Displaying publications 1 - 20 of 522 in total

Abstract:
Sort:
  1. Piersson AD, Mohamad M, Rajab F, Suppiah S
    Acad Radiol, 2021 10;28(10):1447-1463.
    PMID: 32651050 DOI: 10.1016/j.acra.2020.06.006
    BACKGROUND: There is compelling evidence that neurochemical changes measured by proton magnetic resonance spectroscopy (1H-MRS) occur at different phases of Alzheimer's disease (AD). However, the extent to which these neurochemical changes are associated with validated AD biomarkers and/or apolipoprotein (APOE) ε4 is yet to be established.

    OBJECTIVE: This systematic review analyzed the available evidence on (1) neurochemical changes; and (2) the relations between brain metabolite and validated cerebrospinal fluid biomarkers, and/or APOE in AD.

    METHODS: PubMed, Cochrane, Scopus, and gray literature were systematically screened for studies deemed fit for the purpose of the current systematic review.

    RESULTS: Twenty four articles met the inclusion criteria. Decreased levels of N-acetyl aspartate (NAA), NAA/(creatine) Cr, and NAA/(myo-inositol) ml, and increased ml, ml/Cr, Cho (choline)/Cr, and ml/NAA were found in the posterior cingulate cortex/precuneus. Increased ml is associated with increased tau levels, reduced NAA/Cr is associated with increased tau. ml/Cr is negatively correlated with Aβ42, and ml/Cr is positively correlated with t-tau. NAA and glutathione levels are reduced in APOE ε4 carriers. APOE ε4 exerts no modulatory effect on NAA/Cr. There is interaction between APOE ε4, Aβ42, and ml/Cr.

    CONCLUSION: NAA, ml, NAA/Cr, NAA/ml and ml/Cr may be potentially useful biomarkers that may highlight functional changes in the clinical stages of AD. The combinations of ml and tau, NAA/Cr and Aβ42, and NAA/Cr and tau may support the diagnostic process of differentiating MCI/AD from healthy individuals. Large, longitudinal studies are required to clarify the effect of APOE ε4 on brain metabolites.

    Matched MeSH terms: Amyloid beta-Peptides*
  2. Zaman R, Islam RA, Chowdhury EH
    J Control Release, 2022 11;351:779-804.
    PMID: 36202153 DOI: 10.1016/j.jconrel.2022.09.066
    The established cancer treatment strategy in clinical setting is based on chemo and radiation therapy, having limitations due to severe side-effects and drug-resistance. Small molecule chemo-drugs target any fast-dividing cells irrespective of healthy or defective origin. As a result, a substantial amount of healthy tissue is also destroyed. Moreover, failure to recognize the heterogeneity of tumour tissue results in drug-resistance over the course of time. On the other hand, peptides and proteins actively target somatic changes that are signature to any specific tumour tissue. Development and metastasis of cancer cells require unique disruption/alteration of protein activity. Identification of those wild and cancerous genotypes and phenotypes is the key to establishing easy 'targets' for protein based targeted therapeutics. The approach is cytostatic and tissue specific, which reduces drug toxicity. Biopharmaceutical products based on proteins and peptides are slowly re-directing oncology from cytotoxic small molecular treatment approach to target oriented cytostatic strategy. This review focuses on current and upcoming peptide and protein-based precision therapeutics. At the same time, the study also shades light on the technological advancement in the field of protein and peptide-based therapeutics.
    Matched MeSH terms: Peptides/chemistry
  3. Saadi S, Ghazali HM, Saari N, Abdulkarim SM
    Biophys Chem, 2021 06;273:106565.
    PMID: 33780688 DOI: 10.1016/j.bpc.2021.106565
    Therapeutic peptides derived proteins with alpha-reconformation states like antibody shape have shown potential effects in combating terrible diseases linked with earlier signs of angiogensis, mutagenesis and transgenesis. Alpha reconformation in material design refers to the folding of the peptide chains and their transitions under reversible chemical bonds of disulfide chemical bridges and further non-covalence lesions. Thus, the rational design of signal peptides into alpha-helix is intended in increasing the defending effects of peptides into cores like adjuvant antibiotic and/or vaccines. Thereby, the signal peptides are able in displaying multiple eradicating regions by changing crystal-depositions and deviation angles. These types of molecular structures could have multiple advantages in tracing disease syndromes and impurities by increasing the host defense against the fates of pathogens and viruses, eventually leading to the loss in signaling by increasing peptide susceptibility levels to folding and unfolding and therefore, formation of transgenic peptide models. Alpha reconformation peptides is aimed in triggering as well as other regulatory functions such as remodulating metabolic chain disorders of lipolysis and glucolysis by increasing the insulin and leptin resistance for best lipid storages and lipoprotein density distributions.
