Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Abdulwanis Mohamed Z, Mohamed Eliaser E, Mazzon E, Rollin P, Cheng Lian Ee G, Abdull Razis AF
    Molecules, 2019 Aug 27;24(17).
    PMID: 31461914 DOI: 10.3390/molecules24173109
    Plant natural compounds have great potential as alternative medicines for preventing and treating diseases. Melicope lunu-ankenda is one Melicope species (family Rutaceae), which is widely used in traditional medicine, consumed as a salad and a food seasoning. Consumption of different parts of this plant has been reported to exert different biological activities such as antioxidant and anti-inflammatory qualities, resulting in a protective effect against several health disorders including neurodegenerative diseases. Various secondary metabolites such as phenolic acid derivatives, flavonoids, coumarins and alkaloids, isolated from the M. lunu-ankenda plant, were demonstrated to have neuroprotective activities and also exert many other beneficial biological effects. A number of studies have revealed different neuroprotective mechanisms for these secondary metabolites. This review summarizes the most significant and recent studies for neuroprotective activity of M. lunu-ankenda major secondary metabolites in neurodegenerative diseases.
    Matched MeSH terms: Rutaceae/chemistry*
  2. Abdulwanis Mohamed Z, Mohamed Eliaser E, Jaafaru MS, Nordin N, Ioannides C, Abdull Razis AF
    Molecules, 2020 Aug 15;25(16).
    PMID: 32824120 DOI: 10.3390/molecules25163724
    Neurodegenerative diseases (NDDs) are chronic conditions that have drawn robust interest from the scientific community. Phytotherapeutic agents are becoming an important source of chemicals for the treatment and management of NDDs. Various secondary metabolites have been isolated from Melicope lunu-ankenda plant leaves, including phenolic acid derivatives. However, their neuroprotective activity remains unclear. Thus, the aim of this study is to elucidate the in vitro neuroprotective activity of 7-geranyloxycinnamic acid isolated from Melicope lunu-ankenda leaves. The neuroprotective activity was evaluated in differentiated human neuroblastoma (SH-SY5Y) cells by monitoring cell viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Moreover, the potential to impair apoptosis in differentiated cells was investigated employing the Annexin V-FITC assay, acridine orange and propidium iodide (AO/PI) staining, and fluorescence microscopy. Morphological assessment and ultrastructural analysis were performed using scanning and transmission electron microscopy to evaluate the effect of 7-geranyloxycinnamic acid on surface morphology and internal features of the differentiated cells. Pre-treatment of neuronal cells with 7-geranyloxycinnamic acid significantly protected the differentiated SH-SY5Y cells against H2O2-induced apoptosis. Cytoskeleton and cytoplasmic inclusion were similarly protected by the 7-geranyloxycinnamic acid treatment. The present findings demonstrate the neuroprotective potential of 7-geranyloxycinnamic acid against H2O2-induced neurotoxicity in neuronal cells, which is an established hallmark of neuronal disorders.
    Matched MeSH terms: Rutaceae/chemistry*
  3. Yahayu MA, Rahmani M, Hashim NM, Amin MA, Ee GC, Sukari MA, et al.
    Molecules, 2011 May 27;16(6):4401-7.
    PMID: 21623311 DOI: 10.3390/molecules16064401
    Extraction and chromatographic separation of the extracts of dried stem barks of Glycosmis macrantha lead to isolation of two new acridone alkaloids, macranthanine and 7-hydroxynoracronycine, and a known acridone, atalaphyllidine. The structures of these alkaloids were determined by detailed spectral analysis and also by comparison with reported data.
    Matched MeSH terms: Rutaceae/chemistry*
  4. Kassim NK, Rahmani M, Ismail A, Sukari MA, Ee GC, Nasir NM, et al.
    Food Chem, 2013 Aug 15;139(1-4):87-92.
    PMID: 23561082 DOI: 10.1016/j.foodchem.2013.01.108
    The ethyl acetate and methanol bark extracts of Melicope glabra were evaluated for their antioxidant capacities by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and β-carotene bleaching/linoleic acid system. Both extracts exhibited strong inhibition against the DPPH radical (IC50 values of 24.81 and 13.01 μg ml(-1), respectively) and strong antioxidant activity in β-carotene bleaching assay. Both samples were found to have high phenolic content with values of 39 and 44 mg GAE/g as indicated by Follin-Ciocalteau's reagent. Antioxidant TLC assay-guided isolation on the methanol extract led to the isolation of a new pyranocoumarin, glabranin (1), umbelliferone (2), scopoletin (3) and sesamin (4), and their structures were determined by spectroscopy. Compounds (1-3) showed significant activities on DPPH free radical with the IC50 of 240.20, 810.02 and 413.19 μg ml(-1), respectively. However, in β-carotene bleaching assay, sesamin (4) showed higher inhibitory activity (1 mg ml(-1), 95%) than glabranin (1) (1 mg ml(-1), 74%), whilst umbelliferone (2) and scopoletin (3) were slightly pro-oxidant.
    Matched MeSH terms: Rutaceae/chemistry*
  5. Kassim NK, Lim PC, Ismail A, Awang K
    Food Chem, 2019 Jan 30;272:185-191.
    PMID: 30309531 DOI: 10.1016/j.foodchem.2018.08.045
    The application of preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography technique successfully isolated a lignan sesamin (1), two prenylated coumarins (2 and 3) and a marmesin glycosides (4) from Micromelum minutum methanol bark extract. Compounds 2 and 3 were identified as new compounds whereas 1 and 4 were first isolated from Micromelum genus. Structural identification of all compounds were done by detailed spectroscopic analyses and comparison with literature data. Antioxidant capacities of extract, active fraction and compounds were measured based on DPPH free radical savenging activity, oxygen radical absorbance capacity (ORAC) and β-carotene bleaching. The DPPH activity of methanol extract and its fraction present the IC50 values of 54.3 and 168.9 µg/mL meanwhile the β-carotene bleaching results were 55.19% and 5.75% respectively. The ORAC measurements of M. minutum extract, compounds 2 and 4 showed potent antioxidant activity with the values of 5123, 5539 and 4031 µmol TE/g respectively.
    Matched MeSH terms: Rutaceae/chemistry*
  6. Quek A, Kassim NK, Lim PC, Tan DC, Mohammad Latif MA, Ismail A, et al.
    Pharm Biol, 2021 Dec;59(1):964-973.
    PMID: 34347568 DOI: 10.1080/13880209.2021.1948065
    CONTEXT: Melicope latifolia (DC.) T. G. Hartley (Rutaceae) was reported to contain various phytochemicals including coumarins, flavonoids, and acetophenones.

