Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Asgar MA, Fazilah A, Huda N, Bhat R, Karim AA
    Compr Rev Food Sci Food Saf, 2010 Sep;9(5):513-529.
    PMID: 33467834 DOI: 10.1111/j.1541-4337.2010.00124.x
      The direct consumption of vegetable proteins in food products has been increasing over the years because of animal diseases, global shortage of animal protein, strong demand for wholesome and religious (halal) food, and economic reasons. The increasing importance of legume and oilseed proteins in the manufacturing of various functional food products is due to their high-protein contents. However, the greatest obstacle to utilizing these legumes and oilseeds is the presence of antinutrients; but these antinutrients can be successfully removed or inactivated by employing certain processing methods. In contrast, the potential negative impact of the antinutrients is partially balanced by the fact that they may have a health-promoting role. Legumes and oilseeds provide well-balanced amino acid profiles when consumed with cereals. Soybean proteins, wheat gluten, cottonseed proteins, and other plant proteins have been used for texturization. Texturized vegetable proteins can extend meat products while providing an economical, functional, and high-protein food ingredient or can be consumed directly as a meat analog. Meat analogs are successful because of their healthy image (cholesterol free), meat-like texture, and low cost. Mycoprotein is fungal in origin and is used as a high-protein, low-fat, health-promoting food ingredient. Mycoprotein has a good taste and texture. Texturized vegetable proteins and a number of mycoprotein products are accepted as halal foods. This article summarizes information regarding the molecular, nutritional, and functional properties of alternative protein sources to meat and presents current knowledge to encourage further research to optimize the beneficial effects of alternative protein sources.
    Matched MeSH terms: Soybean Proteins
  2. Babji, A.S., Fatimah, S., Abolhassani, Y, Ghassem, M.
    MyJurnal
    Protein Efficiency Ratio (PER) is the most widely used method for determining protein quality. The studies involved a few category of products as raw materials namely poultry products, beef burger products, fish and fish products, soy products and palm kernel cake in animal diet preparation were compiled to compare the data. Data from the proximate analysis showed that protein content in soy protein isolate (SPI) was the highest (95.00%) followed by meat such as mackerel fish (89.09%) and beef (88.60%). Results from feed consumption and total protein consumed showed that the rats fed with mechanically deboned poultry meat (MDPM) products (excluding broiler back) consumed more feed, ranging from 469.2g to 422.3g during the study while the lowest total feed consumed (157.7g) was recorded in the rat fed a diet of fermented palm kernel cake (fPKC). The total protein consumed by rat for diets of fish and fish products such as canned sardine was 62.36g, mackerel 61.76g and anchovy at 58.91g, followed by MDPM products. Tempeh (14.72g) and fPKC diet (16.3g) were among the lowest total protein consumed by the rats. Growth and PER data for rats fed a diet of canned sardine, anchovy and mackerel, as well as mechanically deboned turkey meat (MDTM) and mechanically deboned chicken meat (MDCM) had higher mean body weight (154.80g, 145.20g, 144.81g, 148.7g and 142.5g respectively) compared to rats fed with plant protein diet such as SPI, tempeh and PKC (34.79g, 16.34g and 16.60g respectively) whereas rats fed diets containing fPKC had a mean body weight loss of 24.4g. MDPM showed higher PER value (ranging from 3.01 to 3.34) compared to hamburger group, pure beef and fish group. Tempeh and SPI had lower PER of 1.02 and 1.52 respectively while the lowest PER of 0.50 and -1.50 were shown in PKC and fPKC. The highest digestibility was shown in mackerel (96.99%), followed by canned sardine (96.88%), tempeh (91.41%), meat (90.79%) and pure beef burger (90.04%) while digestibility of PKC and fPKC were much lower (45.70% and 22.60%). Lipid profile of rats fed with palm based fat beef burger showed that palm fat(PF) and red PF did not affect the total cholestrol concentration but resulted in higher high density lipoprotein (HDL)- cholesterol concentration in their blood serum. In summary, the utilization of PF and red PF in beef burger increased the HDL-cholesterol and has no effect on the concentration of total cholesterol in rat blood serum.
