Since the discovery of PrPC (cellular prion protein), most studies have focused on its role in neurodegenerative diseases, whereas its function outside the nervous system remains obscure. We investigated the ability of PrPC in resisting TNFα (tumour necrosis factor α) apoptosis in three PrPC-transiently transfected cancer cell lines, renal adenocarcinoma ACHN, oral squamous cell carcinoma HSC-2 and colon adenocarcinoma LS174T. PrPC-expressing ACHN and LS174T cells had higher viabilities compared with the mock-transfected cells, while the transient overexpression of PrPC had minimal overall effect on HSC-2 cells due to its high endogenous PrPC expression. Cell cycles were also analysed, with both PrPC expressing ACHN and LS174T cells having a significantly higher proliferative index than mock-transfected cells. Flow cytometry analysis indicated a G1/S-phase cell cycle transition in both PrPC-expressing ACHN and LS174T cells. PrPC resists TNFα apoptosis due to a modest, but statistically significant, cell-specific cytoprotection compared with mock-transfected cells.
Mucosal-associated invariant T (MAIT) cells, defined as CD161++TCR iVα7.2+ T cells, play an important role in the innate defense against bacterial infections, and their functionality is impaired in chronic viral infections. Here, we investigated the frequency and functional role of MAIT cells in chronic hepatitis B virus (HBV) infection. The peripheral CD3+CD161++TCR iVα7.2+ MAIT cells in chronic HBV-infected patients and healthy controls were phenotypically characterized based on CD57, PD-1, TIM-3, and CTLA-4, as well as HLA-DR and CD38 expression. The frequency of MAIT cells was significantly decreased among chronic HBV-infected individuals as compared to controls. Expression of CD57, PD-1, CTLA-4, as well as HLA-DR and CD38 on MAIT cells was significantly elevated in chronic HBV-infected individuals relative to controls. The percentage of T cell receptor (TCR) iVα7.2+ CD161+ MAIT cells did not correlate with HBV viral load but inversely with HLA-DR on CD4+ T cells and MAIT cells and with CD57 on CD8+ T cells suggesting that decrease of MAIT cells may not be attributed to direct infection by HBV but driven by HBV-induced chronic immune activation. The percentage and expression levels of PD-1 as well as CTLA-4 on MAIT cells inversely correlated with plasma HBV-DNA levels, which may suggest either a role for MAIT cells in the control of HBV infection or the effect of HBV replication in the liver on MAIT cell phenotype. We report that decrease of TCR iVα7.2+ MAIT cells in the peripheral blood and their functions were seemingly impaired in chronic HBV-infected patients likely because of the increased expression of PD-1.
Matched MeSH terms: Programmed Cell Death 1 Receptor
The edible red seaweed Kappaphycus alvarezii or Eucheuma cottonii is commercially cultivated in the pristine tropical seas for carrageenan production. The systemic, cellular, and molecular effects of E. cottonii 50% alcohol extract [seaweed E. cottonii ethanol extract (SECE)] on breast cancer were investigated in a rat model. Mammary tumor was induced by subcutaneously injecting LA7 cells in female rat mammary pads. After 2 weeks of cancer growth, the rats received oral administration of either SECE [150 mg/kg body weight (BW) and 300 mg/kg BW] or tamoxifen. Electron microscopy imaging results confirmed macrophage activity and hematoxylin and eosin staining indicated that tumor histopathological alterations were restored toward normal structures by the seaweed extract. The extract suppressed tumor development and modulated the immune responses. This was evidenced by the microscopic observations, the increased spleen weight, size, spleen CD19 B cells, and blood immunoglobulin G (IgG) levels. The extract also increased the circulating total white blood cells, lymphocytes, segmented neutrophils count, T cells (CD3), T-helper cells (CD4), cytotoxic T cell (CD8), and nuclear factor-kappa beta expressions. The extract enhanced cancer cell death, by upregulating the Birc5, Chk1, and p53 levels and downregulating the tumor growth cellular Mdm2 (transformed mouse 3T3 cell double minute 2) messenger RNA (mRNA) expression. The extract showed no toxicity at 150 mg/kg BW in rats. The lectin-rich SECE showed tumor suppression by enhancing immune responses and upregulating the cancer cell apoptosis mRNA expressions.
