Displaying publications 1 - 20 of 103 in total

Abstract:
Sort:
  1. Almasi MH, Mirzapour Mounes S, Koting S, Karim MR
    ScientificWorldJournal, 2014;2014:408473.
    PMID: 24526890 DOI: 10.1155/2014/408473
    A growing concern for public transit is its inability to shift passenger's mode from private to public transport. In order to overcome this problem, a more developed feeder bus network and matched schedules will play important roles. The present paper aims to review some of the studies performed on Feeder Bus Network Design and Scheduling Problem (FNDSP) based on three distinctive parts of the FNDSP setup, namely, problem description, problem characteristics, and solution approaches. The problems consist of different subproblems including data preparation, feeder bus network design, route generation, and feeder bus scheduling. Subsequently, descriptive analysis and classification of previous works are presented to highlight the main characteristics and solution methods. Finally, some of the issues and trends for future research are identified. This paper is targeted at dealing with the FNDSP to exhibit strategic and tactical goals and also contributes to the unification of the field which might be a useful complement to the few existing reviews.
    Matched MeSH terms: Motor Vehicles*
  2. Soong MF, Ramli R, Saifizul AA, Goh KY, Long SX
    PLoS One, 2023;18(1):e0280290.
    PMID: 36662679 DOI: 10.1371/journal.pone.0280290
    The inerter is a two-terminal component that can be added to the spring-and-damper configuration of a suspension system. It has the property that the force exerted is proportional to the relative acceleration at its terminals. Studies have demonstrated the inerter's benefit of providing superior vibration isolation when it is used in the vehicle suspension of passenger cars. However, similar benefit on another common vehicle class on the roads, namely heavy vehicles, remain to be shown, as these vehicles have vastly different parameter values than passenger cars. This study is an investigation on the performance improvement brought by an inerter in the suspension of common heavy vehicles. In the study, the parameter values of a truck and a bus were adopted in the quarter vehicle model with two different spring-damper-inerter configurations (parallel and serial inerter), and the improvements in vibration isolation and road holding capability were determined by optimization of inertance. Results show that the inerter is similarly effective in providing the said improvements when implemented on heavy vehicles instead of on passenger cars, judging from reductions in sprung mass acceleration and dynamic tire load. It is also observed that the performance benefit is associated with larger optimum inertance than that for passenger cars. Overall, the inerter has been shown to be beneficial in the parallel and serial configurations, both of which are common and can be practically implemented in the suspension of heavy vehicles.
    Matched MeSH terms: Motor Vehicles*
  3. Qureshi MA, Noor RM, Shamim A, Shamshirband S, Raymond Choo KK
    PLoS One, 2016;11(3):e0152727.
    PMID: 27031989 DOI: 10.1371/journal.pone.0152727
    Radio propagation models (RPMs) are generally employed in Vehicular Ad Hoc Networks (VANETs) to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels). For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86.
    Matched MeSH terms: Motor Vehicles
  4. Al-Mekhlafi AA, Isha ASN, Al-Quraishi MS, Kanwal N
    Front Public Health, 2023;11:1160317.
    PMID: 37869200 DOI: 10.3389/fpubh.2023.1160317
    INTRODUCTION: Driving fatigue has been shown to increase the risk of accidents and potentially fatal crashes. Fatigue is a serious risk that some drivers do not take seriously. Previous studies investigated the effects of driving fatigue in the Malaysian oil and gas transportation industry by employing survey questionnaires. However, they did not explain the behavior of fatigue. Besides, these results required validation by a more reliable method that can describe how fatigue occurs.

    METHODS: Thus, in this study, we used the Psychomotor Vigilance Test (PVT-192) and a short survey to address driving fatigue behavior and identify the influences of driving fatigue on driving performance in real life (on the road) with actual oil and gas tanker drivers. The total participants in the experimental study were 58 drivers.

    RESULTS: For the analysis, a Wilcoxon Signed Ranks Test, Z value and Spearman's rho were used to measure the significant difference between the pre and post-tests of PVT and the correlation between the fatigue variables and driving performance.

    DISCUSSION: During the experiment's first and second days, this study's results indicated that driving fatigue gradually escalated. Likewise, there was a negative correlation based on the test of the relationship between the PVT data and the driving performance survey data. Additionally, the drivers suffer from accumulative fatigue, which requires more effort from the transportation company management to promote the drivers awareness of fatigue consequences.

    Matched MeSH terms: Motor Vehicles*
  5. Jawarneh S, Abdullah S
    PLoS One, 2015;10(7):e0130224.
