health risk assessment and bio-monitoring in Malaysia were reviewed from 2003 to 2013. Studies on heavy metal in drinking water showed the levels are under the permissible limits as suggested by World Health Organization and Malaysian Ministry of Health. Future studies on the applications of health risk assessment are crucial in order to understand the risk of heavy metal exposure through drinking water to Malaysian population. Among the biomarkers that have been reviewed, toenail is the most useful tool to evaluate body burden of heavy metal. Toenails are easy to collect, store, transport and analysed. This review will give a clear guidance for future studies of Malaysian drinking water. In this way, it will help risk managers to minimize the exposure at optimum level as well as the government to formulate policies in safe guarding the population.
    Matched MeSH terms: Metals, Heavy/adverse effects*; Metals, Heavy/analysis*
  3. Abbas Alkarkhi FM, Ismail N, Easa AM
    J Hazard Mater, 2008 Feb 11;150(3):783-9.
    PMID: 17590506
    Cockles (Anadara granosa) sample obtained from two rivers in the Penang State of Malaysia were analyzed for the content of arsenic (As) and heavy metals (Cr, Cd, Zn, Cu, Pb, and Hg) using a graphite flame atomic absorption spectrometer (GF-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometer (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data. MANOVA showed a strong significant difference between the two rivers in term of As and heavy metals contents in cockles. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used only two parameters (Zn and Cd) affording more than 72% correct assignations. Results indicated that the two rivers were different in terms of As and heavy metal contents in cockle, and the major difference was due to the contribution of Zn and Cd. A positive correlation was found between discriminate functions (DF) and Zn, Cd and Cr, whereas negative correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metals and arsenic content. Taking into account of these results, it can be suggested that a continuous monitoring of As and heavy metals in cockles be performed in these two rivers.
    Matched MeSH terms: Metals, Heavy/metabolism*
  4. Abbas SZ, Rafatullah M
    Chemosphere, 2021 Jun;272:129691.
    PMID: 33573807 DOI: 10.1016/j.chemosphere.2021.129691
    The cost-effective and eco-friendly approaches are needed for decontamination of polluted soils. The bio-electrochemical system, especially microbial fuel cells (MFCs) offer great promise as a technology for remediation of soil, sediment, sludge and wastewater. Recently, soil MFCs (SMFCs) have been attracting increasing amounts of interest in environmental remediation, since they are capable of providing a clean and inexhaustible source of electron donors or acceptors and can be easily controlled by adjusting the electrochemical parameters. In this review, we comprehensively covered the principle of SMFCs including the mechanisms of electron releasing and electron transportation, summarized the applications for soil contaminants remediation by SMFCs with highlights on organic contaminants degradation and heavy metal ions removal. In addition, the main factors that affected the performance of SMFCs were discussed in details which would be helpful for performance optimization of SMFCs as well as the efficiency improvement for soil remediation. Moreover, the key issues need to be addressed and future perspectives are presented.
    Matched MeSH terms: Metals, Heavy*
  5. Abdullah MZ, Saat AB, Hamzah ZB
    Environ Monit Assess, 2012 Jun;184(6):3959-69.
    PMID: 21822578 DOI: 10.1007/s10661-011-2236-y
    Biomonitoring of multi-element atmospheric deposition using terrestrial moss is a well-established technique in Europe. Although the technique is widely known, there were very limited records of using this technique to study atmospheric air pollution in Malaysia. In this present study, the deposition of 11 trace metals surrounding the main petroleum refinery plant in Kerteh Terengganu (eastern part of peninsular Malaysia) has been evaluated using two local moss species, namely Hypnum plumaeforme and Taxithelium instratum as bioindicators. The study was also done by means of observing whether these metals are attributed to work related to oil exploration in this area. The moss samples have been collected at 30 sampling stations in the vicinity of the petrochemical industrial area covering up to 15 km to the south, north, and west in radius. The contents of heavy metal in moss samples were analyzed by energy dispersive x-ray fluorescence technique. Distribution of heavy metal content in all mosses is portrayed using Surfer software. Areas of the highest level of contaminations are highlighted. The results obtained using the principal components analysis revealed that the elements can be grouped into three different components that indirectly reflected three different sources namely anthropogenic factor, vegetation factor, and natural sources (soil dust or substrate) factor. Heavy metals deposited mostly in the distance after 9 km onward to the western part (the average direction of wind blow). V, Cr, Cu, and Hg are believed to have originated from local petrochemical-based industries operated around petroleum industrial area.
