Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Kamal N, Sabaratnam V, Abdullah N, Ho AS, Teo SH, Lee HB
    Antonie Van Leeuwenhoek, 2009 Feb;95(2):179-88.
    PMID: 19125347 DOI: 10.1007/s10482-008-9301-8
    Photodynamic therapy (PDT) is a promising cancer treatment which involves activation of a photosensitizing drug with light to produce reactive oxygen species that kill tumors without causing damage to unirradiated normal tissues. To date, only Photofrin, Foscan and Levulan have been approved for clinical treatment of cancer. Tropical habitats such as those found in Malaysia are attractive sources of new therapeutic compounds as tremendous chemical diversity is found in a large number of plants, animals, marine- and micro-organisms. In our screening program for novel photosensitizers from nature, colorful strains of fungi (from Aspergillus and Penicillium genus) and bacteria (including actinomycetes and photosynthetic bacteria) were collected from various habitats in Peninsular Malaysia, such as coastal soil, peat soil, marine sponges and wastewater ponds. Methanolic extracts from a total of 85 different species were evaluated with a short-term cell viability assay for photo-cytotoxicity, where a promyelocytic leukemia cell-line, HL60 incubated with 20 microg/ml of extracts was irradiated with 9.6 J/cm(2) of a broad spectrum light. Two of these extracts, one from Rhodobacter sphaeroides (PBUM003) and one from Rhodopseudomonas palustris (PBUM001) showed moderate to strong photo-cytotoxicity. Subsequent bioassay guided isolation of the PBUM001 extract yielded known photosensitisers that are based on bacteriochlorophyll-a by comparing their molecular weight data, HPLC profiles and UV-vis absorption spectra with literature values, thereby demonstrating the validity of our screening approach.
    Matched MeSH terms: Porifera/microbiology*
  2. Siew ZY, Asudas E, Khoo CT, Cho GH, Voon K, Fang CM
    Arch Microbiol, 2024 Feb 28;206(3):130.
    PMID: 38416180 DOI: 10.1007/s00203-024-03846-3
    The human immunodeficiency virus (HIV) is a type of lentivirus that targets the human immune system and leads to acquired immunodeficiency syndrome (AIDS) at a later stage. Up to 2021, there are millions still living with HIV and many have lost their lives. To date, many anti-HIV compounds have been discovered in living organisms, especially plants and marine sponges. However, no treatment can offer a complete cure, but only suppressing it with a life-long medication, known as combined antiretroviral therapy (cART) or highly active antiretroviral therapy (HAART) which are often associated with various adverse effects. Also, it takes many years for a discovered compound to be approved for clinical use. Thus, by employing advanced technologies such as automation, conducting systematic screening and testing protocols may boost the discovery and development of potent and curative therapeutics for HIV infection/AIDS. In this review, we aim to summarize the antiretroviral therapies/compounds and their associated drawbacks since the discovery of azidothymidine. Additionally, we aim to provide an updated analysis of the most recent discoveries of promising antiretroviral candidates, along with an exploration of the current limitations within antiretroviral research. Finally, we intend to glean insightful perspectives and propose future research directions in this crucial area of study.
    Matched MeSH terms: Porifera*
  3. Hitora Y, Takada K, Ise Y, Woo SP, Inoue S, Mori N, et al.
    Bioorg Med Chem, 2020 01 15;28(2):115233.
    PMID: 31848114 DOI: 10.1016/j.bmc.2019.115233
    New sesquiterpene quinones, metachromins X (1) and Y (2), together with the known metachromins C (3), J (4), and T (5), were isolated as inhibitors of cell cycle progression in the HeLa/Fucci2 cells. The structure of 1 was assigned by spectroscopic data and confirmed by a total synthesis. The planar structure of 2 was determined by interpretation of spectroscopic data, whereas its absolute configuration was analyzed by a combination of chiral HPLC and CD spectroscopy. Metachromins X (1) and C (3) arrested the cell cycle progression of HeLa/Fucci2 cells at S/G2/M phase.