    Matched MeSH terms: Soybean Proteins
  3. Babji, A.S., Fatimah, S., Abolhassani, Y.
    MyJurnal
    Protein efficiency ratio (PER) and protein digestibility are important parameters used in protein quality determination. Protein nutritive values of selected protein sources: buffalo meat, casein, soy protein isolate, and tempeh, with sodium caseinate as a reference formulation, were evaluated. Determination of proximate analysis, protein quality and protein digestibility were monitored. Procedures for evaluation of protein quality and digestibility included PER using the rat bioassay and in vivo Apparent Protein Digestibility (APD). The rats fed with buffalo meat had the highest mean increase in body weight (102.73g±8.95) while rats fed with tempeh had the lowest mean for increase in body weight (16.34g±9.11). Although the mean for body weight gained showed significant differences between all treatments (P0.05) found between casein and soy protein isolate for total food intake. For the PER value, buffalo meat had the highest value (2.99), followed by sodium caseinate (2.41), casein (1.93), soy protein isolate (1.52) and tempeh (1.10). The PER value for buffalo meat (2.99) was higher than sodium caseinate (2.41) while the rest of the treatment were comparatively lower than sodium caseinate. For the in vivo apparent protein digestibility, tempeh had the highest value (91.41%±3.76), followed by casein (91.34%±3.15), buffalo meat (90.79%±1.44), soy protein isolate (89.52%±2.96) and sodium caseinate (89.47%±2.31).
    Matched MeSH terms: Soybean Proteins
  4. Brishti, F.H., Zarei, M., Muhammad, S.K.S., Ismail-Fitry, M.R., Shukri, R., Saari, N.
    MyJurnal
    Mung bean is considered a ‘green pearl’ for its relatively high protein content; however, it has limited application as a raw material for industrial food products. As the potential use of mung beans relies on its protein behavior, this study characterized the functional properties of mung bean protein isolates and the results were compared with soy protein isolates. The protein isolates were prepared from mung bean and soy bean flours via extraction with 1 N NaOH, precipitated at pH 4, and subsequently freeze-dried. The amino acid profile as well as the hydrophilic and hydrophobic ratio of mung bean protein isolate, had been comparable with soy protein isolate. The water and oil absorption capacities as well as the denaturation temperature of mung bean protein isolate, were found to be similar with those of soy bean protein isolate. However, foaming capacity (89.66%) of mung bean protein isolate was higher than that of soy protein isolate (68.66%). Besides, least gelation concentration (LGC) of mung bean protein isolate (12%) was also close to LGC of soy protein isolate (14%), while the protein solubility was comparable between both the isolated proteins. The physical features of the textured mung bean were close to the commercial textured soy protein, which showed a heterogeneous and porous network like matrix when the mung bean flour was extruded to measure its potentiality to produce textured vegetable protein.all seaweed extracts. Results showed that extraction parameters had significant effect (p < 0.05) on the antioxidant compounds and antioxidant capacities of seaweed. Sargassum polycystum portrayed the most antioxidant compounds (37.41 ± 0.01 mg GAE/g DW and 4.54 ± 0.02 mg CE/g DW) and capacities (2.00 ± 0.01 μmol TEAC/g DW and 0.84 ± 0.01 μmol TEAC/g DW) amongst four species of seaweed.
    Matched MeSH terms: Soybean Proteins
  5. Chen Y, Ge H, Zheng Y, Zhang H, Li Y, Su X, et al.
    J Agric Food Chem, 2020 Jun 03;68(22):6190-6201.
    PMID: 32379465 DOI: 10.1021/acs.jafc.0c01250
    The present study aims to design a milk fat globule membrane (MFGM)-inspired structured membrane (phospholipid- and protein-rich) for microencapsulation of docosahexaenoic acid (DHA) oil. DHA-enriched oil emulsions were prepared using different ratios of sunflower phospholipid (SPL), proteins [whey protein concentrate (WPC), soy protein isolate (SPI), and sodium caseinate (SC)], and maltodextrin and spray-dried to obtain DHA microcapsules. The prepared DHA oil emulsions have nanosized particles. SPLs were found to affect the secondary structure of WPC, which resulted in increased exposure of the protein hydrophobic site and emulsion stability. SPL also reduced the surface tension and viscosity of the DHA oil emulsions. In vitro digestion of the spray-dried DHA microcapsules showed that they were able to effectively resist gastric proteolysis and protect their bioactivity en route to the intestine. The DHA microcapsules have a high lipid digestibility in the small intestine with a high DHA hydrolysis efficiency (74.3%), which is higher than that of commercial DHA microcapsules.
