Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Zahrim AY, Hilal N, Tizaoui C
    Water Sci Technol, 2013;67(4):901-6.
    PMID: 23306271 DOI: 10.2166/wst.2012.638
    Tubular nanofiltration membrane performance to treat water for reuse was carried out by choosing C.I. Acid Black 210 dye as a model dye. It has been shown that increasing pH causes reduction in irreversible fouling factor (IFF) and the dye removal is also affected by solution pH. The total organic carbon removal for pH 4, pH 7, pH 8 and pH 10 is 97.9, 92.3, 94.5 and 94.6%, respectively. The conductivity removal for pH 4, pH 7, pH 8 and pH 10 is 85.1, 88.3, 87.8 and 90.7% respectively. The increase in the initial dye concentration causes rapid increase in fouling until 100 mg/l. Then the fouling increases gradually as it reaches a maximum IFF around 13%. This study also shows that the colour of permeate changes from colourless to light greenish/yellowish (initial concentration of 2,000 and 4,000 mg/l) as the initial dye concentration increases. The conductivity removal was also reduced as the initial dye concentration increased due to screening of the Donnan effect with the presence of salt.
    Matched MeSH terms: Naphthalenesulfonates/chemistry*
  2. Tuan DD, Oh WD, Ghanbari F, Lisak G, Tong S, Andrew Lin KY
    J Colloid Interface Sci, 2020 Nov 01;579:109-118.
    PMID: 32574728 DOI: 10.1016/j.jcis.2020.05.033
    As sulfate-radical (SR)-based advanced oxidation processes are increasingly implemented, Oxone has been frequently-used for generation of SR. While Co3O4 nanoparticle (NP) has been widely-accepted as a promising catalyst for activating Oxone, Co3O4 NPs tend to aggregate in water, losing their reactivity. Thus, many attempts have immobilized Co3O4 NPs on supports, especially carbonaceous substrates, because combination of Co NPs with carbon substrates offers synergistic effects for boosting catalytic activities. Moreover, carbon substrates doped with hetero-atoms (N and S) further increase electron transfer and reactivity. Therefore, it is even promising to immobilize Co NPs onto N/S-doped carbon (NSC) to form Co-embedded NSC (denoted as CoNSC) for enhancing Oxone activation. In this study, a convenient and facile technique is proposed to prepare such a CoNSC via a simple carbonization treatment of a coordination polymer of Co and trithiocyanuric acid (TTCA). The resulting CoNSC exhibits the sheet-like hexagonal morphology with the core-shell configuration, and Co NPs are well-embedded into the N/S-doped carbonaceous matrix, making it an advantageous heterogeneous catalyst for Oxone activation. As Azorubine S (ARS) decolorization is employed as a model reaction of Oxone activation, CoNSC exhibits a higher catalytic activity than pristine Co3O4 and NSC for Oxone activation to decolorize ARS. In comparison to the other reported catalysts, CoNSC also possesses a much lower Ea for ARS decolorization. CoNSC can be also reusable and stable for Oxone activation over multiple cycles without loss of catalytic activity. These features validate that CoNSC is a promising and useful Co-based catalyst for Oxone activation.
    Matched MeSH terms: Naphthalenesulfonates
  3. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Apr 01;75(Pt 4):475-481.