    OBJECTIVE: This study investigates the antidiabetic and antioxidant effects of M. latifolia bark extracts, fractions, and isolated constituents.

    MATERIALS AND METHODS: Melicope latifolia extracts (hexane, chloroform, and methanol), fractions, and isolated constituents with varying concentrations (0.078-10 mg/mL) were subjected to in vitro α-amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory assay. Molecular docking was performed to study the binding mechanism of active compounds towards α-amylase and DPP-4 enzymes. The antioxidant activity of M. latifolia fractions and compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and β-carotene bleaching assays.

    RESULTS: Melicope latifolia chloroform extract showed the highest antidiabetic activity (α-amylase IC50: 1464.32 μg/mL; DPP-4 IC50: 221.58 μg/mL). Fractionation of chloroform extract yielded four major fractions (CF1-CF4) whereby CF3 showed the highest antidiabetic activity (α-amylase IC50: 397.68 μg/mL; DPP-4 IC50: 37.16 μg/mL) and resulted in β-sitosterol (1), halfordin (2), methyl p-coumarate (3), and protocatechuic acid (4). Isolation of compounds 2-4 from the species and their DPP-4 inhibitory were reported for the first time. Compound 2 showed the highest α-amylase (IC50: 197.53 μM) and β-carotene (88.48%) inhibition, and formed the highest number of molecular interactions with critical amino acid residues of α-amylase. The highest DPP-4 inhibition was exhibited by compound 3 (IC50: 911.44 μM).

