Displaying publications 1 - 20 of 215 in total

Abstract:
Sort:
  1. Rosli MZ, Mohd-Taib FS, Khoo JJ, Chee HY, Wong YP, Shafie NJ, et al.
    Ecohealth, 2023 Jun;20(2):208-224.
    PMID: 37103759 DOI: 10.1007/s10393-023-01637-8
    Leptospirosis is a major zoonotic disease, especially in the tropics, and rodents were known to be carriers of this bacterium. There was established information on Leptospira prevalence among animal reservoirs in human-dominated landscapes from previous literature. However, there was very little focus given comparing the prevalence of Leptospira in a wide range of habitats. An extensive sampling of small mammals from various landscapes was carried out, covering oil palm plantations, paddy fields, recreational forests, semi-urbans, and wet markets in Peninsular Malaysia. This study aims to determine the prevalence of pathogenic Leptospira in a diversity of small mammals across different landscapes. Cage-trapping was deployed for small mammals' trappings, and the kidneys of captured individuals were extracted, for screening of pathogenic Leptospira by polymerase chain reaction (PCR) using LipL32 primer. Eight microhabitat parameters were measured at each study site. Out of 357 individuals captured, 21 (5.9%) were positive for pathogenic Leptospira of which recreational forest had the highest prevalence (8.8%) for landscape types, whereas Sundamys muelleri shows the highest prevalence (50%) among small mammals' species. Microhabitat analysis reveals that rubbish quantity (p 
    Matched MeSH terms: Refuse Disposal*
  2. 'Aqilah NMN, Rovina K, Felicia WXL, Vonnie JM
    Molecules, 2023 Mar 14;28(6).
    PMID: 36985603 DOI: 10.3390/molecules28062631
    The food production industry is a significant contributor to the generation of millions of tonnes of waste every day. With the increasing public concern about waste production, utilizing the waste generated from popular fruits and vegetables, which are rich in high-added-value compounds, has become a focal point. By efficiently utilizing food waste, such as waste from the fruit and vegetable industries, we can adopt a sustainable consumption and production pattern that aligns with the Sustainable Development Goals (SDGs). This paper provides an overview of the high-added-value compounds derived from fruit and vegetable waste and their sources. The inclusion of bioactive compounds with antioxidant, antimicrobial, and antibrowning properties can enhance the quality of materials due to the high phenolic content present in them. Waste materials such as peels, seeds, kernels, and pomace are also actively employed as adsorbents, natural colorants, indicators, and enzymes in the food industry. Therefore, this article compiles all consumer-applicable uses of fruit and vegetable waste into a single document.
    Matched MeSH terms: Refuse Disposal*
  3. Mak TMW, Yu IKM, Xiong X, Zaman NQ, Yaacof N, Hsu SC, et al.
    Chemosphere, 2021 Jul;274:129750.
    PMID: 33549880 DOI: 10.1016/j.chemosphere.2021.129750
    To tackle the crisis associated with the rising commercial food waste generation, it is imperative to comprehend how corporates' recycling behaviour is influenced by different industry structures and economies. This study aims to fill in the information gap that various factors might be affecting corporates' recycling behaviour in two different economies due to environmental inequality by comparing upper-middle-income region (Malaysia) and high-income region (Hong Kong), respectively. A questionnaire survey regarding food waste management according to the Theory of Planned Behaviour was conducted with representatives coming from diverse industries of the hotel, food and beverage, and property management. The questionnaire responses were evaluated based on quantitative structural equation modelling and correlation analysis. The analysis results showed that the model fit the data well, explaining 78% of the variance in recycling behaviour. The findings demonstrated that the most substantial factor on individual's recycling intention by Malaysian commercial food waste generators was perceived behavioural control, and logistics and management incentives. Subjective norms demonstrated significant and adverse effects on the behaviour of food waste recycling. The variable of administrative incentives and corporate support presented strong positive correlations with moral attitudes as well as logistics and management incentives. Hotel industries from both Hong Kong and Malaysia have a higher acceptance level on human resources regarding food waste recycling. In comparison, food and beverage industries from both regions have a lower acceptance level. These findings could enrich our knowledge of the concerns in establishing regional policy strategies to encourage economic behavioural changes for sustainable development.