    PMID: 31161060 DOI: 10.1107/S205698901900375X
    The asymmetric unit of the three-component title compound, 2,2'-di-thiodi-benzoic acid-2-chloro-benzoic acid-N,N-di-methyl-formamide (1/1/1), C14H10O4S2·C7H5ClO2·C3H7NO, contains a mol-ecule each of 2,2'-di-thiodi-benzoic acid (DTBA), 2-chloro-benzoic acid (2CBA) and di-methyl-formamide (DMF). The DTBA mol-ecule is twisted [the C-S-S-C torsion angle is 88.37 (17)°] and each carb-oxy-lic group is slightly twisted from the benzene ring to which it is connected [CO2/C6 dihedral angles = 7.6 (3) and 12.5 (3)°]. A small twist is evident in the mol-ecule of 2CBA [CO2/C6 dihedral angle = 4.4 (4)°]. In the crystal, the three mol-ecules are connected by hydrogen bonds with the two carb-oxy-lic acid residues derived from DTBA and 2CBA forming a non-symmetric eight-membered {⋯HOCO}2 synthon, and the second carb-oxy-lic acid of DTBA linked to the DMF mol-ecule via a seven-membered {⋯HOCO⋯HCO} heterosynthon. The three-mol-ecule aggregates are connected into a supra-molecular chain along the a axis via DTBA-C-H⋯O(hydroxyl-2CBA), 2CBA-C-H⋯O(hydroxyl-DTBA) and DTBA-C-H⋯S(DTBA) inter-actions. Supra-molecular layers in the ab plane are formed as the chains are linked via DMF-C-H⋯S(DTBA) contacts, and these inter-digitate along the c-axis direction without specific points of contact between them. A Hirshfeld surface analysis points to additional but, weak contacts to stabilize the three-dimensional architecture: DTBA-C=O⋯H(phenyl-DTBA), 2CBA-Cl⋯H(phenyl-DTBA), as well as a π-π contact between the delocalized eight-membered {⋯HOC=O}2 carb-oxy-lic dimer and the phenyl ring of 2CBA. The latter was confirmed by electrostatic potential (ESP) mapping.
    Matched MeSH terms: Naphthalenesulfonates
  4. Poh BL, Khairuddean M
    Talanta, 1996 Oct;43(10):1727-31.
    PMID: 18966659
    A non-cyclic tetrameric structure has been suggested for calcichrome (calcion). This structure is consistent with its mass spectrum, proton NMR spectrum, elemental composition and complexing ability with polyaromatic hydrocarbons in water. The stability constants of the 1:1 complexes formed between calcichrome and seven polyaromatic hydrocarbons in water at room temperature have been measured.
    Matched MeSH terms: Naphthalenesulfonates
  5. Oon YS, Ong SA, Ho LN, Wong YS, Oon YL, Lehl HK, et al.
    J Hazard Mater, 2017 Mar 05;325:170-177.
    PMID: 27931001 DOI: 10.1016/j.jhazmat.2016.11.074
    Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73±3% and 95.1±1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64mW/m2, corresponding to current density of 120.24mA/m2. The decolourisation rate and power output of different azo dyes were in the order of NC>AO7>RR120>RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.
    Matched MeSH terms: Naphthalenesulfonates
  6. Nur Syamimi Zainudin, Nur Aqilah Abdul Rahman
    MyJurnal
    Dyes are aromatic organic compound which have an affinity towards the substrate to which they are being applied to. The presence of dyes in wastewater samples is not safe for human even at low level. The presence of dyes in wastewater which are discharged from textile industry must be analysed. Hence, a precise, fast, accurate, simple and inexpensive analytical method with low detection limit is needed for the determination of dyes in wastewaters. The differential pulse anodic stripping voltammetric (DPASV) technique using bare glassy carbon electrode (GCE) as a working electrode and phosphate buffer at pH 4.2 as a supporting electrolyte has been proposed for Reactive Black 5 (RB5) determination. Several experimental voltammetric parameters were being optimized for obtaining a maximum response before analytical validation of the proposed technique being carried out. The optimum parameters were initial potential (Ei) = +0.3 V, end potential (Ef) = +1.0 V, scan rate (v) = 0.04 V/s, accumulation time (tacc) = 50 s, accumulation potential (Eacc) = 0.4 V and pulse amplitude = 0.075 V. The well-defined anodic peak appeared at 0.77972 V. The response was linear from 0.5 to 1.25 mg/L (R2=0.9986) with LOD of 0.050 mg/L. The relative standard deviation (RSD) achieved were 0.08 %, 0.62 % and 0.50 %, respectively for three consecutive days. The % recovery range achieved was from 89.71 % to 111.15 %. It can be concluded that the proposed technique is precise, accurate, inexpensive, fast and has a potential to be an alternative analytical technique for RB5 analysis. The proposed method will in the future be tested for the amount of RB5 in the wastewater samples from textile industry.
    Matched MeSH terms: Naphthalenesulfonates
  7. Nourouzi MM, Chuah TG, Choong TS
    Water Sci Technol, 2011;63(5):984-94.
