Displaying publications 1 - 20 of 191 in total

Abstract:
Sort:
  1. Lim EY, Tang IP, Peyman M, Ramli N, Narayanan P, Rajagopalan R
    Eur Arch Otorhinolaryngol, 2015 Nov;272(11):3109-13.
    PMID: 25205300 DOI: 10.1007/s00405-014-3232-y
    High acoustic noise level is one of the unavoidable side effects of 3 T magnetic resonance imaging (MRI). A case of hearing loss after 3 T MRI has been reported in this institution and hence this study. The objective of this study was to determine whether temporary threshold shift (TTS) in high frequency hearing occurs in patients undergoing 3 T MRI scans of the head and neck. A total of 35 patients undergoing head and neck 3 T MRI for various clinical indications were tested with pure tone audiometry in different frequencies including high frequencies, before and after the MRI scan. Any threshold change from the recorded baseline of 10 dB was considered significant. All patients were fitted with foamed 3 M earplugs before the procedure following the safety guidelines for 3 T MRI. The mean time for MRI procedure was 1,672 s (range 1,040-2,810). The noise dose received by each patient amounted to an average of 3,906.29% (1,415-9,170%). The noise dose was derived from a normograph used by Occupational Noise Surveys. This was calculated using the nomograph of L eq, L EX, noise dose and time. There was no statistically significant difference between the hearing threshold before and after the MRI procedures for all the frequencies (paired t test, P > 0.05). For patients using 3 M foamed earplugs, noise level generated by 3 T MRI during routine clinical sequence did not cause any TTS in high frequency hearing.
    Matched MeSH terms: Hearing Loss, Noise-Induced/etiology*; Noise*
  2. Ahmad H, Albaqawi HS, Yusoff N, Yi CW
    Sci Rep, 2020 Jun 17;10(1):9860.
    PMID: 32555280 DOI: 10.1038/s41598-020-66664-9
    A wide-band and tunable Q-switched erbium-doped fiber (EDF) laser operating at 1560.5 nm with a tungsten ditelluride (WTe2) saturable absorber (SA) is demonstrated. The semi-metallic nature of WTe2 as well as its small band gap and excellent nonlinear optical properties make it an excellent SA material. The laser cavity uses an 89.5 cm long EDF, pumped by a 980 nm laser diode as the linear gain while the WTe2 based SA generates the pulsed output. The WTe2 based SA has a modulation depth, non-saturable loss and saturation intensity of about 21.4%, 78.6%, and 0.35 kW/cm2 respectively. Stable pulses with a maximum repetition rate of 55.56 kHz, narrowest pulse width of 1.77 µs and highest pulse energy of 18.09 nJ are obtained at the maximum pump power of 244.5 mW. A 56 nm tuning range is obtained in the laser cavity, and the output is observed having a signal to noise ratio (SNR) of 48.5 dB. The demonstrated laser has potential for use in a large number of photonics applications.
    Matched MeSH terms: Signal-To-Noise Ratio
  3. Masroor K, Jeoti V, Drieberg M, Cheab S, Rajbhandari S
    Sensors (Basel), 2021 Apr 22;21(9).
    PMID: 33922288 DOI: 10.3390/s21092943
    The bi-directional information transfer in optical body area networks (OBANs) is crucial at all the three tiers of communication, i.e., intra-, inter-, and beyond-BAN communication, which correspond to tier-I, tier-II, and tier-III, respectively. However, the provision of uninterrupted uplink (UL) and downlink (DL) connections at tier II (inter-BAN) are extremely critical, since these links serve as a bridge between tier-I (intra-BAN) and tier-III (beyond-BAN) communication. Any negligence at this level could be life-threatening; therefore, enabling quality-of-service (QoS) remains a fundamental design issue at tier-II. Consequently, to provide QoS, a key parameter is to ensure link reliability and communication quality by maintaining a nearly uniform signal-to-noise ratio (SNR) within the coverage area. Several studies have reported the effects of transceiver related parameters on OBAN link performance, nevertheless the implications of changing transmitter locations on the SNR uniformity and communication quality have not been addressed. In this work, we undertake a DL scenario and analyze how the placement of light-emitting diode (LED) lamps can improve the SNR uniformity, regardless of the receiver position. Subsequently, we show that using the principle of reciprocity (POR) and with transmitter-receiver positions switched, the analysis is also applicable to UL, provided that the optical channel remains linear. Moreover, we propose a generalized optimal placement scheme along with a heuristic design formula to achieve uniform SNR and illuminance for DL using a fixed number of transmitters and compare it with an existing technique. The study reveals that the proposed placement technique reduces the fluctuations in SNR by 54% and improves the illuminance uniformity up to 102% as compared to the traditional approach. Finally, we show that, for very low luminous intensity, the SNR values remain sufficient to maintain a minimum bit error rate (BER) of 10-9 with on-off keying non-return-to-zero (OOK-NRZ) modulation format.
    Matched MeSH terms: Signal-To-Noise Ratio
  4. Ibrahim IA, Ting HN, Moghavvemi M
    J Int Adv Otol, 2019 Apr;15(1):87-93.
    PMID: 30924771 DOI: 10.5152/iao.2019.4553
    OBJECTIVES: This study uses a new approach for classifying the human ethnicity according to the auditory brain responses (electroencephalography [EEG] signals) with a high level of accuracy. Moreover, the study presents three different algorithms used to classify the human ethnicity using auditory brain responses. The algorithms were tested on Malays and Chinese as a case study.