    Matched MeSH terms: Porifera/chemistry*
  4. Nakamukai S, Ise Y, Ohtsuka S, Okada S, Matsunaga S
    Biosci Biotechnol Biochem, 2019 Nov;83(11):1985-1988.
    PMID: 31250707 DOI: 10.1080/09168451.2019.1630258
    N6-Isopentenyladenosine (i6A) was isolated from a marine sponge Oceanapia sp. as the major cytotoxic constituent along with N6-isopentenyladenosine 5'-monophosphate (i6AP) which was inactive. The structures of i6A and i6AP were assigned by a combination of the analysis of NMR spectroscopy and mass spectrometry. This is the first isolation of i6A and i6AP from a marine sponge.
    Matched MeSH terms: Porifera/chemistry*
  5. Yong, Yoong-Soon, Lim, Swee-Cheng, Lee, Ping-Chin, Ling, Yee-Soon
    MyJurnal
    Sponges are major source of numerous cytotoxic compounds that are used for defence as well as adaptation to the environment. Numerous studies have discovered compounds from sponge extracts that were effective against a wide range of cancer cells. In this study, a total of 23 sponges comprising of 19 species were collected from Northeast Borneo. Sponges were treated and extracted using modified Folch extraction method, followed by cytotoxicity assay to determine their effectiveness against different colorectal cancer cells. Our results demonstrate that Monanchora clathrata, Dysidea sp., and Jaspis sp. possess different degrees of cytotoxicity against a wide range of human colorectal cancer cells. Monanchora clathrata (KDT07), Dysidea sp. (KDT09), and Jaspis sp. (KDT18) are among the demosponges which possess significant cytotoxicity against colorectal cancer cell lines, including HCT116, LoVo, SW480, and SW620. KDT08 and KDT21 which fall under the same genus Dysidea, possess insignificant cytotoxicity against colorectal cancer cells suggested environmental factors (symbiotic organisms) play a role in biosynthesizing bioactive compounds. Presented results suggested the importance of intensifying research on isolating and purifying natural products from marine sponges for useful applications.
    Matched MeSH terms: Porifera
  6. Watari H, Nakajima H, Atsuumi W, Nakamura T, Nanya T, Ise Y, et al.
    PMID: 30978513 DOI: 10.1016/j.cbpc.2019.04.003
    We screened 868 marine extracts in search of hematopoietic molecules resulted in findings of several extracts that proliferated Ba/F3-HuMpl cells but not the cells expressed with other hematopoietic cytokine receptors, EPO and G-CSF. Separation of the most potent extract of a Micronesian sponge Corticium sp., guided by the cell proliferation assay using Ba/F3-HuMpl cells resulted in an isolation of thrombocorticin (ThC), a novel 14 kDa protein as an active principal. ThC displayed concentration-dependent proliferation of Ba/F3-HuMpl cells, and had a stronger activity than that of eltrombopag, a small molecule drug used to treat thrombocytopenia. ThC induced phosphorylation of STAT5, suggesting that it activates Jak/STAT pathway as in the case of TPO. These results together indicated that ThC is a specific agonist for c-Mpl, although the size and shape differs largely from TPO. Here we present isolation, characterization and biological activity of ThC.
    Matched MeSH terms: Porifera/chemistry*
  7. Amelia TSM, Lau NS, Amirul AA, Bhubalan K
    Data Brief, 2020 Aug;31:105971.
    PMID: 32685631 DOI: 10.1016/j.dib.2020.105971
    Marine sponges are acknowledged as a bacterial hotspot and resource of novel natural products or genetic material with industrial or commercial potential. However, sponge-associated bacteria are difficult to be cultivated and the production of their desirable metabolites is inadequate in terms of rate and quantity, yet bioinformatics and metagenomics tools are steadily progressing. Bacterial diversity profiles of high-microbial-abundance wild tropical marine sponges Aaptos aaptos and Xestospongia muta were obtained by sample collection at Pulau Bidong and Pulau Redang islands, 16S rRNA amplicon sequencing on Illumina HiSeq2500 platform (250 bp paired-end) and metagenomics analysis using Ribosomal Database Project (RDP) classifier. Raw sequencing data in fastq format and relative abundance histograms of the dominant 10 species are available in the public repository Discover Mendeley Data (http://dx.doi.org/10.17632/zrcks5s8xp). Filtered sequencing data of operational taxonomic unit (OTU) with chimera removed is available in NCBI accession numbers from MT464469 to MT465036.