    PMID: 21411950 DOI: 10.2166/wst.2011.280
    The removal of Reactive Black 5 dye in an aqueous solution by electrocoagulation (EC) as well as addition of flocculant was investigated. The effect of operational parameters, i.e. current density, treatment time, solution conductivity and polymer dosage, was investigated. Two models, namely the artificial neural network (ANN) and the response surface method (RSM), were used to model the effect of independent variables on percentage of dye removal. The findings of this work showed that current density, treatment time and dosage of polymer had the most significant effect on percentage of dye removal (p<0.001). In addition, interaction between time and current density, time and dosage of polymer, current density and dosage of polymer also significantly affected the percentage of dye removal (p=0.034, 0.003 and 0.024, respectively). It was shown that both the ANN and RSM models were able to predict well the experimental results (R(2)>0.8).
    Matched MeSH terms: Naphthalenesulfonates/chemistry*
  8. Mook WT, Ajeel MA, Aroua MK, Szlachta M
    J Environ Sci (China), 2017 Apr;54:184-195.
    PMID: 28391928 DOI: 10.1016/j.jes.2016.02.003
    In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye (RB5) from synthetic contaminated water was used as a model system. At a constant anode surface area, identical process operating parameters and batch process mode, the iron mesh double layer electrode showed better performance compared to the conventional single layer iron mesh. The double layer electrode was characterized by RB5 and chemical oxygen demand (COD) removal efficiency of 98.2% and 97.7%, respectively, kinetic rate constant of 0.0385/min, diffusion coefficient of 4.9×10(-5)cm(2)/sec and electrical energy consumption of 20.53kWh/kgdye removed. In the continuous flow system, the optimum conditions suggested by Response Surface Methodology (RSM) are: initial solution pH of 6.29, current density of 1.6mA/cm(2), electrolyte dose of 0.15g/L and flow rate of 11.47mL/min which resulted in an RB5 removal efficiency of 81.62%.
    Matched MeSH terms: Naphthalenesulfonates/chemistry*
  9. Mook WT, Aroua MK, Szlachta M, Lee CS
    Water Sci Technol, 2017 02;75(3-4):952-962.
    PMID: 28234295 DOI: 10.2166/wst.2016.563
    In this work, a regression model obtained from response surface methodology (RSM) was proposed for the electrocoagulation (EC) treatment of textile wastewater. The Reactive Black 5 dye (RB5) was used as a model dye to evaluate the performance of the model design. The effect of initial solution pH, applied current and treatment time on RB5 removal was investigated. The total number of experiments designed by RSM amounted to 27 runs, including three repeated experimental runs at the central point. The accuracy of the model was evaluated by the F-test, coefficient of determination (R(2)), adjusted R(2) and standard deviation. The optimum conditions for RB5 removal were as follows: initial pH of 6.63, current of 0.075 A, electrolyte dose of 0.11 g/L and EC time of 50.3 min. The predicted RB5 removal was 83.3% and the percentage error between experimental and predicted results was only 3-5%. The obtained data confirm that the proposed model can be used for accurate prediction of RB5 removal. The value of the zeta potential increased with treatment time, and the X-ray diffraction pattern shows that iron complexes were found in the sludge.
    Matched MeSH terms: Naphthalenesulfonates/analysis*
  10. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, et al.
    Chemosphere, 2018 Oct;208:595-605.
    PMID: 29890498 DOI: 10.1016/j.chemosphere.2018.05.159
    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO2) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO2, this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m2.bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5.
    Matched MeSH terms: Naphthalenesulfonates/chemistry*
  11. Lau YY, Wong YS, Ang TZ, Ong SA, Lutpi NA, Ho LN
    Environ Sci Pollut Res Int, 2018 Mar;25(7):7067-7075.
    PMID: 29275478 DOI: 10.1007/s11356-017-1069-9
    The theme of present research demonstrates performance of copper (II) sulfate (CuSO4) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO4. Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp2 carbon to form C-C of the sp3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k1 is 6.5224 whereas the degradation rate constant with catalyst, k2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.