    DISCUSSION AND CONCLUSIONS: The in vitro and in silico analyses indicated the potential of M. latifolia as an alternative source of α-amylase and DPP-4 inhibitors. Further pharmacological studies on the compounds are recommended.

    Matched MeSH terms: Rutaceae/chemistry*
  7. George S, Ajikumaran Nair S, Johnson AJ, Venkataraman R, Baby S
    J Ethnopharmacol, 2015 Jun 20;168:158-63.
    PMID: 25858510 DOI: 10.1016/j.jep.2015.03.060
    Melicope lunu-ankenda leaves are used to treat diabetes in folklore medicinal practices in India and Malaysia. Here we report the isolation of an O-prenylated flavonoid (3,5,4'-trihydroxy-8,3'-dimethoxy-7-(3-methylbut-2-enoxy)flavone; OPF) from the leaves of M. lunu-ankenda and its antidiabetes activity against type-2 diabetes mellitus (T2DM).
    Matched MeSH terms: Rutaceae*
  8. Tan LY, Yin WF, Chan KG
    Sensors (Basel), 2012;12(4):4339-51.
    PMID: 22666033 DOI: 10.3390/s120404339
    Quorum sensing regulates bacterial virulence determinants, therefore making it an interesting target to attenuate pathogens. In this work, we screened edible, endemic plants in Malaysia for anti-quorum sensing properties. Extracts from Melicope lunu-ankenda (Gaertn.) T. G. Hartley, a Malay garden salad, inhibited response of Chromobacterium violaceum CV026 to N-hexanoylhomoserine lactone, thus interfering with violacein production; reduced bioluminescence expression of E. coli [pSB401], disrupted pyocyanin synthesis, swarming motility and expression of lecA::lux of Pseudomonas aeruginosa PAO1. Although the chemical nature of the anti-QS compounds from M. lunu-ankenda is currently unknown, this study proves that endemic Malaysian plants could serve as leads in the search for anti-quorum sensing compounds.
    Matched MeSH terms: Rutaceae/chemistry*
  9. Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, et al.
    J Ethnopharmacol, 2021 May 10;271:113887.
    PMID: 33539951 DOI: 10.1016/j.jep.2021.113887
    ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever.

    AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages.

    MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS.

    RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin.

    CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.