    MATERIALS AND METHODS: The EEG signal was used as a brain response signal, which was evoked by two auditory stimuli (Tones and Consonant Vowels stimulus). The study was carried out on Malaysians (Malay and Chinese) with normal hearing and with hearing loss. A ranking process for the subjects' EEG data and the nonlinear features was used to obtain the maximum classification accuracy.

    RESULTS: The study formulated the classification of Normal Hearing Ethnicity Index and Sensorineural Hearing Loss Ethnicity Index. These indices classified the human ethnicity according to brain auditory responses by using numerical values of response signal features. Three classification algorithms were used to verify the human ethnicity. Support Vector Machine (SVM) classified the human ethnicity with an accuracy of 90% in the cases of normal hearing and sensorineural hearing loss (SNHL); the SVM classified with an accuracy of 84%.

    CONCLUSION: The classification indices categorized or separated the human ethnicity in both hearing cases of normal hearing and SNHL with high accuracy. The SVM classifier provided a good accuracy in the classification of the auditory brain responses. The proposed indices might constitute valuable tools for the classification of the brain responses according to the human ethnicity.

    Matched MeSH terms: Noise/adverse effects
  5. Islam MA, Jassim WA, Cheok NS, Zilany MS
    PLoS One, 2016;11(7):e0158520.
    PMID: 27392046 DOI: 10.1371/journal.pone.0158520
    Speaker identification under noisy conditions is one of the challenging topics in the field of speech processing applications. Motivated by the fact that the neural responses are robust against noise, this paper proposes a new speaker identification system using 2-D neurograms constructed from the responses of a physiologically-based computational model of the auditory periphery. The responses of auditory-nerve fibers for a wide range of characteristic frequency were simulated to speech signals to construct neurograms. The neurogram coefficients were trained using the well-known Gaussian mixture model-universal background model classification technique to generate an identity model for each speaker. In this study, three text-independent and one text-dependent speaker databases were employed to test the identification performance of the proposed method. Also, the robustness of the proposed method was investigated using speech signals distorted by three types of noise such as the white Gaussian, pink, and street noises with different signal-to-noise ratios. The identification results of the proposed neural-response-based method were compared to the performances of the traditional speaker identification methods using features such as the Mel-frequency cepstral coefficients, Gamma-tone frequency cepstral coefficients and frequency domain linear prediction. Although the classification accuracy achieved by the proposed method was comparable to the performance of those traditional techniques in quiet, the new feature was found to provide lower error rates of classification under noisy environments.
    Matched MeSH terms: Noise; Signal-To-Noise Ratio
  6. Chin SC, Chow CO, Kanesan J, Chuah JH
    Sensors (Basel), 2022 Jan 14;22(2).
    PMID: 35062601 DOI: 10.3390/s22020639
    Image noise is a variation of uneven pixel values that occurs randomly. A good estimation of image noise parameters is crucial in image noise modeling, image denoising, and image quality assessment. To the best of our knowledge, there is no single estimator that can predict all noise parameters for multiple noise types. The first contribution of our research was to design a noise data feature extractor that can effectively extract noise information from the image pair. The second contribution of our work leveraged other noise parameter estimation algorithms that can only predict one type of noise. Our proposed method, DE-G, can estimate additive noise, multiplicative noise, and impulsive noise from single-source images accurately. We also show the capability of the proposed method in estimating multiple corruptions.
    Matched MeSH terms: Signal-To-Noise Ratio
  7. Chong FY, Jenstad LM
    Disabil Rehabil Assist Technol, 2018 08;13(6):600-608.
    PMID: 29072542 DOI: 10.1080/17483107.2017.1392619
    PURPOSE: Single-microphone noise reduction (SMNR) is implemented in hearing aids to suppress background noise. The purpose of this article was to provide a critical review of peer-reviewed studies in adults and children with sensorineural hearing loss who were fitted with hearing aids incorporating SMNR.