    Matched MeSH terms: Soybean Proteins/metabolism; Soybean Proteins/chemistry*
  6. Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2013 Dec;14(14):1632-41.
    PMID: 24354587
    The Asian population whose soy intake is higher compared to Western populations shows a significantly lower incidence of osteoporotic fracture. Several meta-analyses have revealed that supplementation of soy isoflavones improve bone health status in women. This review examined the current evidence as to whether soy could exhibit similar bone protective effects on the male population. In vivo studies revealed that supplementation of soy protein or soy isoflavones improved bone health in both normal and osteoporotic male rodents. Cell culture studies showed that soy isoflavones influenced osteogenesis and osteoclastogenesis through mechanisms such as estrogen receptor binding activity, antiinflammatory activity and anti-parathyroid hormone activity. Soy isoflavones also affected calcium channel signaling and might exhibit direct effects on the osteoblastogenesis modulator, core binding factor 1. However, limited clinical trials involving soy intervention in males generally showed insignificant results. This could be attributed to the short duration of intervention, characteristics of the subjects or method of bone health assessment. More well-planned clinical trials are required to establish possible bone protective effects of soy in men.
    Matched MeSH terms: Soybean Proteins/administration & dosage; Soybean Proteins/therapeutic use*
  7. Dianawati D, Lim SF, Ooi YBH, Shah NP
    J Food Sci, 2017 Sep;82(9):2134-2141.
    PMID: 28843042 DOI: 10.1111/1750-3841.13820
    The aims of this study were to evaluate the effect of types of protein-based microcapsules and storage at various ambient temperatures on the survival of Lactobacillus acidophilus during exposure to simulated gastrointestinal tract and on the change in thermo-tolerance during heating treatment. The encapsulating materials were prepared using emulsions of protein (sodium caseinate, soy protein isolate, or pea protein), vegetable oil, and glucose, with maltodextrin was used as a wall material. The formulations were heated at 90 °C for 30 min to develop Maillard substances prior to being incorporated with L. acidophilus. The mixtures were then spray dried. The microspheres were stored at 25, 30, and 35 °C for 8 wk and examined every 4 wk. The addition of proteins as encapsulating materials demonstrated a significant protective effect (P < 0.05) as compared to the control sample. Sodium caseinate and soy protein isolate appeared more effective than pea protein in protecting the bacteria after spray drying and during the storage at different room temperatures. Storage at 35 °C resulted in a significant decrease in survival at end of storage period regardless the type of encapsulating materials. The addition of protein-based materials also enhanced the survival of L. acidophilus during exposure to simulated gastrointestinal condition as compared to the control. After spray drying and after 0th wk storage, casein, soy protein isolate, and pea protein-based formulations protected the bacteria during heat treatment. In fact, a significant decrease in thermal tolerance was inevitable after 2 wk of storage at 25 °C.
    Matched MeSH terms: Soybean Proteins
  8. Foo, W.T., Yew, H.S., Liong, M.T., Azhar, M.E.
    MyJurnal
    The physical attributes (pH and colour), cooking yield, textural and mechanical properties (firmness, tensile and texture profiles analyses) and structural breakdown properties (multiple extrusion cell with added artificial saliva) of five yellow alkaline noodle (YAN) formulations were studied. Samples used were noodles with (a) typical formulation (control), (b) soy protein isolate (SPI), (c) soy protein isolate plus microbial transglutaminase enzyme (SPI/MTGase), (d) green banana pulp flour (GBPu) and (e) green banana peel flour (GBPe). Compared to other noodles SPI/MTGase noodle showed significantly (P < 0.05) higher values in terms of textural, mechanical and breakdown properties. Incorporating SPI, banana pulp and peel flours into the noodles had imposed some differences on most of the mechanical and textural parameters from the control YAN. However, these noodles could not be clearly distinguished in term of structural breakdown properties.