    Matched MeSH terms: Peptides/chemistry*
  4. da Silva-Junio AG, Frias IAM, Lima-Neto RG, Migliolo L, E Silva PS, Oliveira MDL, et al.
    J Pharm Biomed Anal, 2022 Jul 15;216:114788.
    PMID: 35525110 DOI: 10.1016/j.jpba.2022.114788
    Bacterial and fungal infections are challenging due to their low susceptibility and resistance to antimicrobial drugs. For this reason, antimicrobial peptides (AMP) emerge as excellent alternatives to overcome these problems. At the same time, their active insertion into the cell wall of microorganisms can be availed for biorecognition applications in biosensing platforms. Temporin-PTA (T-PTA) is an AMP found in the skin secretions of the Malaysian fire frog Hylarana picturata, which presents antibacterial activity against MRSA, Escherichia coli, and Bacillus subtilis. In this work, T-PTA was explored as an innovative sensing layer aiming for the electrochemical differentiation of Klebsiella pneumoniae, Acinetobacter baumannii, Bacillus subtilis, Enterococcus faecalis, Candida albicans, and C. tropicalis based on the structural differences of their membranes. The biosensor was analyzed through electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). In this approach, the different structural features of each microorganism resulted in different adherence degrees and, therefore, different electrochemical responses. The transducing layer was fabricated by the self-assembling of a 4-mercaptobenzoic acid (MBA) monolayer and gold-capped magnetic nanoparticles (Fe3O4@Au) implemented to improve the electrical signal of the biointeraction. We found that each interaction, expressed in variations of electron transfer resistance and anodic peak current, demonstrated a singular response from which the platform can discriminate all different microorganisms. We found expressive sensitivity towards Gram-negative species, especially K. pneumoniae. A detection limit of 101 CFU.mL-1 and a linear range of 101 to 105 CFU.mL-1 were obtained. The T-PTA biosensor platform is a promising and effective tool for microbial identification.
    Matched MeSH terms: Antimicrobial Cationic Peptides/chemistry
  5. Abd El-Aal AAA, Jayakumar FA, Reginald K
    Drug Discov Today, 2023 Nov;28(11):103764.
    PMID: 37689179 DOI: 10.1016/j.drudis.2023.103764
    Cryptides are a subfamily of bioactive peptides embedded latently in their parent proteins and have multiple biological functions. Cationic cryptides could be used as modern drugs in both infectious diseases and cancers because their mechanism of action is less likely to be affected by genetic mutations in the treated cells, therefore addressing a current unmet need in these two areas of medicine. In this review, we present the current understanding of cryptides, methods to mine them sustainably using available online databases and prediction tools, with a particular focus on their antimicrobial and anticancer potential, and their potential applicability in a clinical setting.
    Matched MeSH terms: Peptides/pharmacology
  6. Phuna ZX, Madhavan P
    Int J Neurosci, 2023 Dec;133(10):1071-1089.
    PMID: 35282779 DOI: 10.1080/00207454.2022.2045290
    Alzheimer disease (AD) is a progressive neurological disorder that accounted for the most common cause of dementia in the elderly population. Lately, 'infection hypothesis' has been proposed where the infection of microbes can lead to the pathogenesis of AD. Among different types of microbes, human immunodeficiency virus-1 (HIV-1), herpes simplex virus-1 (HSV-1), Chlamydia pneumonia, Spirochetes and Candida albicans are frequently detected in the brain of AD patients. Amyloid-beta protein has demonstrated to exhibit antimicrobial properties upon encountering these pathogens. It can bind to microglial cells and astrocytes to activate immune response and neuroinflammation. Nevertheless, HIV-1 and HSV-1 can develop into latency whereas Chlamydia pneumonia, Spirochetes and Candida albicans can cause chronic infections. At this stage, the DNA of microbes remains undetectable yet active. This can act as the prolonged pathogenic stimulus that over-triggers the expression of Aβ-related genes, which subsequently lead to overproduction and deposition of Aβ plaque. This review will highlight the pathogenesis of each of the stated microbial infection, their association in AD pathogenesis as well as the effect of chronic infection in AD progression. Potential therapies for AD by modulating the microbiome have also been suggested. This review will aid in understanding the infectious manifestations of AD.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  7. Puan SL, Erriah P, Baharudin MMA, Yahaya NM, Kamil WNIWA, Ali MSM, et al.