    Matched MeSH terms: Refuse Disposal*
  4. Hunter PS
    Matched MeSH terms: Refuse Disposal
  5. Mohd Zaini NA, Azizan NAZ, Abd Rahim MH, Jamaludin AA, Raposo A, Raseetha S, et al.
    Front Public Health, 2023;11:1175509.
    PMID: 37250070 DOI: 10.3389/fpubh.2023.1175509
    Numerous generations have been affected by hunger, which still affects hundreds of millions of people worldwide. The hunger crisis is worsening although many efforts have been made to minimize it. Besides that, food waste is one of the critical problems faced by most countries worldwide. It has disrupted the food chain system due to inefficient waste management, while negatively impacting the environment. The majority of the waste is from the food production process, resulting in a net zero production for food manufacturers while also harnessing its potential. Most food production wastes are high in nutritional and functional values, yet most of them end up as low-cost animal feed and plant fertilizers. This review identified key emerging wastes from the production line of mushroom, peanut, and soybean (MPS). These wastes (MPS) provide a new source for food conversion due to their high nutritional content, which contributes to a circular economy in the post-pandemic era and ensures food security. In order to achieve carbon neutrality and effective waste management for the production of alternative foods, biotechnological processes such as digestive, fermentative, and enzymatic conversions are essential. The article provides a narrative action on the critical potential application and challenges of MPS as future foods in the battle against hunger.
    Matched MeSH terms: Refuse Disposal*
  6. Abubakar Z, Salema AA, Ani FN
    Bioresour Technol, 2013 Jan;128:578-85.
    PMID: 23211483 DOI: 10.1016/j.biortech.2012.10.084
    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications.
    Matched MeSH terms: Refuse Disposal/instrumentation*
  7. C.H. Asmawati, M.R. Ahmad Ruslan, Y. Zulkiflee, M.N.N. Husna
    ASM Science Journal, 2013;7(2):113-117.
    MyJurnal
    Nowadays, construction and demolition waste has become a major issue to environmental problems faced by many countries. This concern comes from the inefficiencies of waste management which includes the waste generated from construction and demolition activities. In Malaysia, there is a lack of database records on construction waste and this has affected proper management planning of the waste. As there is a lack of policy on construction waste management, control on construction waste disposal is very hazy and this has aggravated environmental problems and exhausted landfill usage and increased illegal dumping. This paper reviews the critical issues on construction waste management and also discusses several estimation models on construction waste generation from several countries. Based on the review, most of the countries faced problems regarding construction waste management and the models developed were considered as one of the methods which could be adopted for better management of construction wastes.
    Matched MeSH terms: Refuse Disposal
  8. Hannan MA, Abdulla Al Mamun M, Hussain A, Basri H, Begum RA
    Waste Manag, 2015 Sep;43:509-23.
    PMID: 26072186 DOI: 10.1016/j.wasman.2015.05.033
    In the backdrop of prompt advancement, information and communication technology (ICT) has become an inevitable part to plan and design of modern solid waste management (SWM) systems. This study presents a critical review of the existing ICTs and their usage in SWM systems to unfold the issues and challenges towards using integrated technologies based system. To plan, monitor, collect and manage solid waste, the ICTs are divided into four categories such as spatial technologies, identification technologies, data acquisition technologies and data communication technologies. The ICT based SWM systems classified in this paper are based on the first three technologies while the forth one is employed by almost every systems. This review may guide the reader about the basics of available ICTs and their application in SWM to facilitate the search for planning and design of a sustainable new system.
    Matched MeSH terms: Refuse Disposal/methods*
  9. Yong ZJ, Bashir MJK, Ng CA, Sethupathi S, Lim JW
    J Environ Manage, 2018 Jan 01;205:244-252.