    Matched MeSH terms: Soybean Proteins
  9. Gan CY, Cheng LH, Easa AM
    J Food Sci, 2009 Mar;74(2):C141-6.
    PMID: 19323728 DOI: 10.1111/j.1750-3841.2009.01053.x
    Soy protein isolate (SPI) gels were produced using single cross-linking agents (SCLA) of microbial transglutaminase (MTG) via incubation for 5 or 24 h (SCLA-MTG). When powdered SCLA-MTG gels were heated for 2 h with ribose (R2) (2 g/100 mL), dark brown gels were formed, and these were designated as combined cross-linking agent (CCLA) gels: MTG5(R2) and MTG24(R2). The results showed that the levels of Maillard-derived browning and cross-links of MTG5(R2) and MTG24(R2) gels were significantly (P < 0.05) lower than a control gel produced without MTG (SCLA-R2) even though the percentage of ribose remaining after heating of these gels was similar, indicating that a similar amount of ribose was consumed during heating. epsilon-(gamma-glutamyl)lysine bonds formed during incubation of SPI with MTG may have reduced the free amino group of SPI to take part in the Maillard reaction; nevertheless, ribose took part in the Maillard reaction and initiated the Maillard cross-linkings within the CCLA gels.
    Matched MeSH terms: Soybean Proteins/isolation & purification*; Soybean Proteins/chemistry*
  10. Gan CY, Cheng LH, Azahari B, Easa AM
    Int J Food Sci Nutr, 2009;60 Suppl 7:99-108.
    PMID: 19194813 DOI: 10.1080/09637480802635090
    Cross-linked soy protein isolate (SPI) gels were produced via single-treatment of SPI with microbial transglutaminase (MTG) for 5 h or 24 h, or with ribose for 2 h, or via combined-treatments of SPI with MTG followed by heating with ribose. Assessment of gel strength and solubility concluded that measures which increased protein cross-links resulted in improved gel strength; however, in most cases the digestibility and amino acid content of the gels were reduced. The combined treated gel of SPI/MTG for 24 h/ribose was more easily digested by digestive enzymes and retained higher amounts of amino acids compared with the control Maillard gels of SPI with ribose. MTG consumed lysine and glutamine and reduced the availability of amino acids for the Maillard reaction with ribose. MTG was able to preserve the nutritional value of SPI against the destructive effect of the Maillard reaction and cross-links.
    Matched MeSH terms: Soybean Proteins/isolation & purification; Soybean Proteins/metabolism*; Soybean Proteins/chemistry*
  11. Ghosh AK, Rahaman AA, Singh R
    Int J Sport Nutr Exerc Metab, 2010 Jun;20(3):216-23.
    PMID: 20601739
    The purpose of the study was to investigate whether a combination of sago and soy protein ingested during moderate-intensity cycling exercise can improve subsequent high-intensity endurance capacity compared with a carbohydrate in the form of sago and with a placebo. The participants were 8 male recreational cyclists with age, weight, and VO2max of 21.5 +/- 1.1 yr, 63.3 +/- 2.4 kg, and 39.9 +/- 1.1 ml . kg(-1) . min(-1), respectively. The design of the study was a randomized, double-blind placebo-controlled crossover comprising 60 min of exercise on a cycle ergometer at 60% VO2max followed by a time-to-exhaustion ride at 90% VO2max. The sago feeding provided 60 g of carbohydrate, and the sago-soy combination provided 52.5 g of carbohydrate and 15 g of protein, both at 20-min intervals during exercise. Times to exhaustion for the placebo, sago, and sago-soy supplementations were 4.09 +/- 1.28, 5.49 +/- 1.20, and 7.53 +/- 2.02 min, respectively. Sago-soy supplementation increased endurance by 84% (44-140%; p < .001) and by 37% (15-63%; p < .05) relative to placebo and sago, respectively. The plasma insulin response was elevated above that with placebo during sago and sago-soy supplementations. The authors conclude that a combination of sago and soy protein can delay fatigue during high-intensity cycling.
    Matched MeSH terms: Soybean Proteins/pharmacology*
  12. Hanafi MA, Hashim SN, Chay SY, Ebrahimpour A, Zarei M, Muhammad K, et al.
    Food Res Int, 2018 04;106:589-597.