    Matched MeSH terms: Naphthalenesulfonates/analysis*
  12. Krishnan, Jagannathan, Siti Rabiatul Adawiyah Ibrahim
    MyJurnal
    Mixed microbial culture used in this study was developed from sludge that was taken from local textile wastewater treatment tank. Acclimatization process was performed before starting the biodegradation experiment to obtain a microbial culture with high degradation properties. Kinetic studies by the mixed microbial culture were determined quantitatively for the model pollutant, Reactive Black 5 (RB 5). By using Michaelis-Menten model, the constants were found to be 11.15 mg l-1 h -1 and 29.18 mg l-1 for Vm and Km respectively. The values of kinetic constants for Monod model were found to be 33.11 mg l-1 cell h-1 for the maximum specific microbial growth rate, µm and 86.62 mg l-1 for Monod constant, Ks. The effects of process parameters such as pH, inoculum size and initial dye concentration on the biodegradation of azo dye, RB 5 were systematically investigated. Maximum removal efficiencies observed in this study were 75% for pH 6, 100% for 15% inoculum concentration and 75% for 20 ppm of initial dye concentration.
    Matched MeSH terms: Naphthalenesulfonates
  13. Khasri A, Ahmad MA
    Environ Sci Pollut Res Int, 2018 Nov;25(31):31508-31519.
    PMID: 30203351 DOI: 10.1007/s11356-018-3046-3
    The adsorption behavior of basic, methylene blue (MB), and reactive, remazol brilliant violet 5R (RBV), dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon (IBSAC) was executed via batch and column studies. The produced activated carbon was characterized through Brunauer-Emmett-Teller (BET) surface area and pore structural analysis, proximate and ultimate, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Batch studies were performed to investigate the effects of contact time, initial concentration, and solution pH. The equilibrium data for both MB and RBV adsorption better fits Langmuir model with maximum adsorption capacity of 434.78 and 212.77 mg/g, respectively. Kinetic studies for both MB and RBV dyes showed that the adsorption process followed a pseudo-second-order and intraparticle diffusion kinetic models. For column mode, the breakthrough curves were plotted by varying the flow rate, bed height, and initial concentration and the breakthrough data were best correlated with the Yoon-Nelson model compared to Thomas and Adams-Bohart model. The adsorption activity of IBSAC shows good stability even after four consecutive cycles.
    Matched MeSH terms: Naphthalenesulfonates/isolation & purification; Naphthalenesulfonates/chemistry
  14. Khalik WF, Ho LN, Ong SA, Voon CH, Wong YS, Yusuf SY, et al.
    Chemosphere, 2018 Jul;202:467-475.
    PMID: 29579681 DOI: 10.1016/j.chemosphere.2018.03.113
    The role of azo dye Reactive Black 5 (RB5) as an electron donor and/or electron acceptor could be distinguished in dual chamber of photocatalytic fuel cell (PFC). The introduction of RB5 in anode chamber increased the voltage generation in the system since degradation of RB5 might produce electrons which also would transfer through external circuit to the cathode chamber. The removal efficiency of RB5 with open and closed circuit was 8.5% and 13.6%, respectively and removal efficiency for open circuit was low due to the fact that recombination of electron-hole pairs might happen in anode chamber since without connection to the cathode, electron cannot be transferred. The degradation of RB5 in cathode chamber with absence of oxygen showed that electrons from anode chamber was accepted by dye molecules to break its azo bond. The presence of oxygen in cathode chamber would improve the oxygen reduction rate which occurred at Platinum-loaded carbon (Pt/C) cathode electrode. The Voc, Jsc and Pmax for different condition of ultrapure water at cathode chamber also affected their fill factor. The transportation of protons to cathode chamber through Nafion membrane could decrease the pH of ultrapure water in cathode chamber and undergo hydrogen evolution reaction in the absence of oxygen which then increased degradation rate of RB5 as well as its electricity generation.
    Matched MeSH terms: Naphthalenesulfonates/chemistry*
  15. Khalik WF, Ho LN, Ong SA, Voon CH, Wong YS, Yusoff N, et al.
    Chemosphere, 2017 Oct;184:112-119.