    PMID: 28987987 DOI: 10.1016/j.jenvman.2017.09.068
    The increase in landfill leachate generation is due to the increase of municipal solid waste (MSW) as global development continues. Landfill leachate has constantly been the most challenging issue in MSW management as it contains high amount of organic and inorganic compounds that might cause pollution to water resources. Biologically treated landfill leachate often fails to fulfill the regulatory discharge standards. Thus, to prevent environmental pollution, many landfill leachate treatment plants involve multiple stages treatment process. The Papan Landfill in Perak, Malaysia currently has no proper leachate treatment system. In the current study, sequential treatment via sequencing batch reactor (SBR) followed by coagulation was used to treat chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), total suspended solids (TSS), and colour from raw landfill leachate. SBR optimum aeration rate, L/min, optimal pH and dosage (g/L) of Alum for coagulation as a post-treatment were determined. The two-step sequential treatment by SBR followed by coagulation (Alum) achieved a removal efficiency of 84.89%, 94.25%, 91.82% and 85.81% for COD, NH3-N, TSS and colour, respectively. Moreover, the two-stage treatment process achieved 95.0% 95.0%, 95.3%, 100.0%, 87.2%, 62.9%, 50.0%, 41.3%, 41.2, 34.8, and 22.9 removals of Cadmium, Lead, Copper, Selenium, Barium, Iron, Silver, Nickel, Zinc, Arsenic, and Manganese, respectively.
    Matched MeSH terms: Refuse Disposal*
  10. Sommer SG, Mathanpaal G, Dass GT
    Environ Technol, 2005 Mar;26(3):303-12.
    PMID: 15881027
    On commercial pig production farms in South East (SE) Asia, the liquid effluent is often discharged into rivers. The discharge is a hazard to the environment and to the health of people using water from the river either for consumption or for irrigation. Therefore, a simple percolation biofilter for treatment of the liquid effluent was developed. Pig slurry was treated in test-biofilters packed with different biomass for the purpose of selecting the most efficient material, thereafter the efficiency of the biofilter was examined at farm scale with demo biofilters using the most efficient material. The effect of using "Effective Microorganisms" (EM) added to slurry that was treated with biofilter material mixed with Glenor KR+ was examined. Slurry treatment in the test-biofilters indicated that rice straw was better than coconut husks, wood shavings, rattan strips and oil palm fronds in reducing BOD. Addition of EM and Glenor KR+ to slurry and biofilter material, respectively, had no effect on the temperature of the biofilter material or on the concentrations of organic and inorganic components of the treated slurry. The BOD of slurry treated in test biofilters is reduced to between 80 and 637 mg O2 I(-1) and in the demo biofilter to between 3094 and 3376 mg O2 l(-1). The concentration of BOD in the effluent is related to the BOD in the slurry being treated and the BOD concentration in slurry treated in test biofilters was lower than BOD of slurry treated in demo biofilters. The demo biofilter can reduce BOD to between 52 an 56% of the original value, and TSS, COD (chemical oxygen demand) and ammonium (NH4+) to 41-55% of the original slurry. The treated effluent could not meet the standards for discharge to rivers. The composted biofilter material has a high content of nitrogen and phosphorus; consequently, the fertilizer value of the compost is high. The investments costs were 123 US dollar per SPP which has to be reduced if this method should be a treatment option in practise.
    Matched MeSH terms: Refuse Disposal/methods*
  11. Kurniawan TA, Lo W, Singh D, Othman MHD, Avtar R, Hwang GH, et al.
    Environ Pollut, 2021 May 15;277:116741.