    PMID: 29579964 DOI: 10.1016/j.foodres.2018.01.030
    As a protein-rich, underutilized crop, green soybean could be exploited to produce hydrolysates containing angiotensin-I converting enzyme (ACE) inhibitory peptides. Defatted green soybean was hydrolyzed using four different food-grade proteases (Alcalase, Papain, Flavourzyme and Bromelain) and their ACE inhibitory activities were evaluated. The Alcalase-generated green soybean hydrolysate showed the highest ACE inhibitory activity (IC50: 0.14 mg/mL at 6 h hydrolysis time) followed by Papain (IC50: 0.20 mg/mL at 5 h hydrolysis time), Bromelain (IC50: 0.36 mg/mL at 6 h hydrolysis time) and Flavourzyme (IC50: 1.14 mg/mL at 6 h hydrolysis time) hydrolysates. The Alcalase-generated hydrolysate was profiled based on its hydrophobicity and isoelectric point using reversed phase high performance liquid chromatography (RP-HPLC) and isoelectric point focusing (IEF) fractionators. The Alcalase-generated green soybean hydrolysate comprising of peptides EAQRLLF, PSLRSYLAE, PDRSIHGRQLAE, FITAFR and RGQVLS, revealed the highest ACE inhibitory activity of 94.19%, 99.31%, 92.92%, 101.51% and 90.40%, respectively, while their IC50 values were 878 μM, 532 μM, 1552 μM, 1342 μM and 993 μM, respectively. It can be concluded that Alcalase-digested green soybean hydrolysates could be exploited as a source of peptides to be incorporated into functional foods with antihypertensive activity.
    Matched MeSH terms: Soybean Proteins/isolation & purification; Soybean Proteins/pharmacology*
  13. Hashim OH, Shuib AS, Chua CT
    Immunol Invest, 2001 Feb;30(1):21-31.
    PMID: 11419909
    A study on the binding interaction of lectins from Artocarpus heterophyllus (jacalin), Glycine max and Sambucus nigra with standardised quantity of IgA from the IgA nephropathy patients and normal controls was performed. The Glycine max lectin demonstrated higher affinity towards the serum IgA of IgAN patients as compared to normal controls. However, the affinity binding was lower in cases ofjacalin and the Sambucus nigra lectin. When serum samples were treated with neuraminidase, the differential jacalin affinity binding between IgA1 of patients and normal controls was abrogated. Our data are in support of the view that the O-linked oligosaccharide moieties of the patients IgA1 were generally lacking in galactose and sialic acid residues.
    Matched MeSH terms: Soybean Proteins*
  14. Iyngkaran N, Yadav M, Looi LM, Boey CG, Lam KL, Balabaskaran S, et al.
    J Pediatr Gastroenterol Nutr, 1988 Jan-Feb;7(1):68-75.
    PMID: 3335989
    The effect of soy protein on the small bowel mucosa of 18 infants with acute gastroenteritis was studied. The infants were maintained on a protein hydrolysate formula for 6-8 weeks, following which they were readmitted for soy protein challenge studies. Jejunal biopsy was performed before and 24 h after challenge. On the basis of the clinical and histological reaction to soy protein challenge, three groups were identified. Group 1 consisted of three infants who had clinical and histological reaction. There was associated depletion of mucosal enzymes, lactase, sucrase, malatase, alkaline phosphatase, and blood xylose levels. Group 2 consisted of seven infants who had histological reaction but no clinical symptoms. Two of these seven infants, however, developed clinical reaction when rechallenged with soy protein 2 and 90 days later. Following challenge, mucosal enzymes and blood xylose levels were depressed in five of the seven infants tested. Group 3 consisted of eight infants who did not have either a clinical or a histological reaction. The mucosal enzymes and blood xylose levels were not depressed in four infants tested. The present study shows that the small bowel mucosa of some young infants recovering from acute gastroenteritis remains sensitive to soy protein for a variable period of time. The feeding of soy protein to these infants may result in the persistence of mucosal damage and perpetuation of diarrhea.(ABSTRACT TRUNCATED AT 250 WORDS)
    Matched MeSH terms: Soybean Proteins
  15. Lan GQ, Abdullah N, Jalaludin S, Ho Y
    Lett Appl Microbiol, 2002;35(2):157-61.