    Appl Microbiol Biotechnol, 2023 Sep;107(18):5569-5593.
    PMID: 37450018 DOI: 10.1007/s00253-023-12651-9
    Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
    Matched MeSH terms: Antimicrobial Cationic Peptides/genetics; Antimicrobial Cationic Peptides/pharmacology
  8. Essa RZ, Wu YS, Batumalaie K, Sekar M, Poh CL
    Pharmacol Rep, 2022 Dec;74(6):1166-1181.
    PMID: 36401119 DOI: 10.1007/s43440-022-00432-6
    The global pandemic of COVID-19 is a serious public health concern. Over 625 million confirmed cases and more than 6 million deaths have been recorded worldwide. Although several vaccines and antiviral medications have been developed, their efficacy is limited by the emerging new SARS-CoV-2 strains. Peptide-based therapeutics is a fast-growing class of new drugs and have unique advantages over large proteins and small molecules. Antiviral peptides (AVPs) are short polycationic antivirals with broad-spectrum effects, which have been shown to exert both prophylactic and therapeutic actions against reported coronaviruses. The potential therapeutic targets of AVPs are located either on the virus (e.g., E-protein and S-protein) to prohibit viral binding or host cells, particularly, those present on the cell surface (e.g., ACE2 and TMPRSS2). Despite AVPs having promising antiviral effects, their efficacy is limited by low bioavailability. Thus, nanoformulation is a prerequisite for prolonged bioavailability and efficient delivery. This review aimed to present an insight into the therapeutic AVP targets on both virus and host cells by discussing their antiviral activities and associated molecular mechanisms. Besides, it described the technique for discovering and developing possible AVPs based on their targets, as well as the significance of using nanotechnology for their efficient delivery against SARS-CoV-2.
    Matched MeSH terms: Peptides/pharmacology; Peptides/therapeutic use
  9. Ashique S, Sirohi E, Kumar S, Rihan M, Mishra N, Bhatt S, et al.
    Curr Med Chem, 2024;31(31):5004-5026.
    PMID: 37497712 DOI: 10.2174/0929867331666230727103553
    Alzheimer's disease (AD) is a complex neurological disorder that results in cognitive decline. The incidence rates of AD have been increasing, particularly among individuals 60 years of age or older. In June 2021, the US FDA approved aducanumab, the first humanized monoclonal antibody, as a potential therapeutic option for AD. Clinical trials have shown this drug to effectively target the accumulation of Aβ (beta-amyloid) plaques in the brain, and its effectiveness is dependent on the dosage and duration of treatment. Additionally, aducanumab has been associated with improvements in cognitive function. Biogen, the pharmaceutical company responsible for developing and marketing aducanumab, has positioned it as a potential breakthrough for treating cerebral damage in AD. However, the drug has raised concerns due to its high cost, limitations, and potential side effects. AD is a progressive neurological condition that affects memory, cognitive function, and behaviour. It significantly impacts the quality of life of patients and caregivers and strains healthcare systems. Ongoing research focuses on developing disease-modifying therapies that can halt or slow down AD progression. The pathogenesis of AD involves various molecular cascades and signaling pathways. However, the formation of extracellular amyloid plaques is considered a critical mechanism driving the development and progression of the disease. Aducanumab, as a monoclonal antibody, has shown promising results in inhibiting amyloid plaque formation, which is the primary pathological feature of AD. This review explores the signaling pathways and molecular mechanisms through which aducanumab effectively prevents disease pathogenesis in AD.