Three metal(II) complexes [CoLCl2], [CuLCl2] and [ZnL2Cl2] {L = 2‑chloro‑3‑((3‑dimethylamino)propylamino)naphthalene‑1,4‑dione} have been synthesized and characterized using analytical, thermal and spectral techniques (FT-IR, UV-Vis, ESR and ESI-MS). The structure of the L has been confirmed by single crystal XRD study. The complexes show good binding propensity to bovine serum albumin (BSA) having relatively higher binding constant values (104 M-1) than the ligand. Fluorescence spectral studies indicate that [CoLCl2] binds relatively stronger with CT DNA through intercalative mode, exhibiting higher binding constant (2.22 × 105 M-1). Agarose gel electrophoresis run on plasmid DNA (pUC18) prove that all the complexes showed efficient DNA cleavage via hydroxyl radical mechanism. The complexes were identified as potent anticancer agents against two human cancer cell lines (MCF7 and A549) by comparing with cisplatin. Co(II) complex demonstrated greater cytotoxicity against MCF7 and A549 cells with IC50 values at 19 and 22 μM, respectively.
The emergence of colorectal cancer in developed nations can be attributed to dietary habits, smoking, a sedentary lifestyle and obesity. Several treatment regimens are available for primary and metastatic colorectal cancer; however, these treatment options have had limited impact on cure and disease‑free survival, and novel agents need to be developed for treating colorectal cancer. Thus, the objective of this study was to explore the anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide. The compound's inhibitory effect on cell proliferation was determined using the MTT assay and the xCelligence RTDP machine. Alternations in the expression of Bcl‑2 and inhibitor of apoptosis protein families were detected by western blotting. Apoptotic marker protein expression, including cytochrome c and cleaved poly(ADP‑ribose)polymerase was measured in the cytosolic extract of cells. Apoptosis and necrosis were detected by flow cytometry and immunofluorescence. Reactive oxygen species (ROS), and activation of caspase‑3 and caspase‑7 were measured using flow cytometry. Activation of the JNK pathway was detected by western blotting. We investigated the molecular mechanism of action of the sulfonamide derivative on colorectal cancer cells and found that the compound possesses a potent anticancer effect, which is primarily exerted by inducing apoptosis and necrosis. Interestingly, this compound exhibited little antiproliferative effect against the normal colonic epithelial cell line FHC. Furthermore, our results showed that the compound could significantly increase ROS production. Apoptosis induction could be attenuated by the free oxygen radical scavenger N‑acetyl cysteine (NAC), indicating that the antiproliferative effect of this compound on colorectal cancer cells is at least partially dependent on the redox balance. In addition, JNK signaling was activated by treatment with this derivative, which led to the induction of apoptosis. On the contrary, a JNK inhibitor could suppress the cell death induced by this compound. Our findings thus suggested a novel anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide for colorectal cancer cells and may have therapeutic potential for the treatment of colorectal cancer; however, further investigation is required.
Parkinson's disease (PD) is the most common neurodegenerative movement disorder with obscure etiology and no disease-modifying therapy to date. Hence, novel, safe, and low cost-effective approaches employing medicinal plants are currently receiving increased attention. A growing body of evidence has revealed that cinnamon, being widely used as a spice of unique flavor and aroma, may exert neuroprotective effects in several neurodegenerative diseases, including PD. In vitro evidence has indicated that the essential oils of Cinnamomum species, mainly cinnamaldehyde and sodium benzoate may protect against oxidative stress-induced cell death, reactive oxygen species generation, and autophagy dysregulation, thus acting in a potentially neuroprotective manner. In vivo evidence has demonstrated that oral administration of cinnamon powder and sodium benzoate may protect against dopaminergic cell death, striatal neurotransmitter dysregulation, and motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models of PD. The underlying mechanisms of its action include autophagy regulation, antioxidant effects, upregulation of Parkin, DJ-1, glial cell line-derived neurotrophic factor, as well as modulation of the TLR/NF-κB pathway and inhibition of the excessive proinflammatory responses. In addition, in vitro and in vivo studies have shown that cinnamon extracts may affect the oligomerization process and aggregation of α-synuclein. Herein, we discuss recent evidence on the novel therapeutic opportunities of this phytochemical against PD, indicating additional mechanistic aspects that should be explored, and potential obstacles/limitations that need to be overcome, for its inclusion in experimental PD therapeutics.
Novel therapeutic targets are required to protect the heart against cell death from acute ischemia-reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson's disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia-reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1(L166P) and DJ-1(Cys106A) mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection.