    PMID: 26132158 DOI: 10.1371/journal.pone.0130224
    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results.
    Matched MeSH terms: Motor Vehicles/statistics & numerical data*
  6. Krishnan P, Hashim N, Rani U, Lung JK
    Med J Malaysia, 1998 Dec;53(4):449-51.
    PMID: 10971995
    A survey was carried out using a medical examination format that was prepared by the Malaysian Medical Association. The findings of the survey show that of the 266 cases surveyed, 64 drivers (24% of cases surveyed) are either totally unfit to drive or temporarily unfit to drive heavy goods and passenger vehicles. This is clear indication that the current format that is being used by the Road Transport Department is inadequate and needs to be reviewed. It must also be stressed that all the above 64 drivers have been certified fit using the existing Road Transport Department format and are currently driving in our highways and roads. Heavy vehicle goods and passenger vehicle drivers if not properly examined and medically certified are not only be endangering their own lives but also that of others. It is therefore recommended that based on the data available from this survey, the Road Transport Department should seriously consider adopting the medical examination format that was formalised by the Malaysian Medical Association and used in this survey.
    Matched MeSH terms: Motor Vehicles*
  7. Bello Tambawal A, Md Noor R, Salleh R, Chembe C, Oche M
    PLoS One, 2019;14(4):e0214664.
    PMID: 30946766 DOI: 10.1371/journal.pone.0214664
    A vehicular ad hoc network (VANET) is an emerging and promising wireless technology aimed to improve traffic safety and provide comfort to road users. However, the high mobility of vehicles and frequent topology changes pose a considerable challenge to the reliable delivery of safety applications. Clustering is one of the control techniques used in VANET to make the frequent topology changes less dynamic. Nevertheless, research has shown that most of the existing clustering algorithms focus on cluster head (CH) election with very few addressing other critical issues such as cluster formation and maintenance. This has led to unstable clusters which could affect the timely delivery of safety applications. In this study, enhanced weight-based clustering algorithm (EWCA) was developed to address these challenges. We considered any vehicle moving on the same road segment with the same road ID and within the transmission range of its neighbour to be suitable for the cluster formation process. This was attributed to the fact that all safety messages are expected to be shared among the vehicles within the vicinity irrespective of their relative speedto avoid any hazardous situation. To elect a CH, we identified some metrics on the basis of the vehicle mobility information. Each vehicle was associated with a predefined weight value based on its relevance. A vehicle with the highest weight value was elected as the primary cluster head (PCH). We also introduced a secondary cluster head (SeCH) as a backup to the PCH to improve the cluster stability. SeCH took over the leadership whenever the PCH was not suitable for continuing with the leadership. The simulation results of the proposed approach showed a better performance with an increase of approximately40%- 45% in the cluster stability when compared with the existing approaches. Similarly, cluster formation messages were significantly minimized, hence reducing the communication overhead to the system and improving the reliable delivery of the safety applications.
    Matched MeSH terms: Motor Vehicles*
  8. Ahmed AA, Pradhan B
    Environ Monit Assess, 2019 Feb 26;191(3):190.
    PMID: 30809746 DOI: 10.1007/s10661-019-7333-3
    This study proposes a neural network (NN) model to predict and simulate the propagation of vehicular traffic noise in a dense residential area at the New Klang Valley Expressway (NKVE) in Shah Alam, Malaysia. The proposed model comprises of two main simulation steps: that is, the prediction of vehicular traffic noise using NN and the simulation of the propagation of traffic noise emission using a mathematical model. First, the NN model was developed with the following selected noise predictors: the number of motorbikes, the sum of vehicles, car ratio, heavy vehicle ratio (e.g. truck, lorry and bus), highway density and a light detection and ranging (LiDAR)-derived digital surface model (DSM). Subsequently, NN and its hyperparameters were optimised by a systematic optimisation procedure based on a grid search approach. The noise propagation model was then developed in a geographic information system (GIS) using five variables, namely road geometry, barriers, distance, interaction of air particles and weather parameters. The noise measurement was conducted continuously at 15-min intervals and the data were analysed by taking the minimum, maximum and average values recorded during the day. The measurement was performed four times a day (i.e. morning, afternoon, evening, and midnight) over two days of the week (i.e. Sunday and Monday). An optimal radial basis function NN was used with 17 hidden layers. The learning rate and momentum values were 0.05 and 0.9, respectively. Finally, the accuracy of the proposed method achieved 78.4% with less than 4.02 dB (A) error in noise prediction. Overall, the proposed models were found to be promising tools for traffic noise assessment in dense urban areas.