    Matched MeSH terms: Rutaceae/chemistry*
  10. Norazsida Binti Ramli, Nur Elia Amira Mohd Roslin, Deny Susanti
    MyJurnal
    World Health Organization (WHO) estimated over 100 million dengue infections to happen annually worldwide involving more than 2.5 billion people. Temephos or abate is a larvicide that has been used in vector control to eradicate mosquito larvae. Though practically low risk, there had been resistance problem reported with continuous use. This study seeks to find an effective and safer alternative to abate by assessing the use of ethanolic extract of Murraya koenigii leaves as larvicidal agent against Aedes aegypti. M.koenigii leaves were macerated for 3 days with absolute ethanol and evaporated using rotary vapor to produce the crude extract. The crude extract was subjected to phytochemical screening using standard qualitative method. For bioassay, the crude
    extract underwent a serial dilution to produce 3 concentrations of 100 ppm (C1), 50 ppm (C2) and 10 ppm (C3) with abate and absolute ethanol as negative and positive control respectively. Bioassay for larvicidal effect was conducted in accordance to WHO standard method. Phytochemical screening of ethanolic extract of M. koenigii leaves revealed the presence of alkaloid, steroid and saponin. The bioassay shows that after 24 hours, the mortality rate of C1, C2 and C3 larvae were 100%, 38% and 0% and when further extended to 48 hours, the rate increased to 100% and 46% for C2 and C3 respectively. The LC50 and LC99 post 24 hours were 54.489 ppm and 93.961 ppm respectively whilst at post 48 hours, the LC50 and LC99 were 10.263 ppm and 16.176 ppm respectively. The results show that up to 48 hours duration of exposure, the mortality
    rate increase whilst the lethal concentration (LC50 and LC99) decreases. Upon examination on larvae deformities at post 24 and 48 hours, all test concentrations and negative control exhibit normal morphology. Positive control, however, exhibit deformities characterized by twisted and fragmented insides. When statistically analyzed, C1 larvicidal activity was proven comparable with abate at 24 hours while C2 needed 48 hours exposure to be on par. Based on the results, it could be argued that the ethanolic extract of M.koenigii leaves does hold promising value to be further developed as larvicidal.
    Matched MeSH terms: Rutaceae
  11. Ramli I, Kamarulzaman NH, Shaari K, Ee GC
    Nat Prod Res, 2004 Aug;18(4):289-94.
    PMID: 15214478
    Leaf extracts of Melicope lunu-ankenda were chemically studied and found to contain mixtures of hydrocarbons and squalene, fatty acids and esters. A geranylated coumaric acid was isolated as the major compound. The crude dichloromethane and methanol extracts of the leaves were found to be strongly larvicidal with LC50 values below 20 microg mL(-1). This is a first isolation of p-O-geranylcoumaric acid from this plant.
    Matched MeSH terms: Rutaceae*
  12. Suzana Shahar, Kim, Tiu Teng, Nor Fadilah Rajab, Fatimah Arshad
    MyJurnal
    A preliminary study was conducted to determine the level of oxidative DNA damage, fruits and vegetables intake among 50 breast cancer patients (cases) as compared to 50 healthy women (controls) with no known medical history of breast cancer in Klang Valley. Both groups were matched for age and ethnicity. Data on socio-demographic, health status and medical history, fruits and vegetables intake, and supplements intake were obtained through an interviewbased questionnaire. Anthropometry measurements included weight, height, and waist and hip circumference were also carried out on subjects. A total of 3mL fasting venous blood was drawn to assess lymphocytes oxidative DNA damage using Alkaline Comet Assay. Results indicated that the mean intake of fruits and vegetables was lower in cases (4.09 ± 1.17 servings/d) than controls (4.77 ± 0.90 servings/d)(p < 0.05) The intake of fruits and vegetables from family groups of solanaceae, myrtaceae, caricaceae, apiaceae, brinjal, rutaceae, broccoli, orange, carrot, watermelon were 0.5 - 1 servings/week significantly higher among controls as compared to cases (p < 0.05 for all parameters). However, the intake of fruits from rosaceae family and apple was higher among controls than cases (p < 0.05). The estimated intake of ß-carotene, carotenoids, vitamin A, vitamin C (p < 0.001), a-carotene and lycopene (p < 0.05) from fruits and vegetables were higher among controls than cases. Mean DNA damage level of cases (4.55 ± 1.78 % DNA in tail, %TD; 0.35 ± 0.21 tail moment, TM) were 3.5 and 3.9 times higher than the value of controls (1.3 ± 0.70% TD; 0.09 ± 0.09 TM) (p < 0.001) and the damage increased with higher values of waist hip ratio (% TD, r = 0.396, p < 0.05; TM, r = 0.349, p < 0.05) and waist circumference (% TD, r = 0.334, p < 0.05; TM, r = 0.360, p < 0.05). There was an inverse relationship between oxidative DNA damage with intake of total fruits and vegetables, cauliflowers and water convolvulus and also consumption from rutaceae and solanaceae families. Similar trend was noted for estimated intake of vitamin A, carotenoids, vitamin C, ß-carotene and lycopene. In conclusion, the intake of fruits and vegetables of five servings/d and the consumption of specific families and types of fruits and vegetables might protect against oxidative DNA damage and further reduce breast cancer risk.
    Matched MeSH terms: Rutaceae
  13. Epifano F, Fiorito S, Genovese S
    Phytochemistry, 2013 Nov;95:12-8.
    PMID: 23920228 DOI: 10.1016/j.phytochem.2013.07.013
    The genus Acronychia (Rutaceae) comprise 44 species, most of which are represented by shrubs and small trees, distributed in a wide geographical area of South-Eastern Asia comprising China, India, Malaysia, Indonesia, Australia, and the islands of the western Pacific Ocean. Most of the species of the genus Acronychia have been used for centuries as natural remedies in the ethnomedical traditions of indigenous populations as anti-microbial, anti-fungal, anti-spasmodic, stomachic, anti-pyretic, and anti-haemorragic agent. Moreover fruits and aerial parts are used as food in salads and condiments, while the essential oil obtained from flowers and leaves has been employed in cosmetics production. Phytochemicals isolated from Acronychia spp. include acetophenones, quinoline and acridone alkaloids, flavonoids, cinnamic acids, lignans, coumarins, steroids, and triterpenes. The reported biological activities of the above mentioned natural compounds refer to anti-plasmodial, anti-cancer, anti-oxidant, anti-inflammatory, anti-fungal, and neuroprotective effects. The aim of this review is to examine in detail from a phytochemical and pharmacologically point of view what is reported in the current literature about the properties of phytopreparations or individual active principles obtained from plants belonging to the Acronychia genus.
    Matched MeSH terms: Rutaceae/chemistry*
  14. Kabir MF, Mohd Ali J, Haji Hashim O
    PeerJ, 2018;6:e5203.
    PMID: 30042885 DOI: 10.7717/peerj.5203
    Background: We have previously reported anticancer activities of Melicope ptelefolia (MP) leaf extracts on four different cancer cell lines. However, the underlying mechanisms of actions have yet to be deciphered. In the present study, the anticancer activity of MP hexane extract (MP-HX) on colorectal (HCT116) and hepatocellular carcinoma (HepG2) cell lines was characterized through microarray gene expression profiling.

