METHODS: Patients with an admission diagnosis of suspected or confirmed infection and fulfilling at least two criteria for severe inflammatory response syndrome were included in this study. Patients' characteristics, vital signs, and laboratory values were used to identify prognostic factors for mortality. A scoring system was derived and validated. The primary outcome was the 28-day mortality rate.
RESULTS: A total of 440 patients were included in the study. The 28-day hospital mortality rate was 32.4 and 25.2% for the derivation (293 patients) and validation (147 patients) sets, respectively. Factors associated with a higher mortality were immune-suppressed state (odds ratio 4.7; 95% confidence interval 2.0-11.4), systolic blood pressure on arrival less than 90 mmHg (3.8; 1.7-8.3), body temperature less than 36.0°C (4.1; 1.3-12.9), oxygen saturation less than 90% (2.3; 1.1-4.8), hematocrit less than 0.38 (3.1; 1.6-5.9), blood pH less than 7.35 (2.0; 1.04-3.9), lactate level more than 2.4 mmol/l (2.27; 1.2-4.2), and pneumonia as the source of infection (2.7; 1.5-5.0). The area under the receiver operating characteristic curve was 0.81 (0.75-0.86) in the derivation and 0.81 (0.73-0.90) in the validation set. The SPEED (sepsis patient evaluation in the emergency department) score performed better (P=0.02) than the Mortality in Emergency Department Sepsis score when applied to the complete study population with an area under the curve of 0.81 (0.76-0.85) as compared with 0.74 (0.70-0.79).
CONCLUSION: The SPEED score predicts 28-day mortality in septic patients. It is simple and its predictive value is comparable to that of other scoring systems.
MATERIALS: Four hundred and ninety-five consecutive paediatric intensive care unit (PICU) admissions were analysed. multiple organ dysfunction syndrome was defined as simultaneous dysfunction of >/= 2 organ system and sepsis by the American College of Chest Physicians and Society of Critical Care Medicine Consensus Conference definition.
RESULTS: Eighty-four patients developed MODS. The incidence of sepsis, severe sepsis and septic shock in these patients was 10.7%, 23.8% and 17.9%, respectively. Worsening categories of sepsis were associated with: (1) a higher mean admission Paediatric Risk of Mortality (PRISM II): 36.6 +/- 25.9, 56.8 +/- 32.1 and 73.6 +/- 28.5%, respectively (P = 0. 005), (2) a larger number of organ dysfunctions: mean MODS index of 37%, 46% and 58%, respectively (P = 0.007), and (3) a higher mortality: 22.2%, 65% and 80%, respectively (P = 0.03).
CONCLUSION: Presence of sepsis, severe sepsis and septic shock was associated with an increasing severity of illness, increased number of organ dysfunctions and a distinct risk of mortality among critically ill children.
MATERIALS AND METHODS: This study was conducted at Chemical Pathology, Department of Pathology and Laboratory Medicine and Department of Medicine, Aga Khan University (AKU), Karachi Pakistan. Electronic medical records of all in-patients including both genders and all age groups with documented COVID-19 from March to August 2020 were reviewed and recorded on a pre-structured performa. The subjects were divided into two categories severe and non-severe COVID-19; and survivors and non-survivors. Between-group differences were tested using the Chi-square and Mann-Whitney's U-test. The receiver operating characteristic curve was plotted for serum PCT with severity and mortality. A binary logistic regression was used to identify variables independently associated with mortality. The data was analysed using SPSS.
RESULTS: 336 patients were reviewed as declared COVID-19 positive during the study duration, and 136 were included in the final analysis including 101 males and 35 females. A statistically significant difference in PCT was found between severe and non-severe COVID-19 (p value=0.01); and survivors and nonsurvivors (p value<0.0001). PCT, older age and increased duration of hospital stay were revealed as variables independently associated with mortality. On ROC analysis, an AUC of 0.76 for mortality prediction was generated for PCT.
CONCLUSION: Baseline serum PCT concentration is a promising predictor of mortality and severity in COVID-19 cases when considered in combination with clinical details and other laboratory tests.
OBJECTIVE: This study aims to evaluate the performance of Mortality in Emergency Department Sepsis Score (MEDS), Modified Early Warning Score (MEWS), Rapid Emergency Medicine Score (REMS) and Rapid Acute Physiology Score (RAPS) for predicting the mortality risk of adult splenic abscess patients. This will expedite decision making in the emergency department (ED) to increase survival rates and help avoid unnecessary splenectomies.
METHODS: Data of 114 adult patients admitted to the EDs of 4 research and training hospitals who had undergone an abdominal contrast CT scan and diagnosed with splenic abscess between Jan 2000 and April 2015 were analyzed. The MEDS, MEWS, REMS, and RAPS and their corresponding mortality risks were calculated, with their abilities to predict patient mortality assessed through receiver operating characteristic curve analysis and calibration analysis.
RESULTS: MEDS was found to be the best performing scoring system across all indicators, with sensitivity, specificity, and accuracy of 92.86%, 88.00%, and 88.60% respectively; its area under curve for AUROC analysis was 0.92. With a cutoff value of 8, negative predictive value of MEDS was 98.88%.
CONCLUSION: Our series is the largest multicenter study in adult ED patients with splenic abscess. The results from the present study show that MEDS is superior to MEWS, REMS and RAPS in predicting mortality, thus allowing earlier detection of critically ill adult ED splenic abscess patients. Therefore, we recommend that MEDS be used for predicting severity of illness and risk stratification in these patients.
DATA SOURCES: Systematic search of MEDLINE, EMBASE, CINAHL, and the Cochrane Register of Controlled Trials.
STUDY SELECTION: Randomized controlled trials testing IV vitamin C in critically ill patients.