    Matched MeSH terms: Off-Road Motor Vehicles; Motor Vehicles
  9. Ghaleb SM, Subramaniam S, Zukarnain ZA, Muhammed A, Ghaleb M
    PLoS One, 2019;14(3):e0212490.
    PMID: 30845160 DOI: 10.1371/journal.pone.0212490
    Recently, the mobility management of urban vehicular networks has become great challenges for researchers due to its unique mobility requirements imposed by mobile users when accessing different services in a random fashion. To provide a ubiquitous Internet and seamless connectivity, the Internet Engineering Task Force (IETF) has proposed a Proxy Mobile IPv6 (PMIPv6) protocol. This is meant to address the signaling of the mobility transparent to the Mobile Node (MN) and also guarantee session continuity while the MN is in motion. However, performing a handoff by tens of thousands of MNs may harm the performance of the system significantly due to the high signaling overhead and the insufficient utilization of so-called Binding Cash Entry (BCE) at the Local Mobility Anchor (LMA). To address these issues, we propose an efficient scheme within the PMIPv6 protocol, named AE-PMIPv6 scheme, to effectively utilize the BCE at the LMA. This is primarily achieved by merging the BCEs of the MNs, thus, reducing the signaling overhead. Better utilization of the BCEs has been attained by employing virtual addresses and addressing pool mechanisms for the purpose of binding information of the MNs that are moving together towards the same network at a specific time, during their handoff process. Results obtained from our simulation demonstrates the superiority of AE-PMIPv6 scheme over E-PMIPv6 scheme. The AE-PMIPv6 succeeds in minimizing the signaling overhead, reduces the handover time and at the same time efficiently utilize the buffer resources.
    Matched MeSH terms: Motor Vehicles*
  10. Ng KM, Reaz MB
    PLoS One, 2016;11(1):e0144798.
    PMID: 26731745 DOI: 10.1371/journal.pone.0144798
    Platoon based traffic flow models form the underlying theoretical framework in traffic simulation tools. They are essentially important in facilitating efficient performance calculation and evaluation in urban traffic networks. For this purpose, a new platoon-based macroscopic model called the LWR-IM has been developed in [1]. Preliminary analytical validation conducted previously has proven the feasibility of the model. In this paper, the LWR-IM is further enhanced with algorithms that describe platoon interactions in urban arterials. The LWR-IM and the proposed platoon interaction algorithms are implemented in the real-world class I and class II urban arterials. Another purpose of the work is to perform quantitative validation to investigate the validity and ability of the LWR-IM and its underlying algorithms to describe platoon interactions and simulate performance indices that closely resemble the real traffic situations. The quantitative validation of the LWR-IM is achieved by performing a two-sampled t-test on queues simulated by the LWR-IM and real queues observed at these real-world locations. The results reveal insignificant differences of simulated queues with real queues where the p-values produced concluded that the null hypothesis cannot be rejected. Thus, the quantitative validation further proved the validity of the LWR-IM and the embedded platoon interactions algorithm for the intended purpose.
    Matched MeSH terms: Motor Vehicles*
  11. Nor’ain Senin, Noorhidayah Ramli, Mai Noor Asiah Tan Zalilah
    MyJurnal
    A new innovation has been created which is called AUTOMATIC MEAT SLICING (AMS) MACHINE. The main purpose of the machine creation is to replace the old-style method in slicing the chicken meat to modern method. BABARITTOS DELIGHT supplies Tortillas Wrap to the latest trend of Food & Beverage (F&B) business called Food Truck. The main ingredient of Burritos is slices of boneless chicken meat, where each slice is approximately has to be 5 mm thick. Formerly, the slicing procedure used a normal cutting knife and its production rate was truncated as the demands of the Burritos are going higher by days. This method requires 3 to 4 workers to team up to complete the 30 kg boneless chicken meat to be cut into roughly 5 mm per slice within one and half hour. The AMS machine is predominant to help the company to grow the output of sliced meat and at the same time can reduce the number of workers. The usage of AMS machine is only required one worker for the operation and the output can be up to 30kg per 30mins, which is actually can end up almost 3 times quantity of output and 3 times labor cost-saving. Meanwhile the quality of the sliced meat is much enhanced as most of the slice meat is precisely 5mm thick. The AMS concept design is cutting the meat using several circular cutting blades, where the chicken will be put on the moving conveyor and finally will fall onto the hygienic tray.