    Matched MeSH terms: Metals, Heavy/analysis
  6. Abdullah N, Tair R, Abdullah MH
    Pak J Biol Sci, 2014 Jan 01;17(1):62-7.
    PMID: 24783779
    Perna viridis (P. viridis) has been identified as a good biological indicator in identifying environmental pollution, especially when there are various types of Heavy Metals Accumulations (HMA) inside its tissue. Based on the potential of P. viridis to accumulate heavy metals and the data on its physical properties, this study proffers to determine the relationships between both properties. The similarities of the physical properties are used to mathematical model their relationships, which included the size (length, width, height) and weight (wet and dry) of P. viridis, whilst the heavy metals are focused on concentrations of Pb, Cu, Cr, Cd and Zn. The concentrations of metal elements are detected by using Flame Atomic Adsorption Spectrometry. Results show that the mean concentration of Pb, Cu, Cr, Cd, Zn, length, width, height, wet weight and dry weight are: 1.12 +/- 1.00, 2.36 +/- 1.65, 2.12 +/- 2.74, 0.44 +/- 0.41 and 16.52 +/- 10.64 mg kg(-1) (dry weight), 105.08 +/- 14.35, 41.64 +/- 4.64, 28.75 +/- 3.92 mm, 14.56 +/- 3.30 and 2.37 +/- 0.86 g, respectively. It is also found out that the relationships between the Heavy Metals Concentrations (HMA) and the physical properties can be represented using Multiple Linear Regressions (MLR) models, relating that the HMA of Zinc has affected significantly the physical growth properties of P. viridis.
    Matched MeSH terms: Metals, Heavy/metabolism*; Metals, Heavy/toxicity*
  7. Abdullahi S, Haris H, Zarkasi KZ, Amir HG
    J Basic Microbiol, 2021 Apr;61(4):293-304.
    PMID: 33491813 DOI: 10.1002/jobm.202000695
    Enterobacter tabaci 4M9 (CCB-MBL 5004) was reported to have plant growth-promoting and heavy metal tolerance traits. It was able to tolerate more than 300 mg/L Cd, 600 mg/L As, and 500 mg/L Pb and still maintained the ability to produce plant growth-promoting substances under metal stress conditions. To explore the genetic basis of these beneficial traits, the complete genome sequencing of 4M9 was carried out using Pacific Bioscience (PacBio) sequencing technology. The complete genome consisted of one chromosome of 4,654,430 bp with a GC content of 54.6% and one plasmid of 51,135 bp with a GC content of 49.4%. Genome annotation revealed several genes involved in plant growth-promoting traits, including the production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase; solubilization of phosphate and potassium; and nitrogen metabolism. Similarly, genes involved in heavy metals (As, Co, Zn, Cu, Mn, Se, Cd, and Fe) tolerance were detected. These support its potential as a heavy metal-tolerant plant growth-promoting bacterium and a good genetic resource that can be employed to improve phytoremediation efficiency of heavy metal-contaminated soil via biotechnological techniques. This, to the best of our knowledge, is the first report on the complete genome sequence of heavy metal-tolerant plant growth-promoting E. tabaci.
    Matched MeSH terms: Metals, Heavy/toxicity*
  8. Abioye OP, Agamuthu P, Abdul Aziz AR
    Biodegradation, 2012 Apr;23(2):277-86.
    PMID: 21870160 DOI: 10.1007/s10532-011-9506-9
    Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil.