    Matched MeSH terms: Porifera
  8. Amelia TSM, Amirul AA, Bhubalan K
    Data Brief, 2018 Feb;16:75-80.
    PMID: 29188224 DOI: 10.1016/j.dib.2017.11.011
    We report data associated with the identification of three polyhydroxyalkanoate synthase genes (phaC) isolated from the marine bacteria metagenome of Aaptos aaptos marine sponge in the waters of Bidong Island, Terengganu, Malaysia. Our data describe the extraction of bacterial metagenome from sponge tissue, measurement of purity and concentration of extracted metagenome, polymerase chain reaction (PCR)-mediated amplification using degenerate primers targeting Class I and II phaC genes, sequencing at First BASE Laboratories Sdn Bhd, and phylogenetic analysis of identified and known phaC genes. The partial nucleotide sequences were aligned, refined, compared with the Basic Local Alignment Search Tool (BLAST) databases, and released online in GenBank. The data include the identified partial putative phaC and their GenBank accession numbers, which are Rhodocista sp. phaC (MF457754), Pseudomonas sp. phaC (MF437016), and an uncultured bacterium AR5-9d_16 phaC (MF457753).
    Matched MeSH terms: Porifera
  9. Naim MA, Morillo JA, Sørensen SJ, Waleed AA, Smidt H, Sipkema D
    FEMS Microbiol Ecol, 2014 Nov;90(2):390-403.
    PMID: 25088929 DOI: 10.1111/1574-6941.12400
    The establishment of next-generation technology sequencing has deepened our knowledge of marine sponge-associated microbiota with the identification of at least 32 phyla of Bacteria and Archaea from a large number of sponge species. In this study, we assessed the diversity of the microbial communities hosted by three sympatric sponges living in a semi-enclosed North Sea environment using pyrosequencing of bacterial and archaeal 16S ribosomal RNA gene fragments. The three sponges harbor species-specific communities each dominated by a different class of Proteobacteria. An α-proteobacterial Rhodobacter-like phylotype was confirmed as the predominant symbiont of Halichondria panicea. The microbial communities of Haliclona xena and H. oculata are described for the first time in this study and are dominated by Gammaproteobacteria and Betaproteobacteria, respectively. Several common phylotypes belonging to Chlamydiae, TM6, Actinobacteria, and Betaproteobacteria were detected in all sponge samples. A number of phylotypes of the phylum Chlamydiae were present at an unprecedentedly high relative abundance of up to 14.4 ± 1.4% of the total reads, which suggests an important ecological role in North Sea sponges. These Chlamydiae-affiliated operational taxonomic units may represent novel lineages at least at the genus level as they are only 86-92% similar to known sequences.