    PMID: 33652179 DOI: 10.1016/j.envpol.2021.116741
    Recently Xiamen (China) has encountered various challenges of municipal solid waste management (MSWM) such as lack of a complete garbage sorting and recycling system, the absence of waste segregation between organic and dry waste at source, and a shortage of complete and clear information about the MSW generated. This article critically analyzes the existing bottlenecks in its waste management system and discusses the way forward for the city to enhance its MSWM by drawing lessons from Hong Kong's effectiveness in dealing with the same problems over the past decades. Solutions to the MSWM problem are not only limited to technological options, but also integrate environmental, legal, and institutional perspectives. The solutions include (1) enhancing source separation and improving recycling system; (2) improving the legislation system of the MSWM; (3) improvement of terminal disposal facilities in the city; (4) incorporating digitization into MSWM; and (5) establishing standards and definitions for recycled products and/or recyclable materials. We also evaluate and compare different aspects of MSWM in Xiamen and Hong Kong SAR (special administrative region) under the framework of 'One Country, Two Systems' concerning environmental policies, generation, composition, characteristics, treatment, and disposal of their MSW. The nexus of society, economics of the MSW, and the environment in the sustainability sphere are established by promoting local recycling industries and the standardization of recycled products and/or recyclable materials. The roles of digitization technologies in the 4th Industrial Revolution for waste reduction in the framework of circular economy (CE) are also elaborated. This technological solution may improve the city's MSWM in terms of public participation in MSW separation through reduction, recycle, reuse, recovery, and repair (5Rs) schemes. To meet top-down policy goals such as a 35% recycling rate for the generated waste by 2030, incorporating digitization into the MSWM provides the city with technology-driven waste solutions.
    Matched MeSH terms: Refuse Disposal*
  12. Chew KW, Chia SR, Chia WY, Cheah WY, Munawaroh HSH, Ong WJ
    Environ Pollut, 2021 Mar 01;278:116836.
    PMID: 33689952 DOI: 10.1016/j.envpol.2021.116836
    The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and environmental issues caused by civilization and industrialization. The processes use hazardous waste materials including waste tires, plastic and medical waste, and biomass waste such as livestock waste and agricultural waste as feedstock to produce gas, char and pyrolysis oil for energy production. Usage of hazardous materials as pyrolysis and co-pyrolysis feedstock reduces disposal of harmful substances into environment, reducing occurrence of soil and water pollution, and substituting the non-renewable feedstock, fossil fuels. As compared to combustion, pyrolysis and co-pyrolysis have less emission of air pollutants and act as alternative options to landfill disposal and incineration for hazardous materials and biomass waste. Hence, stabilizing heavy metals and solving the energy and waste management problems. This review discusses the pyrolysis and co-pyrolysis of biomass and harmful wastes to strive towards circular economy and eco-friendly, cleaner energy with minimum waste disposal, reducing negative impact on the planet and creating future possibilities.
    Matched MeSH terms: Refuse Disposal
  13. Alam MZ, Muyibi SA, Mansor MF, Wahid R
    J Environ Sci (China), 2007;19(1):103-8.
    PMID: 17913162
    Activated carbons derived from oil palm empty fruit bunches (EFB) were investigated to find the suitability of its application for removal of phenol in aqueous solution through adsorption process. Two types of activation namely; thermal activation at 300, 500 and 800 degrees C and physical activation at 150 degrees C (boiling treatment) were used for the production of the activated carbons. A control (untreated EFB) was used to compare the adsorption capacity of the activated carbons produced from these processes. The results indicated that the activated carbon derived at the temperature of 800 degrees C showed maximum absorption capacity in the aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon at 800 degrees C. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data fitted better with the Freundlich adsorption isotherm compared to the Langmuir. Kinetic studies of phenol adsorption onto activated carbons were also studied to evaluate the adsorption rate. The estimated cost for production of activated carbon from EFB was shown in lower price (USD 0.50/kg of activated carbon) compared the activated carbon from other sources and processes.
    Matched MeSH terms: Refuse Disposal
  14. Sujá F, Yusof A, Osman MA
    Water Sci Technol, 2010;61(2):389-96.