DATA ABSTRACTION: Two independent reviewers abstracted patient characteristics, treatment details, and clinical outcomes.
DATA SYNTHESIS: Fifteen studies involving 2,490 patients were identified. Compared with placebo, IV vitamin C administration is associated with a trend toward reduced overall mortality (relative risk, 0.87; 95% CI, 0.75-1.00; p = 0.06; test for heterogeneity I2 = 6%). High-dose IV vitamin C was associated with a significant reduction in overall mortality (relative risk, 0.70; 95% CI, 0.52-0.96; p = 0.03), whereas low-dose IV vitamin C had no effect (relative risk, 0.94; 95% CI, 0.79-1.07; p = 0.46; test for subgroup differences, p = 0.14). IV vitamin C monotherapy was associated with a significant reduction in overall mortality (relative risk, 0.64; 95% CI, 0.49-0.83; p = 0.006), whereas there was no effect with IV vitamin C combined therapy. No trial reported an increase in adverse events related to IV vitamin C.
CONCLUSIONS: IV vitamin C administration appears safe and may be associated with a trend toward reduction in overall mortality. High-dose IV vitamin C monotherapy may be associated with improved overall mortality, and further randomized controlled trials are warranted.
MATERIALS: We recruited consecutively adult patients with SIRS admitted to an intensive care unit. They were divided into sepsis and noninfectious SIRS based on clinical assessment with or without positive cultures. Concentrations of PCT and IL-6 were measured daily over the first 3 days.
RESULTS: A total of 239 patients were recruited, 164 (68.6%) had sepsis, and 68 (28.5%) died in hospital. The PCT levels were higher in sepsis compared with noninfectious SIRS throughout the 3-day period (P < .0001). On admission, PCT concentration was diagnostic of sepsis (area under the curve of 0.63 [0.55-0.71]), and IL-6 was predictive of mortality, (area under the curve of 0.70 [0.62-0.78]). Peak IL-6 concentration improved the risk assessment of Sequential Organ Failure Assessment (SOFA) score for prediction of mortality among those who went on to die by an average of 5% and who did not die by 2%
CONCLUSIONS: Procalcitonin measured on intensive care unit admission was diagnostic of sepsis, and IL-6 was predictive of mortality. Addition of IL-6 concentration to SOFA score improved risk assessment for prediction of mortality. Future studies should include clinical indices, for example, SOFA score, for prognostic evaluation of biomarkers.
OBJECTIVES: In this individual patient data meta-analysis of critically ill patients with severe sepsis, we aimed to compare clinical outcomes of those treated with continuous versus intermittent infusion of β-lactam antibiotics.
METHODS: We identified relevant randomized controlled trials comparing continuous versus intermittent infusion of β-lactam antibiotics in critically ill patients with severe sepsis. We assessed the quality of the studies according to four criteria. We combined individual patient data from studies and assessed data integrity for common baseline demographics and study endpoints, including hospital mortality censored at 30 days and clinical cure. We then determined the pooled estimates of effect and investigated factors associated with hospital mortality in multivariable analysis.
MEASUREMENTS AND MAIN RESULTS: We identified three randomized controlled trials in which researchers recruited a total of 632 patients with severe sepsis. The two groups were well balanced in terms of age, sex, and illness severity. The rates of hospital mortality and clinical cure for the continuous versus intermittent infusion groups were 19.6% versus 26.3% (relative risk, 0.74; 95% confidence interval, 0.56-1.00; P = 0.045) and 55.4% versus 46.3% (relative risk, 1.20; 95% confidence interval, 1.03-1.40; P = 0.021), respectively. In a multivariable model, intermittent β-lactam administration, higher Acute Physiology and Chronic Health Evaluation II score, use of renal replacement therapy, and infection by nonfermenting gram-negative bacilli were significantly associated with hospital mortality. Continuous β-lactam administration was not independently associated with clinical cure.
CONCLUSIONS: Compared with intermittent dosing, administration of β-lactam antibiotics by continuous infusion in critically ill patients with severe sepsis is associated with decreased hospital mortality.
METHODS: This study included 159 septic patients admitted to an intensive care unit. Leukocytes count, procalcitonin (PCT), interleukin-6 (IL-6), and paraoxonase (PON) and arylesterase (ARE) activities of PON-1 were assayed from blood obtained on ICU presentation. Logistic regression was used to derive sepsis mortality score (SMS), a prediction equation describing the relationship between biomarkers and 30-day mortality.
RESULTS: The 30-day mortality rate was 28.9%. The SMS was [еlogit(p)/(1+еlogit(p))]×100; logit(p)=0.74+(0.004×PCT)+(0.001×IL-6)-(0.025×ARE)-(0.059×leukocytes count). The SMC had higher area under the receiver operating characteristic curve (95% Cl) than SOFA score [0.814 (0.736-0.892) vs. 0.767 (0.677-0.857)], but is not statistically significant. When the SMS was added to the SOFA score, prediction of 30-day mortality improved compared to SOFA score used alone [0.845 (0.777-0.899), p=0.022].
CONCLUSIONS: A sepsis mortality score using baseline leukocytes count, PCT, IL-6 and ARE was derived, which predicted 30-day mortality with very good performance and added significant prognostic information to SOFA score.
METHODS: This is a prospective observational study on patients with SIRS. Plasma creatinine (pCr) and NGAL were measured on ICU admission. Patients were classified according to the occurrence of AKI and sepsis.
RESULTS: Of 225 patients recruited, 129 (57%) had sepsis of whom 67 (52%) also had AKI. 96 patients (43%) had non-infectious SIRS, of whom 20 (21%) also had AKI. NGAL concentrations were higher in AKI patients within both the sepsis and non-infectious SIRS cohorts (both P