    PMID: 12100593
    The effects of different carbon and nitrogen sources on phytase production by Mitsuokella jalaludinii were evaluated and the optimization of rice bran (RB) and soybean milk (SM) concentrations in the medium for phytase production was also determined.
    Matched MeSH terms: Soybean Proteins/analysis
  16. Lee PE, Choo WS
    J Food Sci Technol, 2015 Jul;52(7):4378-86.
    PMID: 26139903 DOI: 10.1007/s13197-014-1495-3
    The emulsifying capacity of surfactants (polysorbate 20, polysorbate 80 and soy lecithin) and proteins (soy protein isolate and whey protein isolate) in flaxseed oil was measured based on 1 % (w/w) of emulsifier. Surfactants showed significantly higher emulsifying capacity compared to the proteins (soy protein isolate and whey protein isolate) in flaxseed oil. The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a mixer was ranked in the following order: 1,000 rpm (58 min) ≈ 1,000 rpm (29 min) ≈ 2,000 rpm (35 min) >2,000 rpm (17.5 min). The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a homogenizer (Ultra Turrax) was independent of the speed and mixing time. The mean particle size of the flaxseed oil emulsions prepared using the two mixing devices ranged from 23.99 ± 1.34 μm to 47.22 ± 1.99 μm where else the particle size distribution and microstructure of the flaxseed oil emulsions demonstrated using microscopic imaging were quite similar. The flaxseed oil emulsions had a similar apparent viscosity and exhibited shear thinning (pseudoplastic) behavior. The flaxseed oil emulsions had L* value above 70 and was in the red-yellow color region (positive a* and b* values).
    Matched MeSH terms: Soybean Proteins
  17. Ojukwu M, Tan JS, Easa AM
    J Food Sci, 2020 Sep;85(9):2720-2727.
    PMID: 32776580 DOI: 10.1111/1750-3841.15357
    A process for enhancing textural and cooking properties of fresh rice flour-soy protein isolate noodles (RNS) to match those of yellow alkaline noodles (YAN) was developed by incorporating microbial transglutaminase (RNS-MTG), glucono-δ-lactone (RNS-GDL), and both MTG and GDL into the RNS noodles (RNS-COM). The formation of γ-glutamyl-lysine bonds in RNS-COM and RNS-MTG was shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Scanning electron microscope showed that compared to others, the structure of RNS-COM was denser, smoother with extensive apparent interconnectivity of aggregates. The optimum cooking time was in the order: YAN > RNS-COM > RNS-MTG > RNS-GDL > RN (rice flour noodles); tensile strength was in the order: YAN > RNS-COM > RNS-MTG > RNS-GDL > RN; and elasticity were in the order: YAN > RNS-COM > RNS-MTG, RNS-GDL > RN. Overall, RNS-COM showed similar textural and structural breakdown parameters as compared to those of YAN. Changes in microstructures and improvement of RNS-COM in certain properties were likely due to enhanced crosslinking of proteins attributed to MTG- and GDL-induced cold gelation of proteins at reduced pH value. It is possible to use the combination of MTG and GDL to improve textural and mechanical properties of RNS comparable to those of YAN. PRACTICAL APPLICATION: Combined MTG and GDL yield rice flour noodles with improved textural properties. The restructured rice flour noodles have the potential to replace yellow alkaline noodles.
    Matched MeSH terms: Soybean Proteins/chemistry*
  18. Ojukwu M, Ofoedu C, Seow EK, Easa AM
    J Sci Food Agric, 2021 Jul;101(9):3732-3741.
    PMID: 33301191 DOI: 10.1002/jsfa.11004
    BACKGROUND: Rice flour does not contain gluten and lacks cohesion and extensibility, which is responsible for the poor texture of rice noodles. Different technologies have been used to mitigate this challenge, including hydrothermal treatments of rice flour, direct addition of protein in noodles, use of additives such as hydrocolloids and alginates, and microbial transglutaminase (MTG). Recently, the inclusion of soy protein isolate (SPI), MTG, and glucono-δ-lactone (GDL) in the rice noodles system yielded rice noodles with improved texture and more compact microstructure, hence the need to optimize the addition of SPI, MTG, and GDL to make quality rice noodles.