    Matched MeSH terms: Porifera/classification; Porifera/microbiology*
  10. Ruzaina, I., Norizzah, A.R., Halimahton Zahrah, M.S., Cheow, C.S., Adi, M.S., Noorakmar, A.W., et al.
    MyJurnal
    Guava is a climacteric fruit which has high nutritional content. It is a highly perishable fruit, undergoes rapid postharvest ripening in a few days under ambient condition. This paper aims to determine the effect of palm stearin and palm kernel olein blends on maintaining the quality of guava during storage. Two different coating formulations of palm stearin (PS) and palm kernel olein (PKOo) blends (1:1 and 3:2) were analysed for their slip melting point (SMP), cohesiveness, viscosity and density. Beeswax was used as a commercial coating for comparison whiles the uncoated guava was used as control. These coatings were applied onto guavas by hand-wipe technique using a sponge. Guavas were dried in corrugated fibre board boxes and stored in an air-conditioned room maintained at 20°C while a chiller maintained at 10°C was used for chilled temperature. Coating pick up, thickness and surface area were measured while guava properties were analysed for coating effect on weight loss, O2 and CO2 gases, firmness and glossiness during storage at ambient temperature (20°C) for 21 days and chilled temperature (10ºC) for 30 days. Microstructure analysis was conducted within 2 days of coating at ambient temperature (20ºC). The results obtained indicated that 1:1 PSPKOo blends had higher cohesiveness compared to beeswax. Both PSPKOo blends significantly (p
    Matched MeSH terms: Porifera
  11. Mohd Al Amin Muhamad Nor, Lee, Chain Hong, Hazizan Md. Akil, Zainal Arifin Ahmad
    MyJurnal
    Ceramic foams are a class of high porosity materials that are used or being considered for a wide range of technological applications. Ceramic foam was produce by polymer replication method. In this process, commercial polymeric sponge was use as template, dipping with ceramic particles slurry, drying and then sintered to yield a replica of the original foams. The study was focus on the fabrication of different density of ceramic foams by varying the density of ceramic slurries (1.1876, 1.2687, 1.3653 and 1.5295 g/cm3). Properties of ceramic foam produced such as density was characterized accordingly to ASTM C 271-94 and porosity were characterized using Archimedes methods. Compressive and bending strength was performed accordingly to ASTM C1161-94 and C773-88 (1999), respectively. The morphological study was performed using Scanning Electron Microscopy (SEM) and EDX. Density of ceramic foams produced was about 0.5588 and 1.1852 g/cm3, where as porosity was around 26.28 and 70.59 %. Compressive and bending strength was increase from strength also increases from 2.60 to 23.07 MPa and 1.20 to 11.10 MPa, respectively, with increasing of slurries density from 1.1876 to 1.3653 g/cm3. The SEM micrographs show that the cells structure become denser as the slurries density increased. EDX proved that the ceramic used is porcelain. As a conclusion, increasing in slurries density produced ceramic foams with good mechanical properties such as compressive and bending strength and denser body.
    Matched MeSH terms: Porifera
  12. Jomori T, Shiroyama S, Ise Y, Kohtsuka H, Matsuda K, Kuranaga T, et al.
    J Nat Med, 2019 Sep;73(4):814-819.
    PMID: 31054009 DOI: 10.1007/s11418-019-01315-6
    Two new steroidal saponins, scrobiculosides A and B, were isolated from the deep-sea sponge Pachastrella scrobiculosa, collected at a depth of 200 m off Miura Peninsula, Japan. The aglycones of scrobiculosides A and B feature a vinylic cyclopropane and a ∆24,25 exomethylene on the side chains, respectively. Both saponins have a common sugar moiety composed of β-D-galactopyranosyl-(1 → 2)-6-acetyl-β-D-glucopyranoside, with the exception of an acetyl group on C6″ in scrobiculoside A. Scrobiculoside A exhibited cytotoxicity against HL-60 and P388 cells, with IC50 values of 52 and 61 μM, respectively.
    Matched MeSH terms: Porifera/metabolism*
  13. Shaari K, Ling KC, Rashid ZM, Jean TP, Abas F, Raof SM, et al.
    Mar Drugs, 2009;7(1):1-8.
    PMID: 19370166 DOI: 10.3390/md7010001
    In a preliminary screen, Aaptos aaptos showed significant cytotoxic activity towards a panel of cell lines and was thus subjected to bioassay-guided isolation of the bioactive constituents. In addition to the known aaptamine, two new derivatives of the alkaloid were isolated from the bioactive chloroform fraction of the crude methanolic extract. Detailed analysis by NMR and mass spectroscopy enabled their identification to be 3-(phenethylamino)demethyl(oxy)aaptamine and 3-(isopentylamino)demethyl(oxy) aaptamine. The cytotoxic activities of the three alkaloids were further evaluated against CEM-SS cells.
    Matched MeSH terms: Porifera/chemistry*
  14. Mayer AMS, Hall ML, Lach J, Clifford J, Chandrasena K, Canton C, et al.
    Mar Drugs, 2021 Sep 07;19(9).