    Matched MeSH terms: Metals, Heavy/analysis
  9. Abo-Shakeer, L.K.A., Yakasai, M.H., Rahman, M.F., Syed, M.A., Bakar, N.A., Othman, A.R.
    MyJurnal
    Molybdenum is an emerging pollutant. Bioremediation of this heavy metal is possible by the
    mediation of Mo-reducing bacteria. These bacteria contain the Mo-reducing enzymes that can
    conver toxic soluble molybdenum into molybdenum blue; a less soluble and less toxic form of the
    metal. To date only the enzyme has been purified from only one bacterium. The aim of this study is
    to purify the Mo-reducing enzyme from a previously isolated Mo-reducing bacterium Bacillus
    pumilus strain Lbna using ammonium sulphate fractionation followed by ion exchange and then
    gel filtration. Two clear bands were obtained after the gel filtration step with molecular weights
    of 70 and 100 kDa. This indicates that further additional purification methods need to be used
    to get a purified fraction. Hence, additional steps of chromatography such as hydroxyapatite or
    chromatofocusing techniques can be applied in the future.
    Matched MeSH terms: Metals, Heavy
  10. Abo-Shakeer, L.K.A., Rahman, M.F.A., Yakasai, H., Syed, M.A., Shukor M.Y., Bakar, N.A., et al.
    MyJurnal
    Bacterial based remediation of environmental toxicants is a promising innovative technology
    for molybdenum pollution. To date, the enzyme responsible for molybdate reduction to Moblue
    from bacteria show that the Michaelis-Menten constants varies by one order of magnitude.
    It is important that the constants from newer enzyme sources be characterized so that a
    comparison can be made. The aim of this study is to characterize kinetically the enzyme from a
    previously isolated Mo-reducing bacterium; Bacillus pumilus strain Lbna. The maximum
    activity of this enzyme occurred at pH 5.5 and in between 25 and 35 oC. The Km and Vmax of
    NADH were 6.646 mM and 0.057 unit/mg enzyme, while the Km and Vmax of LPPM were 3.399
    mM and 0.106 unit/mg enzyme. The results showed that the enzyme activity for Bacillus
    pumilus strain Lbna were inhibited by all heavy metals used. Zinc, copper, silver, chromium,
    cadmium and mercury all caused more than 50% inhibition to the Mo-reducing enzyme activity
    with copper being the most potent with an almost complete inhibition of enzyme activity
    observed.
    Matched MeSH terms: Metals, Heavy
  11. Abubakar M. Umar, Tham, Lik Gin, Natarajan Perumal, Nur Adeela Yasid, Hassan Mohd Daud, Mohd Yunus Shukor
    MyJurnal
    Acetylcholinesterase (AChE) is usually used as an inhibitive assay for insecticides. A lesserknown
    property of AChE is its inhibition by heavy metals. In this work, we evaluate an AChE
    from brains of Clarias batrachus (catfish) exposed to wastes from aquaculture industry as an
    inhibitive assay for heavy metals. We discovered that the AChE was inhibited completely by
    Hg2+, Ag2+, Pb2+, Cu2+, Cd2+, Cr6+ and Zn2+ during initial screening. When tested at various
    concentrations, the heavy metals exhibited exponential decay type inhibition curves. The
    calculated IC50 (mg/L) for the heavy metals Ag2+, Cu2+, Hg2+, Cr6+ and Cd2+ were 0.088, 0.078,
    0.071, 0.87 and 0.913, respectively. The IC50 for these heavy metals are comparable, and some
    are lower than the IC50 values from the cholinesterases from previously studied fish. The assay
    can be carried out in less than 30 minutes at ambient temperature.
    Matched MeSH terms: Metals, Heavy
  12. Adam T, Dhahi TS, Gopinath SCB, Hashim U
    Crit Rev Anal Chem, 2022;52(8):1913-1929.