    RESULTS: Numerical optimization showed that rice noodles prepared with SPI, 68.32 (g kg-1 of rice flour), MTG, 5.06 (g kg-1 of rice flour) and GDL, 5.0 (g kg-1 of rice flour) gave the best response variables; hardness (53.19 N), springiness (0.76), chewiness (20.28 J), tensile strength (60.35 kPa), and cooking time (5.15 min). The pH, sensory, and microstructure results showed that the optimized rice noodles had a more compact microstructure with fewer hollows, optimum pH for MTG action, and overall sensory panelists also showed the highest preference for the optimized formulation, compared to other samples selected from the numerical optimization and desirability tests.

    CONCLUSION: Optimization of the levels of SPI, MTG, and GDL yielded quality noodles with improved textural, mechanical, sensory, and microstructural properties. This was partly due to the favourable pH value of the optimized noodles that provided the most suitable conditions for MTG crosslinking and balanced electrostatic interaction of proteins. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Soybean Proteins/analysis*
  19. Ojukwu M, Tan HL, Murad M, Nafchi AM, Easa AM
    Food Sci Technol Int, 2023 Dec;29(8):799-808.
    PMID: 36000280 DOI: 10.1177/10820132221121169
    In a bid to produce rice flour noodles with improved texture and reduced cooking time, rice flour-soy protein isolate noodles (RNS) were structurally enhanced by a combined treatment (COM) of microbial transglutaminase (MTG) with glucono-δ-lactone (GDL). The RNS-COM was either dried using superheated steam (SHS) to yield RNS-COM-SHS or steamed for 10 min (S10) before air drying to produce RNS-COM-S10 noodles. Control samples were SHS-dried rice flour (RN-SHS) and air-dried RN-S10 noodles. In general, textural and microstructural properties indicated higher textural properties and a more robust network in RNS-COM-SHS and RNS-COM-S10 than in other noodles. However, optimum cooking time (P < 0.5) was in the order; RN-SHS, RNS-COM-SHS < RN-S10 < RNS-COM-S10. As a result of the COM treatment, structurally enhanced noodles were more resistant to cooking. As applied in RNS-COM-SHS noodles, SHS was able to improve cooking quality, probably through the formation of bigger and evenly spread pores that had promoted faster gelatinisation of starch, with a high order of relative starch crystallinity.
    Matched MeSH terms: Soybean Proteins*
  20. Samson DO, Jafri MZM, Shukri A, Hashim R, Sulaiman O, Aziz MZA, et al.
    Radiat Environ Biophys, 2020 08;59(3):483-501.
    PMID: 32333105 DOI: 10.1007/s00411-020-00844-z
    For the first time, Rhizophora spp. (Rh. spp.) particleboard phantoms were developed using defatted soy flour (DSF) and soy protein isolate (SPI) modified by sodium hydroxide and itaconic acid polyamidoamine-epichlorohydrin (IA-PAE) adhesive. The microstructural characterization and X-ray diffraction patterns of the material revealed that the modified DSF and SPI adhesives became more compact and homogeneous when NaOH/IA-PAE was added, which prevented damage by moisture. It was confirmed that the composite is crystalline with (101), (002), and (004) orientations. Phantoms made of this material were scanned with X-ray computed tomography (CT) typically used for abdominal examinations with varying energies corresponding to 80, 120, and 135 kVp, to determine CT numbers, electron densities, and density distribution profiles. The radiation attenuation parameters were found to be not significantly different from those of water (XCOM) with p values [Formula: see text] 0.05 for DSF and SPI. The DSF- and SPI-based particleboard phantoms showed CT numbers close to those of water at the three X-ray CT energies. In addition, electron density and density distribution profiles of DSF-SPI-Rh. spp. particleboard phantoms with 15 wt% IA-PAE content were even closer to those of water and other commercial phantom materials at the three X-ray CT energies. It is concluded that DSF-SPI with NaOH/IA-PAE added can be used as a potential adhesive in Rh. spp. particleboard phantoms for radiation dosimetry.
    Matched MeSH terms: Soybean Proteins*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links