    METHOD: Articles published between 2000 and 2016 were searched in PUBMED and EBSCO databases.

    RESULTS: Thirty-two articles were included in the final review. Most studies with adult participants showed that SMNR has no effect on speech intelligibility. Positive results were reported for acceptance of background noise, preference, and listening effort. Studies of school-aged children were consistent with the findings of adult studies. No study with infants or young children of under 5 years old was found. Recent studies on noise-reduction systems not yet available in wearable hearing aids have documented benefits of noise reduction on memory for speech processing for older adults.

    CONCLUSIONS: This evidence supports the use of SMNR for adults and school-aged children when the aim is to improve listening comfort or reduce listening effort. Future research should test SMNR with infants and children who are younger than 5 years of age. Further development, testing, and clinical trials should be carried out on algorithms not yet available in wearable hearing aids. Testing higher cognitive level for speech processing and learning of novel sounds or words could show benefits of advanced signal processing features. These approaches should be expanded to other populations such as children and younger adults. Implications for rehabilitation The review provides a quick reference for students and clinicians regarding the efficacy and effectiveness of SMNR in wearable hearing aids. This information is useful during counseling session to build a realistic expectation among hearing aid users. Most studies in the adult population suggest that SMNR may provide some benefits to adult listeners in terms of listening comfort, acceptance of background noise, and release of cognitive load in a complex listening condition. However, it does not improve speech intelligibility. Studies that examined SMNR in the paediatric population suggest that SMNR may benefit older school-aged children, aged between 10 and 12 years old. The evidence supports the use of SMNR for adults and school-aged children when the aim is to improve listening comfort or reduce listening effort.