    PMID: 34254863 DOI: 10.1080/10408347.2021.1925523
    Nanowires have been utilized widely in the generation of high-performance nanosensors. Laser ablation, chemical vapor, thermal evaporation and alternating current electrodeposition are in use in developing nanowires. Nanowires are in a great attention because of their submicron feature and their potentials in the front of nanoelectronics, accelerated field effect transistors, chemical- and bio-sensors, and low power consuming light-emitting devices. With the control of nanowire size and concentration of dopant, the electrical sensitivity and other properties of nanowires can be tuned for the reproducibility. Nanowires comprise of arrays of electrodes that form a nanometer electrical circuit. One of advantages of nanowires is that they can be fabricated in nanometer-size for various applications in different approaches. Several studies have been conducted on nanowires and researchers discovered that nanowires have the potential in the applications with material properties at the nanometer scale. The unique electrical properties of nanowires have made them to be promising for numerous applications. Nowadays, for example, MOS field-effect transistors are largely used as fundamental building elements in electronic circuits. Also, the dimension of MOS transistors is gradually decreasing to the nanoscale based on the prediction made by Moor's law. However, their fabrication is challenging. This review summarized different techniques in the fabrication of nanowires, global nanowire prospect, testing of nanowires to understand the real electrical behavior using higher resolution microscopes, and brief applications in the detection of biomolecules, disease such as corona viral pandemic, heavy metal in water, and applications of nanowires in agriculture.
    Matched MeSH terms: Metals, Heavy*
  13. Adi Ainurzaman Jamaludin, Noor Zalina Mahmood
    Vermicomposting using Lumbricus rubellus was conducted in two different durations, 10 and 30 weeks in the same plots. Three different of treatments combination were prepared with eight replicates for each treatment namely cow dung : kitchen waste in 30:70 ratio (T1), cow dung : coffee grounds in 30:70 ratio (T2), and cow dung : kitchen waste : coffee grounds in 30:35:35 ratio (T3). Macronutrients elements in the vermicompost from each treatment were measured in the tenth and thirtieth week. Comparatively longer duration of vermicomposting by using Lumbricus rubellus enhanced the quality of vermicompost by the increase of the macronutrient elements while reducing the heavy metal concentration and C/N ratio.
    Matched MeSH terms: Metals, Heavy
  14. Agusa T, Kunito T, Yasunaga G, Iwata H, Subramanian A, Ismail A, et al.
    Mar Pollut Bull, 2005;51(8-12):896-911.
    PMID: 16023148
    Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.
    Matched MeSH terms: Metals, Heavy/analysis*
  15. Ahmad A, Sreedhar Reddy S, Rumana G
    Int J Phytoremediation, 2019;21(5):471-478.
    PMID: 30648407 DOI: 10.1080/15226514.2018.1537243
    To assess the tolerance, the rye-grass L. grown on soil amended with petroleum wastewater (PWW) containing four metals lead, zinc, nickel and mercury. The PWW (25 to 50%) showed remarkable increase in length and biomass. Chlorophyll 'a and b' increased with an increase of PWW from 25-50% while such contents decreased on increasing the 75-100% compared to control. The mass balance performed on the system showed the removal of 90-97.6% lead, 85.5-92.9% zinc, 78.9-85.5% nickle and 47.6-27.5% mercury. The model for the maximum metal reduction rate (Rmax) was much better for Pb (89.5) and Zn (72.1) with respect to Ni (57.3) and Hg (32.4). Survival of rye-grass (30-days, statics, and renewal exposures) was increased by 50% as compared to control. The toxicity index Y of PWW showed 0-25% deficiency level, 25-50% tolerance level, 50-90% toxic level and 90-100% lethal level. The experimental data showing high correlation coefficient (R2 = 0.98).
    Matched MeSH terms: Metals, Heavy/analysis*
  16. Ahmad A, Bhat AH, Buang A
    Environ Technol, 2019 Jun;40(14):1793-1809.