    PMID: 34564169 DOI: 10.3390/md19090506
    Manzamines are complex polycyclic marine-derived β-carboline alkaloids with reported anticancer, immunostimulatory, anti-inflammatory, antibacterial, antiviral, antimalarial, neuritogenic, hyperlipidemia, and atherosclerosis suppression bioactivities, putatively associated with inhibition of glycogen synthase kinase-3, cyclin-dependent kinase 5, SIX1, and vacuolar ATPases. We hypothesized that additional, yet undiscovered molecular targets might be associated with Manzamine A's (MZA) reported pharmacological properties. We report here, for the first time, that MZA selectively inhibited a 90 kDa ribosomal protein kinase S6 (RSK1) when screened against a panel of 30 protein kinases, while in vitro RSK kinase assays demonstrated a 10-fold selectivity in the potency of MZA against RSK1 versus RSK2. The effect of MZA on inhibiting cellular RSK1 and RSK2 protein expression was validated in SiHa and CaSki human cervical carcinoma cell lines. MZA's differential binding and selectivity toward the two isoforms was also supported by computational docking experiments. Specifically, the RSK1-MZA (N- and C-termini) complexes appear to have stronger interactions and preferable energetics contrary to the RSK2-MZA ones. In addition, our computational strategy suggests that MZA binds to the N-terminal kinase domain of RSK1 rather than the C-terminal domain. RSK is a vertebrate family of cytosolic serine-threonine kinases that act downstream of the ras-ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, which phosphorylates substrates shown to regulate several cellular processes, including growth, survival, and proliferation. Consequently, our findings have led us to hypothesize that MZA and the currently known manzamine-type alkaloids isolated from several sponge genera may have novel pharmacological properties with unique molecular targets, and MZA provides a new tool for chemical-biology studies involving RSK1.
    Matched MeSH terms: Porifera*
  15. Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SE, et al.
    Mar Drugs, 2021 Apr 27;19(5).
    PMID: 33925365 DOI: 10.3390/md19050246
    Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
    Matched MeSH terms: Porifera/metabolism*
  16. Artasasta MA, Yanwirasti Y, Taher M, Djamaan A, Ariantari NP, Edrada-Ebel RA, et al.
    Mar Drugs, 2021 Nov 11;19(11).
    PMID: 34822502 DOI: 10.3390/md19110631
    Sponge-derived fungi have recently attracted attention as an important source of interesting bioactive compounds. Aspergillus nomius NC06 was isolated from the marine sponge Neopetrosia chaliniformis. This fungus was cultured on rice medium and yielded four compounds including three new oxisterigmatocystins, namely, J, K, and L (1, 2, and 3), and one known compound, aspergillicin A (4). Structures of the compounds were elucidated by 1D and 2D NMR spectroscopy and by high-resolution mass spectrometry. The isolated compounds were tested for cytotoxic activity against HT 29 colon cancer cells, where compounds 1, 2, and 4 exhibited IC50 values of 6.28, 15.14, and 1.63 µM, respectively. Under the fluorescence microscope by using a double staining method, HT 29 cells were observed to be viable, apoptotic, and necrotic after treatment with the cytotoxic compounds 1, 2, and 4. The result shows that compounds 1 and 2 were able to induce apoptosis and cell death in HT 29 cells.
    Matched MeSH terms: Porifera*
  17. Chow SW, Keshavmurthy S, Reimer JD, de Voogd N, Huang H, Wang JT, et al.
    PeerJ, 2022;10:e13451.
    PMID: 35669953 DOI: 10.7717/peerj.13451
    The first occurrence of the cyanobacteriosponge Terpios hoshinota was reported from coral reefs in Guam in 1973, but was only formally described in 1993. Since then, the invasive behavior of this encrusting, coral-killing sponge has been observed in many coral reefs in the West Pacific. From 2015, its occurrence has expanded westward to the Indian Ocean. Although many studies have investigated the morphology, ecology, and symbiotic cyanobacteria of this sponge, little is known of its population genetics and demography. In this study, a mitochondrial cytochrome oxidase I (COI) fragment and nuclear ribosomal internal transcribed spacer 2 (ITS2) were sequenced to reveal the genetic variation of T. hoshinota collected from 11 marine ecoregions throughout the Indo-West Pacific. Both of the statistical parsimony networks based on the COI and nuclear ITS2 were dominated by a common haplotype. Pairwise F ST and Isolation-by-distance by Mantel test of ITS2 showed moderate gene flow existed among most populations in the marine ecoregions of West Pacific, Coral Triangle, and Eastern Indian Ocean, but with a restricted gene flow between these regions and Maldives in the Central Indian Ocean. Demographic analyses of most T. hoshinota populations were consistent with the mutation-drift equilibrium, except for the Sulawesi Sea and Maldives, which showed bottlenecks following recent expansion. Our results suggest that while long-range dispersal might explain the capability of T. hoshinota to spread in the IWP, stable population demography might account for the long-term persistence of T. hoshinota outbreaks on local reefs.