    Matched MeSH terms: Motor Vehicles
  12. Jefferelli S.B., Rampal K.G., Aziz A.J., Agus Salim M.B.
    MyJurnal
    How people perceive risk influences their behaviour towards these risks. We do not know how workers perceive risk of dying from activities or technology. This study was conducted among 198 workers of a security company in Malaysia. The workers were asked to score on a Likert scale of 1 to 5 the perceived risk of death of Malaysians from activities and technology. The highest perceived risks of death were, in order of ranking, motorcycles, motor vehicles, handguns, alcoholic beverages and smoking. The difference in perception and reality is discussed.
    Matched MeSH terms: Motor Vehicles
  13. Athraa Iessa, Noor Izzri Abdul Wahab, Norman Mariun
    MyJurnal
    One of the concerns in power system preventive control and security assessment is to find the point where the voltage and frequency collapse and when the system forces a severe disturbance. Identifying the weakest bus in a power system is an essential aspect of planning, optimising and post-event analysing procedures. This paper proposes an approach to identify the weakest bus from the frequency security viewpoint. The transient frequency deviation index for the individual buses is used as the weakest bus identification as well as a frequency security indicator. This approach will help to determine the bus with the worst deviation, which helps to analyse the system disturbance, takes proper control action to prevent frequency failure, and most importantly, observes consumer frequency. The approach is applied to the WSCC 9 bus test system to show the feasibility of the method.
    Matched MeSH terms: Motor Vehicles
  14. Hassan R, Mohd Yusof M, Kamarudin NA
    Malays J Med Sci, 2010 Oct;17(4):67-70.
    PMID: 22135564 MyJurnal
    An atlanto-occipital dislocation is a rare airbag-induced injury in trauma patients. We report a case of an atlanto-occipital dislocation in a 6-year-old patient who was an unrestrained passenger in the front seat of a vehicle involved in a low-speed motor vehicle accident. This case illustrates the fatal threat of airbag deployment to the child passenger travelling in the vehicle front seat even in a low-speed collision, and supports the recommendation that children under 12 years of age travelling in vehicles with dual airbag systems should be seated in the back.
    Matched MeSH terms: Motor Vehicles
  15. Clements GR, Lynam AJ, Gaveau D, Yap WL, Lhota S, Goosem M, et al.
    PLoS One, 2014;9(12):e115376.
    PMID: 25521297 DOI: 10.1371/journal.pone.0115376
    Habitat destruction and overhunting are two major drivers of mammal population declines and extinctions in tropical forests. The construction of roads can be a catalyst for these two threats. In Southeast Asia, the impacts of roads on mammals have not been well-documented at a regional scale. Before evidence-based conservation strategies can be developed to minimize the threat of roads to endangered mammals within this region, we first need to locate where and how roads are contributing to the conversion of their habitats and illegal hunting in each country. We interviewed 36 experts involved in mammal research from seven Southeast Asian countries to identify roads that are contributing the most, in their opinion, to habitat conversion and illegal hunting. Our experts highlighted 16 existing and eight planned roads - these potentially threaten 21% of the 117 endangered terrestrial mammals in those countries. Apart from gathering qualitative evidence from the literature to assess their claims, we demonstrate how species-distribution models, satellite imagery and animal-sign surveys can be used to provide quantitative evidence of roads causing impacts by (1) cutting through habitats where endangered mammals are likely to occur, (2) intensifying forest conversion, and (3) contributing to illegal hunting and wildlife trade. To our knowledge, ours is the first study to identify specific roads threatening endangered mammals in Southeast Asia. Further through highlighting the impacts of roads, we propose 10 measures to limit road impacts in the region.
    Matched MeSH terms: Motor Vehicles/statistics & numerical data*
  16. Soltani M, Moghaddam TB, Karim MR, Sulong NH
    Accid Anal Prev, 2013 Oct;59:240-52.
    PMID: 23820073 DOI: 10.1016/j.aap.2013.05.029
    Road safety barriers protect vehicles from roadside hazards by redirecting errant vehicles in a safe manner as well as providing high levels of safety during and after impact. This paper focused on transition safety barrier systems which were located at the point of attachment between a bridge and roadside barriers. The aim of this study was to provide an overview of the behavior of transition systems located at upstream bridge rail with different designs and performance levels. Design factors such as occupant risk and vehicle trajectory for different systems were collected and compared. To achieve this aim a comprehensive database was developed using previous studies. The comparison showed that Test 3-21, which is conducted by impacting a pickup truck with speed of 100 km/h and angle of 25° to transition system, was the most severe test. Occupant impact velocity and ridedown acceleration for heavy vehicles were lower than the amounts for passenger cars and pickup trucks, and in most cases higher occupant lateral impact ridedown acceleration was observed on vehicles subjected to higher levels of damage. The best transition system was selected to give optimum performance which reduced occupant risk factors using the similar crashes in accordance with Test 3-21.