    Matched MeSH terms: Amyloid beta-Peptides/antagonists & inhibitors; Amyloid beta-Peptides/metabolism
  10. Acquah C, Chan YW, Pan S, Agyei D, Udenigwe CC
    J Food Biochem, 2019 01;43(1):e12765.
    PMID: 31353493 DOI: 10.1111/jfbc.12765
    The application of proteomic and peptidomic technologies for food-derived bioactive peptides is an emerging field in food sciences. These technologies include the use of separation tools coupled to a high-resolution spectrometric and bioinformatic tools for prediction, identification, sequencing, and characterization of peptides. To a large extent, one-dimensional separation technologies have been extensively used as a continuous tool under different optimized conditions for the identification and analysis of food peptides. However, most one-dimensional separation technologies are fraught with significant bottlenecks such as insufficient sensitivity and specificity limits for complex samples. To address this limitation, separation systems based on orthogonal, multidimensional principles, which allow for the coupling of more than one analytical separation tool with different operational principles, provide a higher separation power than one-dimensional separation tools. This review describes the structure-informed separation and purification of protein hydrolyzates to obtain peptides with desirable bioactivities. PRACTICAL APPLICATIONS: Application of bioactive peptides in the formulation of functional foods, nutraceuticals, and therapeutic agents have increasingly gained scholarly and industrial attention. The bioactive peptides exist originally in protein sources and are only active after hydrolysis of the parent protein. Currently, several tools can be configured in one-dimensional or multidimensional systems for the separation and purification of protein hydrolyzates. The separations are informed by the structural properties such as the molecular weight, charge, hydrophobicity or hydrophilicity, and the solubility of peptides. This review provides a concise discussion on the commonly used analytical tools, their configurations, advantages and challenges in peptide separation. Emphasis is placed on how the structural properties of peptides assist in the separation and purification processes and the concomitant effect of the separation on peptide bioactivity.
    Matched MeSH terms: Peptides/isolation & purification*; Peptides/pharmacology*; Peptides/chemistry
  11. Rosyidi S, Taha M, Ismail A, Chik Z
    Dalam hal yang berkaitan dengan pengurusan turapan jalan raya, keupayaan galas lapisan subgred banyak mempengaruhi keadaan struktur turapan secara keseluruhan. Oleh itu, penilaian kualiti subgred diperlukan dari masa ke masa bagi mengawal kualiti turapan supaya ianya boleh dilalui kenderaan tanpa mengalami kerosakan. Kaedah Analisis Spektrum Gelombang Permukaan (lebih dikenali dengan Spectral Analysis of Surface Wave-SASW) merupakan suatu teknik uji kaji seismos tanpa musnah di lapangan yang boleh digunakan untuk penilaian kekukuhan dan kedalaman struktur turapan jalan termasuk lapisan subgred turapan dengan cepat dan menjimatkan. Makalah ini bertujuan untuk menunjukkan keupayaan kaedah SASW bagi menilai kualiti lapisan subgred turapan. Kaedah SASW dilakukan berdasarkan kaedah perambatan gelombang R. Berasaskan data beza fasa gelombang R yang merambat di permukaan turapan, lengkung eksperimen serakan halaju fasa diperolehi. Selanjutnya melalui proses songsangan, parameter dinamik bahan seperti halaju ricih yang mewakili modulus elastik dan ricih dinamik bahan turapan jalan boleh ditentukan. Hasil kajian menunjukkan bahawa kaedah SASW berupaya menghasilkan parameter dinamik bahan lapisan subgred turapan yang boleh diguna pakai. Beberapa model empirik dengan korelasi yang baik berjaya diterbitkan daripada kajian ini yang boleh digunakan dengan mudah di lapangan untuk penilaian kekukuhan lapisan subgred secara tepat.
    Matched MeSH terms: Peptides
  12. Yunoh SM, Dzulkafly Z
    PhytoKeys, 2017.
    PMID: 29362547 DOI: 10.3897/phytokeys.89.20344
    Ridleyandra merohmerea, a new species of Gesneriaceae, is described and illustrated. It is endemic in Peninsular Malaysia and known from a few populations along the Tuang River in the lowland dipterocarp forest of the Ulu Galas Forest Reserve in Kelantan, Peninsular Malaysia. Its conservation status is assessed as Critically Endangered.
    Matched MeSH terms: Peptides
  13. Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, et al.