    Matched MeSH terms: Noise
  8. Lee, L., Sidek, R.M., Jamuar, S.S., Khatun, S.
    ASM Science Journal, 2009;3(1):59-69.
    MyJurnal
    A 2.4 GHz variable-gain low noise amplifier (VGLNA) intended for use in a Wide-band Code Division
    Multiple Access receiver was designed in 0.18 um CMOS process for low voltage and low power applications. Rivaling classical designs using voltage mode approach, this design used the current mode approach, utilizing the current mirror principle to obtain a controllable gain range from 8.26 dB to 16.95 dB with good input and output return losses. By varying the current through the widths of transistors and a bias resistor, the VGLNA was capable of exhibiting 8 dB gain tuning range without degrading the noise figure. Therefore, higher gain was possible at lower current and thus at lower power consumption. Total power consumption simulated was 4.63 mW from a 1 V supply and this gave a gain/power quotient of 3.66 dB/mW. Comparing this with available published data, it was observed that this work demonstrated a good gain tuning range and the lowest noise figure with such power consumption.
    Matched MeSH terms: Noise
  9. Al-Gumaei YA, Noordin KA, Reza AW, Dimyati K
    PLoS One, 2014;9(10):e109077.
    PMID: 25286044 DOI: 10.1371/journal.pone.0109077
    Interference resulting from Cognitive Radios (CRs) is the most important aspect of cognitive radio networks that leads to degradation in Quality of Service (QoS) in both primary and CR systems. Power control is one of the efficient techniques that can be used to reduce interference and satisfy the Signal-to-Interference Ratio (SIR) constraint among CRs. This paper proposes a new distributed power control algorithm based on game theory approach in cognitive radio networks. The proposal focuses on the channel status of cognitive radio users to improve system performance. A new cost function for SIR-based power control via a sigmoid weighting factor is introduced. The existence of Nash Equilibrium and convergence of the algorithm are also proved. The advantage of the proposed algorithm is the possibility to utilize and implement it in a distributed manner. Simulation results show considerable savings on Nash Equilibrium power compared to relevant algorithms while reduction in achieved SIR is insignificant.
    Matched MeSH terms: Signal-To-Noise Ratio*
  10. Maman Hermana, Hammad Hazim Mohd Azhar, Zuhar Zahir Tuan Harith
    Sains Malaysiana, 2012;41:953-959.
    This paper presents the improvement of quality factor (Q) estimation using shift frequency method. A new method was developed based on two previous methods; peak frequency shift (PFS) method and centroid frequency shift (CFS) method. The proposed algorithm has been tested to gauge its performance using three different scenarios; Q variation, travel
    time variation, and signal to noise ratio (SNR) variation. The test was performed using the Ricker wavelet with random noise included. Based on the results obtained, it can be concluded that the new proposed method was able to improve Q estimation using shift frequency method. This method can also be implemented in the low and high Q condition, shallow and deep wavelet targets and in the low and high SNR conditions of seismic data. The limitations in the PFS and CFS methods can be reduced by this method.
    Matched MeSH terms: Noise; Signal-To-Noise Ratio
  11. Mohamed Moubark A, Ali SH
    ScientificWorldJournal, 2014;2014:107831.
    PMID: 25197687 DOI: 10.1155/2014/107831
    This paper presents a new practical QPSK receiver that uses digitized samples of incoming QPSK analog signal to determine the phase of the QPSK symbol. The proposed technique is more robust to phase noise and consumes up to 89.6% less power for signal detection in demodulation operation. On the contrary, the conventional QPSK demodulation process where it uses coherent detection technique requires the exact incoming signal frequency; thus, any variation in the frequency of the local oscillator or incoming signal will cause phase noise. A software simulation of the proposed design was successfully carried out using MATLAB Simulink software platform. In the conventional system, at least 10 dB signal to noise ratio (SNR) is required to achieve the bit error rate (BER) of 10(-6), whereas, in the proposed technique, the same BER value can be achieved with only 5 dB SNR. Since some of the power consuming elements such as voltage control oscillator (VCO), mixer, and low pass filter (LPF) are no longer needed, the proposed QPSK demodulator will consume almost 68.8% to 99.6% less operational power compared to conventional QPSK demodulator.
    Matched MeSH terms: Signal-To-Noise Ratio
  12. Al-Gumaei YA, Noordin KA, Reza AW, Dimyati K
    PLoS One, 2015;10(8):e0135137.
    PMID: 26258522 DOI: 10.1371/journal.pone.0135137
    Spectrum scarcity is a major challenge in wireless communications systems requiring efficient usage and utilization. Cognitive radio network (CRN) is found as a promising technique to solve this problem of spectrum scarcity. It allows licensed and unlicensed users to share the same licensed spectrum band. Interference resulting from cognitive radios (CRs) has undesirable effects on quality of service (QoS) of both licensed and unlicensed systems where it causes degradation in received signal-to-noise ratio (SIR) of users. Power control is one of the most important techniques that can be used to mitigate interference and guarantee QoS in both systems. In this paper, we develop a new approach of a distributed power control for CRN based on utility and pricing. QoS of CR user is presented as a utility function via pricing and a distributed power control as a non-cooperative game in which users maximize their net utility (utility-price). We define the price as a real function of transmit power to increase pricing charge of the farthest CR users. We prove that the power control game proposed in this study has Nash Equilibrium as well as it is unique. The obtained results show that the proposed power control algorithm based on a new utility function has a significant reduction in transmit power consumption and high improvement in speed of convergence.
    Matched MeSH terms: Signal-To-Noise Ratio
  13. Ali A, Hussain RM, Dom NC, Md Rashid RI
    Noise Health, 2018 4 21;20(93):53-59.
    PMID: 29676296 DOI: 10.4103/nah.NAH_14_17
    Introduction: Motorcycle riders with noise sensitivity (NS) may suffer from degraded health-related quality of life (HRQOL) because they are exposed to acute noise levels on a daily basis.

    Materials and Methods: This study was aimed to identify the relationship between NS and HRQOL among young motorcycle riders (undergraduate university students) aged between 19 and 25 years (n = 301) through a cross-sectional questionnaire-based study, that is, Weinstein noise sensitivity scale and the World Health Organization Quality of Life. The effects of NS on HRQOL were assessed based on gender, the years of motorcycle driving experience, and noise sensitive among groups using one-way analysis of variances with an alpha value of 0.05.

    Results: The results showed no significant difference in NS between males and females. On the other hand, motorcycle driving experience for <4 years displayed a higher tendency toward NS. Moreover, a significantly (P = 0.004) decreasing trend among low, moderate, and high NS with their respective HRQOL was observed, while a high NS showed significantly (P = 0.015) lower scores on the social domain of the quality of life.