    PMID: 28586651 DOI: 10.1016/j.chemosphere.2017.05.160
    The photocatalytic fuel cell (PFC) system was developed in order to study the effect of several operating parameters in degradation of Reactive Black 5 (RB5) and its electricity generation. Light irradiation, initial dye concentration, aeration, pH and cathode electrode are the operating parameters that might give contribution in the efficiency of PFC system. The degradation of RB5 depends on the presence of light irradiation and solar light gives better performance to degrade the azo dye. The azo dye with low initial concentration decolorizes faster compared to higher initial concentration and presence of aeration in PFC system would enhance its performance. Reactive Black 5 rapidly decreased at higher pH due to the higher amount of OH generated at higher pH and Pt-loaded carbon (Pt/C) was more suitable to be used as cathode in PFC system compared to Cu foil and Fe foil. The rapid decolorization of RB5 would increase their voltage output and in addition, it would also increase their Voc, Jsc and Pmax. The breakage of azo bond and aromatic rings was confirmed through UV-Vis spectrum and COD analysis.
    Matched MeSH terms: Naphthalenesulfonates
  16. Khalik WF, Ong SA, Ho LN, Wong YS, Voon CH, Yusuf SY, et al.
    Environ Sci Pollut Res Int, 2016 Aug;23(16):16716-21.
    PMID: 27184147 DOI: 10.1007/s11356-016-6840-9
    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration.
    Matched MeSH terms: Naphthalenesulfonates/chemistry*
  17. Kardi SN, Ibrahim N, Rashid NAA, Darzi GN
    Environ Sci Pollut Res Int, 2019 Jul;26(21):21201-21215.
    PMID: 31115820 DOI: 10.1007/s11356-019-05204-z
    One of the biggest challenges of using single-chamber microbial fuel cells (MFCs) that utilize proton-exchange membrane (PEM) air cathode for bioenergy recovery from recalcitrant organic compounds present in wastewater is mainly attributed to their high internal resistance in the anodic chamber of the single microbial fuel cell (MFC) configurations. The high internal resistance is due to the small surface area of the anode and cathode electrodes following membrane biofouling and pH splitting conditions as well as substrate and oxygen crossover through the membrane pores by diffusion. To address this issue, the fabrication of new PEM air-cathode single-chamber MFC configuration was investigated with inner channel flow open assembled with double PEM air cathodes (two oxygen reduction activity zones) coupled with spiral-anode MFC (2MA-CsS-AMFC). The effect of various proton-exchange membranes (PEMs), including Nafion 117 (N-117), Nafion 115 (N-115), and Nafion 212 (N-212) with respective thicknesses of 183, 127, and 50.08 μ, was separately incorporated into carbon cloth as PEM air-cathode electrode to evaluate their influences on the performance of the 2MA-CsS-AMFC configuration operated in fed-batch mode, while Azorubine dye was selected as the recalcitrant organic compound. The fed-batch test results showed that the 2MA-CsS-AMFC configuration with PEM N-115 operated at Azorubine dye concentration of 300 mg L-1 produced the highest power density of 1022.5 mW m-2 and open-circuit voltage (OCV) of 1.20 V coupled with enhanced dye removal (4.77 mg L h-1) compared to 2MA-CsS-AMFCs with PEMs N-117 and N-212 and those in previously published data. Interestingly, PEM 115 showed remarkable reduction in biofouling and pH splitting. Apart from that, mass transfer coefficient of PEM N-117 was the most permeable to oxygen (KO = 1.72 × 10-4 cm s-1) and PEM N-212 was the most permeable membrane to Azorubine (KA = 7.52 × 10-8 cm s-1), while PEM N-115 was the least permeable to both oxygen (KO = 1.54 × 10-4) and Azorubine (KA = 7.70 × 10-10). The results demonstrated that the 2MA-CsS-AMFC could be promising configuration for bioenergy recovery from wastewater treatment under various PEMs, while application of PEM N-115 produced the best performance compared to PEMs N-212 and N-117 and those in previous studies of membrane/membrane-less air-cathode single-chamber MFCs that consumed dye wastewater.
    Matched MeSH terms: Naphthalenesulfonates/chemistry*
  18. Kameel NI, Shuib AS, Tayyab S
    Protein Pept Lett, 2016;23(12):1111-1117.