    Expert Rev Neurother, 2021 12;21(12):1455-1472.
    PMID: 34756134 DOI: 10.1080/14737175.2021.2003705
    INTRODUCTION: Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain.

    AREAS COVERED: The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy.

    EXPERT OPINION: Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.

    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  14. Maurya R, Bhattacharjee G, Khambhati K, Gohil N, Singh P, Mani I, et al.
    Prog Mol Biol Transl Sci, 2023;196:261-270.
    PMID: 36813361 DOI: 10.1016/bs.pmbts.2022.09.006
    Amyloid precursor protein (APP) is a membrane protein expressed in several tissues. The occurrence of APP is predominant in synapses of nerve cells. It acts as a cell surface receptor and plays a vital role as a regulator of synapse formation, iron export and neural plasticity. It is encoded by the APP gene that is regulated by substrate presentation. APP is a precursor protein activated by proteolytic cleavage and thereby generating amyloid beta (Aβ) peptides which eventually form amyloid plaques that accumulate in Alzheimer's disease patients' brains. In this chapter, we highlight basic mechanism, structure, expression patterns and cleavage of amyloid plaques, and its diagnosis and potential treatment for Alzheimer's disease.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  15. Law D, Abdulkareem Najm A, Chong JX, K'ng JZY, Amran M, Ching HL, et al.
    PeerJ, 2023;11:e15651.
    PMID: 37483971 DOI: 10.7717/peerj.15651
    A previous study has shown that synthetic antimicrobial peptides (AMPs) derived from Anabas testudineus (ATMP1) could in-vitro inhibit the progression of breast cancer cell lines. In this study, we are interested in studying altered versions of previous synthetic AMPs to gain some insight into the peptides functions. The AMPs were altered and subjected to bioinformatics prediction using four databases (ADP3, CAMP-R3, AMPfun, and ANTICP) to select the highest anticancer activity. The bioinformatics in silico analysis led to the selection of two AMPs, which are ATMP5 (THPPTTTTTTTTTTTYTAAPATTT) and ATMP6 (THPPTTTTTTTTTTTTTAAPARTT). The in silico analysis predicted that ATMP5 and ATMP6 have anticancer activity and lead to cell death. The ATMP5 and ATMP6 were submitted to deep learning databases (ToxIBTL and ToxinPred2) to predict the toxicity of the peptides and to (AllerTOP & AllergenFP) check the allergenicity. The results of databases indicated that AMPs are non-toxic to normal human cells and allergic to human immunoglobulin. The bioinformatics findings led to select the highest active peptide ATMP5, which was synthesised and applied for in-vitro experiments using cytotoxicity assay MTT Assay, apoptosis detection using the Annexin V FTIC-A assay, and gene expression using Apoptosis PCR Array to evaluate the AMP's anticancer activity. The antimicrobial activity is approved by the disc diffusion method. The in-vitro experiments analysis showed that ATMP5 had the activity to inhibit the growth of the breast cancer cell line (MDA-MB-231) after 48 h and managed to arrest the cell cycle of the MDA-MB-231, apoptosis induction, and overexpression of the p53 by interaction with the related apoptotic genes. This research opened up new opportunities for developing potential and selective anticancer agents relying on antimicrobial peptide properties.
    Matched MeSH terms: Peptides/pharmacology
  16. Pung HS, Tye GJ, Leow CH, Ng WK, Lai NS
    Mol Biol Rep, 2023 May;50(5):4653-4664.
    PMID: 37014570 DOI: 10.1007/s11033-023-08380-x
    Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.
    Matched MeSH terms: Peptides/chemistry
  17. Larue L, Kenzhebayeva B, Al-Thiabat MG, Jouan-Hureaux V, Mohd-Gazzali A, Wahab HA, et al.
    Bioorg Chem, 2023 Jan;130:106200.