    Conclusion: The overall premise of the study has statistical significance and shows that individuals with high NS tend to have degraded HRQOL compared to individuals with low NS. Furthermore, in-depth studies are required from the other demographical background of participants to investigate the motorcyclist's NS and HRQOL as an integral requirement for the rider's safety and health.

    Matched MeSH terms: Noise, Transportation/adverse effects*
  14. Han LM, Haron Z, Yahya K, Bakar SA, Dimon MN
    PLoS One, 2015;10(4):e0120667.
    PMID: 25875019 DOI: 10.1371/journal.pone.0120667
    Strategic noise mapping provides important information for noise impact assessment and noise abatement. However, producing reliable strategic noise mapping in a dynamic, complex working environment is difficult. This study proposes the implementation of the random walk approach as a new stochastic technique to simulate noise mapping and to predict the noise exposure level in a workplace. A stochastic simulation framework and software, namely RW-eNMS, were developed to facilitate the random walk approach in noise mapping prediction. This framework considers the randomness and complexity of machinery operation and noise emission levels. Also, it assesses the impact of noise on the workers and the surrounding environment. For data validation, three case studies were conducted to check the accuracy of the prediction data and to determine the efficiency and effectiveness of this approach. The results showed high accuracy of prediction results together with a majority of absolute differences of less than 2 dBA; also, the predicted noise doses were mostly in the range of measurement. Therefore, the random walk approach was effective in dealing with environmental noises. It could predict strategic noise mapping to facilitate noise monitoring and noise control in the workplaces.
    Matched MeSH terms: Noise, Occupational*
  15. Siti Norhafiza Abd Razak, Nurul Hazwani Mohd Yusoff, Farah Hana Mukhtar, Norsehah Abdul Karim, Noor Hasyimah Abu Rahim
    MyJurnal
    Working for a minimum of 8 hours, 6 days a week might have exposed the workers of public transportation to
    high noise risks. However, occupational exposures in their workplace have not been adequately characterized and
    identified. Assessment of occupational noise exposure among workers at five public transportation stations was made
    using Sound Level Meter and through questionnaire survey. The data obtained was combined to estimate the work
    shift exposure level and health impacts to the workers by using statistical analysis. The respondents participated in the
    survey to identify the symptoms of noise-induced hearing loss and other health-related problems. Results of the study
    indicated that occupational noise exposure among workers for Mean Continuous Equivalent Level, Leq= 76.17 dB(A)
    presents small risks of developing a hearing disability. Some of the workers show symptoms of noise-induced hearing
    loss and are annoyed by the sources of noise present at the public transportation.
    Matched MeSH terms: Hearing Loss, Noise-Induced; Noise, Occupational
  16. Nor Saleha IT, Noor Hassim I
    Ind Health, 2006 Oct;44(4):584-91.
    PMID: 17085919
    Noise is one of the hazards faced by workers. A cross-sectional study was conducted among industries in Negeri Sembilan with the objective to assess their compliance to Hearing Conservation Programme (HCP). The other objectives of this study were to determine the factors influencing it and to show the industries' compliance to each element of the programme. It was also to identify the association between compliance to HCP and the prevalence of hearing impairment and standard threshold shift. Data for this study were collected using questionnaires sent by mail and also the results of the latest audiometric tests. A total of 167 industries were analysed for this study. It was found that 41.3% of these industries fully complied to the programme. It was also found that the industries preferred to provide hearing protection device (92.8%) and least complied to noise control (61.1%). There were significant associations (p<0.05) between compliance and number of employees, status of ownership and the presence of officer in charge of hearing conservation programme. Having at least 150 employees actually raised the compliance to HCP in two folds (beta = 0.717, OR = 2.048, C.I 95% = 1.063 to 3.944). The prevalences of hearing impairment and standard threshold shift were 23.9% and 5.2% respectively. There was no significant association between the prevalence for hearing impairment and compliance to HCP. The prevalence for standard threshold shift was inversely related to compliance. This study showed that compliance percentage need to be improved as an effort to prevent the hearing problems among workers exposed to noise.
    Matched MeSH terms: Hearing Loss, Noise-Induced/etiology; Hearing Loss, Noise-Induced/epidemiology; Hearing Loss, Noise-Induced/prevention & control*; Noise, Occupational/adverse effects*
  17. Yuen FK
    Noise Health, 2014 Nov-Dec;16(73):427-36.
    PMID: 25387540 DOI: 10.4103/1463-1741.144429