    PMID: 20107265 DOI: 10.2166/wst.2010.825
    Leachate samples collected from the Ampar Tenang open dumping site at Dengkil, Malaysia, were analyzed for acute toxicity. Two in vivo toxicity tests, Acute Oral Toxicity (AOT) and Primary Skin Irritation (PSI), were performed using Sprague Dawley rats and New Zealand Albino rabbits, respectively. The leachate samples were also analyzed chemically for nitrate and phosphate, ammonia-nitrogen, Kjeldahl-nitrogen and Chemical Oxygen Demand (COD). Results from both the AOT and PSI tests showed that the leachate did not contribute to acute toxicity. The AOT test yielded a negative result: no effect was observed in at least half of the rat population. The PSI test on rabbits produced effects only at a leachate concentration of 100%. However, the skin irritation was minor, and the test returned a negative result. The four chemical tests showed high levels of nutrient pollution in the leachate. The nitrate and phosphate concentrations were 2.1 mg/L and 23.6 mg/L, respectively. Further, the ammonia-nitrogen concentration was 1,000 mg NH(3)-N/L the Kjeldahl-nitrogen level was 446 mg NH(3)-N/L, and the Chemical Oxygen Demand was 1,300 mg/L. The in vivo toxicity and chemical analyses showed that the leachate is polluted but not acutely toxic to organisms.
    Matched MeSH terms: Refuse Disposal/methods*
  15. Halim AA, Aziz HA, Johari MA, Ariffin KS, Adlan MN
    J Hazard Mater, 2010 Mar 15;175(1-3):960-4.
    PMID: 19945216 DOI: 10.1016/j.jhazmat.2009.10.103
    The performance of a carbon-mineral composite adsorbent used in a fixed bed column for the removal of ammoniacal nitrogen and aggregate organic pollutant (COD), which are commonly found in landfill leachate, was evaluated. The breakthrough capacities for ammoniacal nitrogen and COD adsorption were 4.46 and 3.23 mg/g, respectively. Additionally, the optimum empty bed contact time (EBCT) was 75 min. The column efficiency for ammoniacal nitrogen and COD adsorption using fresh adsorbent was 86.4% and 92.6%, respectively, and these values increased to 90.0% and 93.7%, respectively, after the regeneration process.
    Matched MeSH terms: Refuse Disposal/methods*
  16. Liang Y, Tan Q, Song Q, Li J
    Waste Manag, 2021 Jan 01;119:242-253.
    PMID: 33091837 DOI: 10.1016/j.wasman.2020.09.049
    It is well known that Asia generates and receives large quantities of plastic waste. Through a detailed study of plastic waste generation and trade, the management and treatment of plastic waste in Asia were analyzed from the regional perspective. The amounts of plastic waste in municipal solid waste and in industrial solid waste were estimated to be 79 Mt and 42 Mt, respectively, in Asia. The overall treatment and recycling status in Asia are unsatisfactory. Asia imported 74% of the plastic waste in the world in 2016, and China (mainland) imported the most plastic waste until 2017, with 5.8 to 8.3 Mt. In 2017, about half the plastic waste imported by Asia came from other regions, and after subtracting the exported quantity, 98% of the plastic waste was left in Asia for treatment and disposal. The plastic waste imported by Asia declined about 72% in monetary value in 2018. There is still a large gap between the plastic waste quantity imported to Asia and that exported from Asia. China's ban of plastic waste imports caused import quantities to drop to 52 kt in 2018, simultaneously, exports from the largest exporting countries or regions such as Hong Kong (China), the USA, Japan, and Germany decreased. While Vietnam, Malaysia and some other Asian countries and regions saw significant increases in plastic waste imports from 2016 to 2018. Considering this situation, countries in Asia are starting to strictly limit plastic waste imports from other countries.
    Matched MeSH terms: Refuse Disposal*
  17. Hannan MA, Arebey M, Begum RA, Basri H
    Waste Manag, 2012 Dec;32(12):2229-38.