    PMID: 36332316 DOI: 10.1016/j.bioorg.2022.106200
    Targeting vascular endothelial growth factor receptor (VEFGR) and its co-receptor neuropilin-1 (NRP-1) is an interesting vascular strategy. tLyp-1 is a tumor-homing and penetrating peptide of 7 amino acids (CGNKRTR). It is a truncated form of Lyp-1 (CGNKRTRGC), which is known to target NRP-1 receptor, with high affinity and specificity. It is mediated by endocytosis via C-end rule (CendR) internalization pathway. The aim of this study is to evaluate the importance of each amino acid in the tLyp-1 sequence through alanine-scanning (Ala-scan) technique, during which each of the amino acid in the sequence was systematically replaced by alanine to produce 7 different analogues. In silico approach through molecular docking and molecular dynamics are employed to understand the interaction between the peptide and its analogues with the NRP-1 receptor, followed by in vitro ligand binding assay study. The C-terminal Arg is crucial in the interaction of tLyp-1 with NRP-1 receptor. Substituting this residue dramatically reduces the affinity of this peptide which is clearly seen in this study. Lys-4 is also important in the interaction, which is confirmed via the in vitro study and the MM-PBSA analysis. The finding in this study supports the CendR, in which the presence of R/K-XX-R/K motif is essential in the binding of a ligand with NRP-1 receptor. This presented work will serve as a guide in the future work pertaining the development of active targeting agent towards NRP-1 receptor.
    Matched MeSH terms: Peptides/chemistry
  18. Pang LW, Hamzah S, Tan SLJ, Mah SH, Yow HY
    Neurochem Res, 2023 Dec;48(12):3485-3511.
    PMID: 37578655 DOI: 10.1007/s11064-023-04005-8
    Xanthones are natural secondary metabolites that possess great potential as neuroprotective agents due to their prominent biological effects on Alzheimer's disease (AD). However, their underlying mechanisms in AD remain unclear. This study aimed to systematically review the effects and mechanisms of xanthones in cell culture and animal studies, gaining a better understanding of their roles in AD. A comprehensive literature search was conducted in the Medline and Scopus databases using specific keywords to identify relevant articles published up to June 2023. After removing duplicates, all articles were imported into the Rayyan software. The article titles were screened based on predefined inclusion and exclusion criteria. Relevant full-text articles were assessed for biases using the OHAT tool. The results were presented in tables. Xanthones have shown various pharmacological effects towards AD from the 21 preclinical studies included. Cell culture studies demonstrated the anti-cholinesterase activity of xanthones, which protects against the loss of acetylcholine. Xanthones exhibited neuroprotective effects by promoting cell viability, reducing the accumulation of β-amyloid and tau aggregation. The administration of xanthones in animal models resulted in a reduction in neuronal inflammation by decreasing microglial and astrocyte burden. In terms of molecular mechanisms, xanthones prevented neuroinflammation through the modulation of signaling pathways, including TLR4/TAK1/NF-κB and MAPK pathways. Mechanisms such as activation of caspase-3 and -9 and suppression of endoplasmic reticulum stress were also reported. Despite the various neuroprotective effects associated with xanthones, there are limited studies reported on their underlying mechanisms in AD. Further studies are warranted to fully understand their potential roles in AD.
    Matched MeSH terms: Amyloid beta-Peptides/metabolism
  19. Song BPC, Ch'ng ACW, Lim TS
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128455.
    PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455
    Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
    Matched MeSH terms: Peptides/genetics
  20. Muhialdin BJ, Algboory HL, Mohammed NK, Kadum H, Hussin ASM, Saari N, et al.
    Curr Drug Discov Technol, 2020;17(4):553-561.
    PMID: 31309892 DOI: 10.2174/1570163816666190715120038
    BACKGROUND: Despite the extensive research carried out to develop natural antifungal preservatives for food applications, there are very limited antifungal agents available to inhibit the growth of spoilage fungi in processed foods. Scope and Approach: Therefore, this review summarizes the discovery and development of antifungal peptides using lactic acid bacteria fermentation to prevent food spoilage by fungi. The focus of this review will be on the identification of antifungal peptides, potential sources, the possible modes of action and properties of peptides considered to inhibit the growth of spoilage fungi. Key Findings and Conclusions: Antifungal peptides generated by certain lactic acid bacteria strains have a high potential for applications in a broad range of foods. The mechanism of peptides antifungal activity is related to their properties such as low molecular weight, concentration and secondary structure. The antifungal peptides were proposed to be used as bio-preservatives to reduce and/or replace chemical preservatives.
    Matched MeSH terms: Peptides/immunology; Peptides/isolation & purification; Peptides/pharmacology*; Peptides/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links