    Environmental noise remains a complex and fragmented interplay between industrialization, population growth, technological developments, and the living environment. Next to the circulatory diseases and cancer, noise pollution has been cited as the third epidemic cause of psychological and physiological disorders internationally. A reliable and firm relationship between the cumulative health implications with the traffic annoyance and occupational noise has been established. This agenda has called for an integrated, coordinated, and participatory approach to the reliable protection of noise interference. Despite several fragmented policies, legislation and global efforts have been addressed; the noise pollution complaints have been traditionally neglected in developing countries, especially in Malaysia. This paper was undertaken to postulate an initial platform to address the dynamic pressures, gigantic challenges, and tremendous impacts of noise pollution scenario in Malaysia. The emphasis is speculated on the traffic interference and assessment of industrial and occupational noise. The fundamental importance of noise monitoring and modeling is proposed. Additionally, the confronting conservation program and control measure for noise pollution control are laconically elucidated.
    Matched MeSH terms: Noise/adverse effects; Noise/legislation & jurisprudence; Noise/prevention & control; Noise, Occupational/adverse effects; Noise, Occupational/legislation & jurisprudence; Noise, Occupational/prevention & control*; Noise, Transportation/adverse effects; Noise, Transportation/legislation & jurisprudence; Noise, Transportation/prevention & control*
  18. Yu K, Feng L, Chen Y, Wu M, Zhang Y, Zhu P, et al.
    Comput Biol Med, 2024 Feb;169:107835.
    PMID: 38096762 DOI: 10.1016/j.compbiomed.2023.107835
    Current wavelet thresholding methods for cardiogram signals captured by flexible wearable sensors face a challenge in achieving both accurate thresholding and real-time signal denoising. This paper proposes a real-time accurate thresholding method based on signal estimation, specifically the normalized ACF, as an alternative to traditional noise estimation without the need for parameter fine-tuning and extensive data training. This method is experimentally validated using a variety of electrocardiogram (ECG) signals from different databases, each containing specific types of noise such as additive white Gaussian (AWG) noise, baseline wander noise, electrode motion noise, and muscle artifact noise. Although this method only slightly outperforms other methods in removing AWG noise in ECG signals, it far outperforms conventional methods in removing other real noise. This is attributed to the method's ability to accurately distinguish not only AWG noise that is significantly different spectrum of the ECG signal, but also real noise with similar spectra. In contrast, the conventional methods are effective only for AWG noise. In additional, this method improves the denoising visualization of the measured ECG signals and can be used to optimize other parameters of other wavelet methods to enhancing the denoised periodic signals, thereby improving diagnostic accuracy.
    Matched MeSH terms: Signal-To-Noise Ratio
  19. Salleh SH, Hussain HS, Swee TT, Ting CM, Noor AM, Pipatsart S, et al.
    Int J Nanomedicine, 2012;7:2873-81.
    PMID: 22745550 DOI: 10.2147/IJN.S32315
    Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss-Markov process. These cycles are observed with additional noise for the given measurement. The model is formulated into state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. The estimates obtained by Kalman filtering are optimal in mean squared sense.
    Matched MeSH terms: Signal-To-Noise Ratio
  20. Billings CJ, Grush LD, Maamor N
    Physiol Rep, 2017 Nov;5(20).
    PMID: 29051305 DOI: 10.14814/phy2.13464
    The effects of background noise on speech-evoked cortical auditory evoked potentials (CAEPs) can provide insight into the physiology of the auditory system. The purpose of this study was to determine background noise effects on neural coding of different phonemes within a syllable. CAEPs were recorded from 15 young normal-hearing adults in response to speech signals /s/, /ɑ/, and /sɑ/. Signals were presented at varying signal-to-noise ratios (SNRs). The effects of SNR and context (in isolation or within syllable) were analyzed for both phonemes. For all three stimuli, latencies generally decreased and amplitudes generally increased as SNR improved, and context effects were not present; however, the amplitude of the /ɑ/ response was the exception, showing no SNR effect and a significant context effect. Differential coding of /s/ and /ɑ/ likely result from level and timing differences. Neural refractoriness may result in the lack of a robust SNR effect on amplitude in the syllable context. The stable amplitude across SNRs in response to the vowel in /sɑ/ suggests the combined effects of (1) acoustic characteristics of the syllable and noise at poor SNRs and (2) refractory effects resulting from phoneme timing at good SNRs. Results provide insights into the coding of multiple-onset speech syllables in varying levels of background noise and, together with behavioral measures, may help to improve our understanding of speech-perception-in-noise difficulties.
    Matched MeSH terms: Signal-To-Noise Ratio
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links