    PMID: 29345546 DOI: 10.1080/09593330.2018.1430171
    In this study freely suspended and Ca-alginate immobilized C. vulgaris cells were used for the biosorption of Fe(II), Mn(II), and Zn(II) ions, from the aqueous solution. Experimental data showed that biosorption capacity of algal cells was strongly dependent on the operational condition such as pH, initial metal ions concentration, dosages, contact time and temperature. The maximum biosorption of Fe(II) 43.43, Mn(II) 40.98 and Zn(II) 37.43 mg/g was achieved with Ca-alginate immobilized algal cells at optimum pH of 6.0, algal cells dosage 0.6 g/L, and contact time of 450 min at room temperature. The biosorption efficiency of freely suspended and immobilized C. vulgaris cells for heavy metals removal from the industrial wastewater was validated. Modeling of biosorption kinetics showed good agreements with pseudo-second-order. Langmuir and D-R isotherm models exhibited the best fit of experimental data. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) revealed that the biosorption of considered metal ions was feasible, spontaneous and exothermic at 25-45°C. The SEM showed porous morphology which greatly helps in the biosorption of heavy metals. The Fourier transform infrared spectrophotometer (FTIR) and X-rays Photon Spectroscopy (XPS) data spectra indicated that the functional groups predominately involved in the biosorption were C-N, -OH, COO-, -CH, C=C, C=S and -C-. These results shows that immobilized algal cells in alginate beads could potentially enhance the biosorption of considered metal ions than freely suspended cells. Furthermore, the biosorbent has significantly removed heavy metals from industrial wastewater at the optimized condition.
    Matched MeSH terms: Metals, Heavy*
  17. Ahmad Mahir R, Arfah A, Rozaimah Z, Siti Adyani S, Khairiah J, Ismail B
    Sains Malaysiana, 2017;46:2305-2313.
    The study was conducted to determine the best model suitable for the determination of ferrum uptake in Brassica chinensis (flowering white cabbage). A nonlinear regression model was selected to determine the amount of ferrum absorbed by each part of the Brassica chinensis plant namely the leaves, stems and roots. The Levenberg-Marquardt method was used to perform the nonlinear least square fit. This method employs information on the gradients and hence requires specification of the partial derivatives. A suitable model was obtained from the exponential regression model. The polynomial model was found to be appropriate for leaves, the mono-exponential model was suitable for stems and the simple exponential model for roots. The residual plots and the normal probability plots from each of the models indicated no substantial diagnostic problems, so it can be concluded that the polynomial and exponential regression models provide adequate fit to determine data on heavy metal uptake by the flowering white cabbage.
    Matched MeSH terms: Metals, Heavy
  18. Ahmad Mustapha, Gandaseca, Seca, Ahmad Hanafi, Siti Nurhidayu, Mohammad Roslan, Khan, Waseem, et al.
    MyJurnal
    The objectives of this review are to determine the types of indices to use, to assess the current sediment quality index (SQI) of a mangrove forest and to select the appropriate index to describe the mangrove sediment quality index. Amongst the many indices considered in this review are the enrichment factors (EFs), the geo-accumulation index (Igeo), the pollution load index (PLI), the marine sediment pollution index (MSPI) and sediment quality index (SQI). The different indices give diverse perspectives of the status of mangrove sediment quality. This review also highlights the appropriate parameters that need to be used in assessing sediment quality, such as the physical, chemical and biological properties. As the comparison review, the sediment quality can be utilized for Mangrove quality index (MQI) development like to assess the heavy metal, complete laboratory parameters and a classification following the Interim Sediment Quality Guidelines ISQG, PCA and HACA. For the heavy metal content of sediment, the suggested parameters are Pb, Zn, Cu, Co and Mn. Lastly, for the indices, the enrichment factor (EFs), geo-accumulation index (Igeo), pollution load index (PLI) and marine sediment pollution index (MPSI) are used in develop SQI on mangrove forest.
    Matched MeSH terms: Metals, Heavy
  19. Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, et al.
    Environ Sci Pollut Res Int, 2012 Jun;19(5):1464-84.
    PMID: 22207239 DOI: 10.1007/s11356-011-0709-8
    BACKGROUND: In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution.

    REVIEW: This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years.

    CONCLUSION: Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.

    Matched MeSH terms: Metals, Heavy/isolation & purification; Metals, Heavy/chemistry
  20. Ahmed AM, Sulaiman WN
    Environ Manage, 2001 Nov;28(5):655-63.
    PMID: 11568845
    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.
    Matched MeSH terms: Metals, Heavy/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links