    Matched MeSH terms: Porifera*
  18. Yunoh SM
    PhytoKeys, 2021;174:127-146.
    PMID: 33776527 DOI: 10.3897/phytokeys.174.62023
    Chroesthes is a small genus that includes three species from Peninsular Malaysia: Chroesthes faizaltahiriana Siti-Munirah sp. nov., C. lanceolata (T. Anderson) B.Hansen and C. longifolia (Wight) B.Hansen. Chroesthes faizaltahiriana, recently discovered in the State of Kelantan, is described and illustrated. This species is similar to the common species C. longifolia, but is distinguished mainly by its inflorescence type, calyx shape and its flowers being bright orange instead of dark purple internally. Chroesthes lanceolata is a new record for Peninsular Malaysia and has only been collected once. Following the IUCN Red List Categories and Criteria, these three species are assessed (national scale assessment) as Critically Endangered (C. faizaltahiriana and C. lanceolata) and Least Concern (C. longifolia).
    Matched MeSH terms: Porifera
  19. Mosadeghzad Z, Zuriati Zakaria, Asmat A, Gires U, Wickneswari R, Pittayakhajonwut P, et al.
    Sains Malaysiana, 2012;41:333-337.
    Marine fungus Fusarium proliferatum derived from marine sponge collected along Pulau Tinggi, Malaysia was cultivated on Potato Dextrose Broth and incubated for 7 days at 30oC. The liquid cultures were then extracted using ethyl acetate. The crude extract was investigated for its anti-microbial activity and was passed through Sephadex column and the fractions were collected. Reverse phase HPLC was used to monitor the component of crude extract. HPLC guided purification of crude extract resulted in the isolation of linoleic acid, 4-hydroxy phenethyl alcohol, 2,5-furandimethanol and adenosine. Their structures were elucidated by spectroscopic methods.
    Matched MeSH terms: Porifera
  20. Harikrishnan S, Sudarshan S, Sivasubramani K, Nandini MS, Narenkumar J, Ramachandran V, et al.
    Sci Rep, 2023 Sep 13;13(1):15153.
    PMID: 37704703 DOI: 10.1038/s41598-023-42475-6
    The widespread use of synthetic pesticides has resulted in a number of issues, including a rise in insecticide-resistant organisms, environmental degradation, and a hazard to human health. As a result, new microbial derived insecticides that are safe for human health and the environment are urgently needed. In this study, rhamnolipid biosurfactants produced from Enterobacter cloacae SJ2 was used to evaluate the toxicity towards mosquito larvae (Culex quinquefasciatus) and termites (Odontotermes obesus). Results showed dose dependent mortality rate was observed between the treatments. The 48 h LC50 (median lethal concentration) values of the biosurfactant were determined for termite and mosquito larvae following the non-linear regression curve fit method. Results showed larvicidal activity and anti-termite activity of biosurfactants with 48 h LC50 value (95% confidence interval) of 26.49 mg/L (25.40 to 27.57) and 33.43 mg/L (31.09 to 35.68), respectively. According to a histopathological investigation, the biosurfactant treatment caused substantial tissue damage in cellular organelles of larvae and termites. The findings of this study suggest that the microbial biosurfactant produced by E. cloacae SJ2 is an excellent and potentially effective agent for controlling Cx. quinquefasciatus and O. obesus.
    Matched MeSH terms: Porifera*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links