    Methods: HCT116 and HepG2 cells were treated with MP-HX for 24 hr. Total RNA was extracted from the cells and used for transcriptome profiling using Applied Biosystem GeneChip™ Human Gene 2.0 ST Array. Gene expression data was analysed using an Applied Biosystems Expression Console and Transcriptome Analysis Console software. Pathway enrichment analyses was performed using Ingenuity Pathway Analysis (IPA) software. The microarray data was validated by profiling the expression of 17 genes through quantitative reverse transcription PCR (RT-qPCR).

    Results: MP-HX induced differential expression of 1,290 and 1,325 genes in HCT116 and HepG2 cells, respectively (microarray data fold change, MA_FC ≥ ±2.0). The direction of gene expression change for the 17 genes assayed through RT-qPCR agree with the microarray data. In both cell lines, MP-HX modulated the expression of many genes in directions that support antiproliferative activity. IPA software analyses revealed MP-HX modulated canonical pathways, networks and biological processes that are associated with cell cycle, DNA replication, cellular growth and cell proliferation. In both cell lines, upregulation of genes which promote apoptosis, cell cycle arrest and growth inhibition were observed, while genes that are typically overexpressed in diverse human cancers or those that promoted cell cycle progression, DNA replication and cellular proliferation were downregulated. Some of the genes upregulated by MP-HX include pro-apoptotic genes (DDIT3, BBC3, JUN), cell cycle arresting (CDKN1A, CDKN2B), growth arrest/repair (TP53, GADD45A) and metastasis suppression (NDRG1). MP-HX downregulated the expression of genes that could promote anti-apoptotic effect, cell cycle progression, tumor development and progression, which include BIRC5, CCNA2, CCNB1, CCNB2, CCNE2, CDK1/2/6, GINS2, HELLS, MCM2/10 PLK1, RRM2 and SKP2. It is interesting to note that all six top-ranked genes proposed to be cancer-associated (PLK1, MCM2, MCM3, MCM7, MCM10 and SKP2) were downregulated by MP-HX in both cell lines.