    PMID: 22749722 DOI: 10.1016/j.wasman.2012.06.002
    An advanced image processing approach integrated with communication technologies and a camera for waste bin level detection has been presented. The proposed system is developed to address environmental concerns associated with waste bins and the variety of waste being disposed in them. A gray level aura matrix (GLAM) approach is proposed to extract the bin image texture. GLAM parameters, such as neighboring systems, are investigated to determine their optimal values. To evaluate the performance of the system, the extracted image is trained and tested using multi-layer perceptions (MLPs) and K-nearest neighbor (KNN) classifiers. The results have shown that the accuracy of bin level classification reach acceptable performance levels for class and grade classification with rates of 98.98% and 90.19% using the MLP classifier and 96.91% and 89.14% using the KNN classifier, respectively. The results demonstrated that the system performance is robust and can be applied to a variety of waste and waste bin level detection under various conditions.
    Matched MeSH terms: Refuse Disposal/methods*
  18. Lin Z, Ooi JK, Woon KS
    Sci Total Environ, 2022 Apr 10;816:151541.
    PMID: 34774629 DOI: 10.1016/j.scitotenv.2021.151541
    Food waste is a universal problem in many countries. In line with Sustainable Development Goals 7 and 12, it is crucial to identify a cost-effective food waste valorization management framework with the least human health and environmental impacts. However, studies on the synergistic effect of life cycle assessment and mathematical optimization interconnected with human health, environment, and economic are relatively few and far between; hence they cannot provide holistic recommendations to policymakers in developing environmental and economic feasibility of food waste management frameworks. Taking Malaysia as a case study, this study proposes a simple and deterministic model that integrates life cycle assessment and multi-objective mathematical optimization to unpack the health-environment-economic wellbeing nexus in food waste management sector. The model evaluates the life cycle human health, environmental, and economic impacts of five food waste disposal and valorization technologies: open landfill, sanitary landfill, aerated windrow composting, high-temperature drying sterilization, and anaerobic digestion, and identifies the optimal food waste valorization configuration solution in Malaysia. Based on the results modeled by SimaPro 9.0 and General Algebraic Modeling System with augmented ε-constraint, valorization of food waste into electricity via anaerobic digestion is the most favorable option, with 146% and 161% reduction of human health and ecosystems, respectively, as compared with open landfill. If cost is combined as an objective function with human health and ecosystems, high-temperature drying sterilization is the most attractive scenario due to the high livestock feed revenue. Among the 10 Pareto-optimal solutions, 9% sanitary landfill, 3% aerated windrow composting, 30% high-temperature drying sterilization, 30% anaerobic digestion to electricity, and 28% anaerobic digestion to cooking gas, is recommended as future food waste management configuration. The sensitivity results demonstrate that prices of electricity, cooking gas, and livestock feed affect the optimal configuration food waste management system.
    Matched MeSH terms: Refuse Disposal*
  19. Foo KY, Hameed BH
    J Hazard Mater, 2009 Nov 15;171(1-3):54-60.
    PMID: 19577363 DOI: 10.1016/j.jhazmat.2009.06.038
    Water scarcity and pollution rank equal to climate change as the most urgent environmental issue for the 21st century. To date, the percolation landfill leachate into the groundwater tables and aquifer systems which poses a potential risk and potential hazards towards the public health and ecosystems, remains an aesthetic concern and consideration abroad the nations. Arising from the steep enrichment of globalization and metropolitan growth, numerous mitigating approaches and imperative technologies have currently drastically been addressed and confronted. Confirming the assertion, this paper presents a state of art review of leachate treatment technologies, its fundamental background studies, and environmental implications. Moreover, the key advance of activated carbons adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons adsorption represents a potentially viable and powerful tool, leading to the superior improvement of environmental conservation.
    Matched MeSH terms: Refuse Disposal
  20. Kamaruddin MA, Yusoff MS, Rui LM, Isa AM, Zawawi MH, Alrozi R
    Environ Sci Pollut Res Int, 2017 Dec;24(35):26988-27020.
    PMID: 29067615 DOI: 10.1007/s11356-017-0303-9
    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.
    Matched MeSH terms: Refuse Disposal/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links