    Matched MeSH terms: Motor Vehicles*
  17. Hosseinpour M, Sahebi S, Zamzuri ZH, Yahaya AS, Ismail N
    Accid Anal Prev, 2018 Sep;118:277-288.
    PMID: 29861069 DOI: 10.1016/j.aap.2018.05.003
    According to crash configuration and pre-crash conditions, traffic crashes are classified into different collision types. Based on the literature, multi-vehicle crashes, such as head-on, rear-end, and angle crashes, are more frequent than single-vehicle crashes, and most often result in serious consequences. From a methodological point of view, the majority of prior studies focused on multivehicle collisions have employed univariate count models to estimate crash counts separately by collision type. However, univariate models fail to account for correlations which may exist between different collision types. Among others, multivariate Poisson lognormal (MVPLN) model with spatial correlation is a promising multivariate specification because it not only allows for unobserved heterogeneity (extra-Poisson variation) and dependencies between collision types, but also spatial correlation between adjacent sites. However, the MVPLN spatial model has rarely been applied in previous research for simultaneously modelling crash counts by collision type. Therefore, this study aims at utilizing a MVPLN spatial model to estimate crash counts for four different multi-vehicle collision types, including head-on, rear-end, angle, and sideswipe collisions. To investigate the performance of the MVPLN spatial model, a two-stage model and a univariate Poisson lognormal model (UNPLN) spatial model were also developed in this study. Detailed information on roadway characteristics, traffic volume, and crash history were collected on 407 homogeneous segments from Malaysian federal roads. The results indicate that the MVPLN spatial model outperforms the other comparing models in terms of goodness-of-fit measures. The results also show that the inclusion of spatial heterogeneity in the multivariate model significantly improves the model fit, as indicated by the Deviance Information Criterion (DIC). The correlation between crash types is high and positive, implying that the occurrence of a specific collision type is highly associated with the occurrence of other crash types on the same road segment. These results support the utilization of the MVPLN spatial model when predicting crash counts by collision manner. In terms of contributing factors, the results show that distinct crash types are attributed to different subsets of explanatory variables.
    Matched MeSH terms: Motor Vehicles*
  18. Khoo HL, Ahmed M
    Accid Anal Prev, 2018 Apr;113:106-116.
    PMID: 29407657 DOI: 10.1016/j.aap.2018.01.025
    This study had developed a passenger safety perception model specifically for buses taking into consideration the various factors, namely driver characteristics, environmental conditions, and bus characteristics using Bayesian Network. The behaviour of bus driver is observed through the bus motion profile, measured in longitudinal, lateral, and vertical accelerations. The road geometry is recorded using GPS and is computed with the aid of the Google map while the perceived bus safety is rated by the passengers in the bus in real time. A total of 13 variables were derived and used in the model development. The developed Bayesian Network model shows that the type of bus and the experience of the driver on the investigated route could have an influence on passenger's perception of their safety on buses. Road geometry is an indirect influencing factor through the driver's behavior. The findings of this model are useful for the authorities to structure an effective strategy to improve the level of perceived bus safety. A high level of bus safety will definitely boost passenger usage confidence which will subsequently increase ridership.
    Matched MeSH terms: Motor Vehicles*
  19. Al-Amin AQ, Doberstein B
    Environ Sci Pollut Res Int, 2019 Oct;26(30):31062-31076.
    PMID: 31456153 DOI: 10.1007/s11356-019-06128-4
    Alternative energy policies targeting the adoption of hydrogen fuel cell vehicles (HFCVs) could have significant positive impacts on Malaysia's ability to meet both its carbon reduction goal and its energy security needs. The transport sector generally contributes heavily to carbon emissions, and is also difficult to decarbonize because of the costs associated with many greener options. This study explores the possibility of decarbonizing the Malaysian transport sector by promoting the use of hydrogen vehicles, and analyzes the adoption challenges and economic obstacles (especially public acceptance) associated with introducing HFCVs. This study contends that the adoption challenges of this new technology can be overcome through the use of development strategies outlined. This study also addresses the regulatory framework that Malaysia (and other countries) might use to overcome common policy adoption challenges of HFCVs.
    Matched MeSH terms: Motor Vehicles*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links