    Discussion: The present study showed that the anticancer activities of MP-HX are exerted through its actions on genes regulating apoptosis, cell proliferation, DNA replication and cell cycle progression. These findings further project the potential use of MP as a nutraceutical agent for cancer therapeutics.

    Matched MeSH terms: Rutaceae
  15. Goldsberry A, Dinner A, Hanke CW
    J Drugs Dermatol, 2014 Mar;13(3):306-7.
    PMID: 24595576
    Limonia acidissima or Hesperethusa crenulata is a common tree in Southeast Asia. It is indigenous to the Republic of Myanmar (formerly Burma) as well as India, Sri Lanka, Java, and Pakistan. In English, the common names for Limonia acidissima are sandalwood, wood-apple, elephant-apple, monkey fruit, and curd fruit tree. The plant has a number of different names in different languages including bal or bael in Assamese, bael in Bengali, kaitha in Hindi, belingai in Malaysia, and thanaka in Burmese. Unique to the Burmese people, thanaka has been used as a cosmetic product for over 2000 years. Mention of thanaka has been traced back to ancient Burmese lyrics, and relics of equipment used by ancient royalty to grind thanaka can be found in museums.
    Matched MeSH terms: Rutaceae/chemistry*
  16. Kabir MF, Mohd Ali J, Abolmaesoomi M, Hashim OH
    BMC Complement Altern Med, 2017 May 05;17(1):252.
    PMID: 28476158 DOI: 10.1186/s12906-017-1761-9
    BACKGROUND: Melicope ptelefolia is a well-known herb in a number of Asian countries. It is often used as vegetable salad and traditional medicine to address various ailments. However, not many studies have been currently done to evaluate the medicinal benefits of M. ptelefolia (MP). The present study reports antioxidant, anti-proliferative, and apoptosis induction activities of MP leaf extracts.

    METHOD: Young MP leaves were dried, powdered and extracted sequentially using hexane (HX), ethyl acetate (EA), methanol (MeOH) and water (W). Antioxidant activity was evaluated using ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radicals scavenging and cellular antioxidant activity (CAA) assays. Anti-proliferative activity was evaluated through cell viability assay, using the following four human cancer cell lines: breast (HCC1937, MDA-MB-231), colorectal (HCT116) and liver (HepG2). The anti-proliferative activity was further confirmed through cell cycle and apoptosis assays, including annexin-V/7-aminoactinomycin D staining and measurements of caspase enzymes activation and inhibition.

    RESULT: Overall, MP-HX extract exhibited the highest antioxidant potential, with IC50 values of 267.73 ± 5.58 and 327.40 ± 3.80 μg/mL for ABTS and DPPH radical-scavenging assays, respectively. MP-HX demonstrated the highest CAA activity in Hs27 cells, with EC50 of 11.30 ± 0.68 μg/mL, while MP-EA showed EC50 value of 37.32 ± 0.68 μg/mL. MP-HX and MP-EA showed promising anti-proliferative activity towards the four cancer cell lines, with IC50 values that were mostly below 100 μg/mL. MP-HX showed the most notable anti-proliferative activity against MDA-MB-231 (IC50 = 57.81 ± 3.49 μg/mL) and HCT116 (IC50 = 58.04 ± 0.96 μg/mL) while MP-EA showed strongest anti-proliferative activity in HCT116 (IC50 = 64.69 ± 0.72 μg/mL). The anticancer potential of MP-HX and MP-EA were also demonstrated by their ability to induce caspase-dependent apoptotic cell death in all of the cancer cell lines tested. Cell cycle analysis suggested that both the MP-HX and MP-EA extracts were able to disrupt the cell cycle in most of the cancer cell lines.

    CONCLUSIONS: MP-HX and MP-EA extracts demonstrated notable antioxidant, anti-proliferative, apoptosis induction and cancer cell cycle inhibition activities. These findings reflect the promising potentials of MP to be a source of novel phytochemical(s) with health promoting benefits that are also valuable for nutraceutical industry and cancer therapy.