    PMID: 27774894
    Acid denaturation of champedak galactose-binding (CGB) lectin was studied in the pH range, 7.0-1.0 using intrinsic fluorescence and ANS fluorescence measurements. The lectin remained stable up to pH 5.0 and showed local disordering in the vicinity of the protein fluorophores within the pH range, 5.0-3.5. Decrease in the pH from pH 3.5 to pH 2.5 led to structural transition, marked by the decrease in the intrinsic fluorescence and increase in the ANS fluorescence signals. This can be ascribed to the dissociation of the tetrameric lectin into monomeric forms. Further decrease in the pH up to pH 1.5 produced another transition, which specified the unfolding of monomers as reflected from the decrease in both intrinsic fluorescence and ANS fluorescence signals. Characterization of the conformational states obtained at pH 7.0, pH 2.5 and pH 1.5 based on intrinsic and ANS fluorescence spectra, gel chromatographic behavior and thermal denaturation confirmed the existence of folded monomeric forms at pH 2.5 and unfolded states at pH 1.5. However, the aciddenatured state of CGB lectin at pH 1.5 retained significant residual structure, as evident from the greater loss of both secondary and tertiary structures in the presence of 6 M guanidine hydrochloride at low pH values. Anion-induced refolding below pH 1.5 was also seen using ANS fluorescence measurements.
    Matched MeSH terms: Anilino Naphthalenesulfonates/chemistry
  19. Ibrahim GPS, Isloor AM, Inamuddin, Asiri AM, Ismail N, Ismail AF, et al.
    Sci Rep, 2017 Nov 21;7(1):15889.
    PMID: 29162869 DOI: 10.1038/s41598-017-16131-9
    In this work, poly(MBAAm-co-SBMA) zwitterionic polymer nanoparticles were synthesized in one-step via distillation-precipitation polymerization (DPP) and were characterized. [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) as monomer and N, N'-methylene bis(acrylamide) (MBAAm) as cross-linker are used for the synthesis of nanoparticles. As  far as our knowledge, this is the first such report on the synthesis of poly(MBAAm-co-SBMA) nanoparticles via DPP. The newly synthesized nanoparticles were further employed for the surface modification of polysulfone (PSF) hollow fiber membranes for dye removal. The modified hollow fiber membrane exhibited the improved permeability (56 L/ m2 h bar) and dye removal (>98% of Reactive Black 5 and >80.7% of Reactive orange 16) with the high permeation of salts. Therefore, the as-prepared membrane can have potential application in textile and industrial wastewater treatment.
    Matched MeSH terms: Naphthalenesulfonates
  20. Hasan DB, Abdul Aziz AR, Daud WM
    Environ Technol, 2012 Jun;33(10-12):1111-21.
    PMID: 22856280
    The mineralisation of remazol black B (RBB) was studied at concentrations ranging from 20-1000 mgL(-1). The work was aimed at investigating the Fenton-like peroxidation of RBB at a concentration typically obtained in Batik cottage industries. Other response parameters were degradation and colour removal efficiencies. The parameters that were measured included total organic carbon (TOC), chemical oxygen demand (COD) as well as absorbance for mineralisation, degradation and colour. To optimise the process, the interaction effects of several controlling variables on the treatment process were examined using dispersion matrix-optimal design and response surface analysis. Four specific variables: initial dye concentration (Dye)o; the molar ratio of oxidant to dye organic strength (H2O2):(COD); the mass ratio of the oxidant to the catalyst (H2O2):(Fe3+) and reaction time (t(r)), were observed. Three reduced empirical models, one for each response, were developed for describing the treatment process. For 20, 510 and 1000 mgL(-1), the optimum %TOC reduction and oxidation times were 44% for 95 min, 52% for 52.5 min and 68% for 10 min corresponding to 67, 81 and 75% COD reduction, respectively. The optimum COD reduction and oxidation times were 89% for 95 min, 91% for 10 min and 84% for 95 min for concentrations of 20, 510 and 1000 mg L(-1), respectively. For all concentrations, total colour removal was achieved. A comparison of the results obtained in this study with literature values for traditional Fenton, photo-Fenton and photo-Fenton-like oxidation indicated that the TOC reduction obtained using the Fenton-like process was satisfactory.
    Matched MeSH terms: Naphthalenesulfonates/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links