    Matched MeSH terms: Rutaceae/chemistry*
  17. Hung Ho S, Wang J, Sim KY, Ee GC, Imiyabir Z, Yap KF, et al.
    Phytochemistry, 2003 Apr;62(7):1121-4.
    PMID: 12591266
    We screened more than 60 Malaysian plants against two species of insects and found that Melicope subunifoliolata (Stapf) T.G. Hartley (Rutaceae) showed strong feeding deterrent activity against Sitophilus zeamais Motsch. (Curculionidae) and very good larvicidal activity against Aedes aegypti L. (Diptera). One anti-insect compound, meliternatin (3,5-dimethoxy-3',4',6,7-bismethylendioxyflavone) (6) and six other minor polyoxygenated flavones were isolated from M. subunifoliolata.
    Matched MeSH terms: Rutaceae/chemistry*
  18. Lukaseder B, Vajrodaya S, Hehenberger T, Seger C, Nagl M, Lutz-Kutschera G, et al.
    Phytochemistry, 2009 May;70(8):1030-7.
    PMID: 19535116 DOI: 10.1016/j.phytochem.2009.05.007
    Fifteen prenylated or geranylated flavanones and flavanonols were isolated from the leaf extracts of different Glycosmis species collected in Thailand and Malaysia. All structures were elucidated by spectroscopic methods, especially 1D and 2D NMR. Six compounds were described for the first time and two were only known so far as synthetic products. The chemotaxonomic significance of flavanoid accumulation within the genus Glycosmis is highlighted.
    Matched MeSH terms: Rutaceae/chemistry*
  19. Chung LY, Yap KF, Goh SH, Mustafa MR, Imiyabir Z
    Phytochemistry, 2008 May;69(7):1548-54.
    PMID: 18334259 DOI: 10.1016/j.phytochem.2008.01.024
    The bark extract of Melicope subunifoliolata (Stapf) T.G. Hartley showed competitive muscarinic receptor binding activity. Six polymethoxyflavones [melibentin (1); melisimplexin (3); 3,3',4',5,7-pentamethoxyflavone (4); meliternatin (5); 3,5,8-trimethoxy-3',4',6,7-bismethylenedioxyflavone (6); and isokanugin (7)] and one furanocoumarin [5-methoxy-8-geranyloxypsoralen (2)] were isolated from the bark extract. Compounds 2 and 6 were isolated for the first time from M. subunifoliolata. The methoxyflavones (compounds 1, 3, 4, 5, 6, and 7) show moderate inhibition in a muscarinic receptor binding assay, while the furanocoumarin (compound 2) is inactive. The potency of the methoxyflavones to inhibit [(3)H]NMS-muscarinic receptor binding is influenced by the position and number of methoxy substitution. The results suggest these compounds are probably muscarinic modulators, agonists or partial agonists/antagonists.
    Matched MeSH terms: Rutaceae/chemistry*
  20. Lim PC, Ali Z, Khan IA, Khan SI, Kassim NK, Awang K, et al.
    Nat Prod Res, 2021 Feb 12.
    PMID: 33576269 DOI: 10.1080/14786419.2021.1885031
    An undescribed conjugated sesquiterpene, amelicarin (1), together with nine known compounds (2-10) were isolated for the first time from Melicope latifolia. Their structures were elucidated by extensive NMR spectroscopic and mass spectrometric methods. The conjugated sesquiterpene possesses a unique 6/6/9/4-ring fused tetracyclic skeleton. The proposed biosynthesis pathway of 1 consist of three reactions steps: (1) polyketide formation, (2) cyclisation and (3) addition to form the conjugated sesquiterpenoid as final metabolite. Out of the ten isolated metabolites, amelicarin (1) showed activity against 4 cancerous cell lines namely SK-MEL skin cancer, KB oral cancer, BT-549 breast cancer, and SK-OV-3 ovarian cancer with IC50 values between 15 and 25 µg/mL.
    Matched MeSH terms: Rutaceae
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links