The plant Artocarpus obtusus is a tropical plant that belongs to the family Moraceae. In the present study a xanthone compound Pyranocycloartobiloxanthone A (PA) was isolated from this plant and the apoptosis mechanism was investigated. PA induced cytotoxicity was observed using MTT assay. High content screening (HCS) was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential (MMP) and cytochrome c release. Reactive oxygen species formation was investigated on treated cells by using fluorescent analysis. Human apoptosis proteome profiler assays were performed to investigate the mechanism of cell death. In addition mRNA levels of Bax and Bcl2 were also checked using RT-PCR. Caspase 3/7, 8 and 9 were measured for their induction while treatment. The involvement of NF-κB was analyzed using HCS assay. The results showed that PA possesses the characteristics of selectively inducing cell death of tumor cells as no inhibition was observed in non-tumorigenic cells even at 30 μg/ml. Treatment of MCF7 cells with PA induced apoptosis with cell death-transducing signals, that regulate the MMP by down-regulation of Bcl2 and up-regulation of Bax, triggering the cytochrome c release from mitochondria to cytosol. The release of cytochrome c triggered the activation of caspases-9, then activates downstream executioner caspase-3/7 and consequently cleaved specific substrates leading to apoptotic changes. This form of apoptosis was found closely associated with the extrinsic pathway caspase (caspase-8) and inhibition of translocation of NF-κB from cytoplasm to nucleus. The results demonstrated that PA induced apoptosis of MCF7 cells through NF-κB and Bcl2/Bax signaling pathways with the involvement of caspases.
AIMS: To examine the expression of the Bcl-2 family of proteins (Bcl-2, Bcl-x, Bcl-xL and Bax) in classical Hodgkin's lymphoma (cHL) and to correlate the expression of these proteins with proliferation, apoptosis and the presence of Epstein-Barr virus (EBV).
METHODS AND RESULTS: Expression of the Bcl-2 family of proteins was detected by immunohistochemistry, proliferation was determined by Ki67 labelling and apoptosis by TUNEL in-situ hybridization. EBV was detected by Epstein-Barr virus early RNA (EBER) in-situ hybridization. Expression of Bcl-2, Bcl-x, Bcl-xL and Bax was detected in the Hodgkin/Reed-Sternberg (H/RS) cells in 43.7% (27/62), 87.5% (56/64), 67.2% (41/61) and 74.6% (47/63) of the cHL cases, respectively. EBER was detected in 53% (35/66) of the cases, whereas Ki67 was observed in 86.7% (52/60) of the cases. Apoptotic H/RS cells were observed infrequently, and only 43.2% (11/26) of the cases showed an apoptotic index of > or = 10% in the H/RS cells. A statistically significant inverse relationship was observed between the expression of Bcl-2 and the presence of EBV (P = 0.003). Bcl-xL showed an inverse correlation with apoptosis in the H/RS cells (P = 0.004).
CONCLUSIONS: The higher Bcl-xL expression (67.2%) compared with Bcl-2 expression (43.5%) observed in cHL as well as the statistically significant inverse relationship between Bcl-xL and apoptosis suggests that Bcl-xL plays an important role in the survival of H/RS cells. Expression of Bax may be neutralized by other anti-apoptotic members of the family such as Bcl-2 and/or Bcl-xL.
Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) complicates combination antiretroviral therapy (cART) in up to 25% of patients with HIV/TB coinfection. Monocytes and IL-18, a signature cytokine of inflammasome activation, are implicated in TB-IRIS pathogenesis. In this study, we investigated inflammasome activation both pre- and post-cART in TB-IRIS patients. HIV/TB patients exhibited higher proportions of monocytes expressing activated caspase-1 (casp1) pre-cART, compared with HIV patients without TB, and patients who developed TB-IRIS exhibited the greatest increase in casp1 expression. CD64(+) monocytes were a marker of increased casp1 expression. Furthermore, IL-1β, another marker of inflammasome activation, was also elevated during TB-IRIS. TB-IRIS patients also exhibited greater upregulation of NLRP3 and AIM2 inflammasome mRNA, compared with controls. Analysis of plasma mitochondrial DNA levels showed that TB-IRIS patients experienced greater cell death, especially pre-cART. Plasma NO levels were lower both pre- and post-cART in TB-IRIS patients, providing evidence of inadequate inflammasome regulation. Plasma IL-18 levels pre-cART correlated inversely with NO levels but positively with monocyte casp1 expression and mitochondrial DNA levels, and expression of IL-18Rα on CD4(+) T cells and NK cells was higher in TB-IRIS patients, providing evidence that IL-18 is a marker of inflammasome activation. We propose that inflammasome activation in monocytes/macrophages of HIV/TB patients increases with ineffective T cell-dependent activation of monocytes/macrophages, priming them for an excessive inflammatory response after cART is commenced, which is greatest in patients with TB-IRIS.
The WRKY transcription factors (TFs) network is composed of WRKY TFs' subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs' network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30-a member of group III Pepper WRKY protein-for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper's vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper's immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper's immunity and response to RSI.
Mycobacterium tuberculosis has a remarkable ability of long-term persistence despite vigorous host immunity and prolonged therapy. The bacteria persist in secure niches such as the mesenchymal stem cells in the bone marrow and reactivate the disease, leading to therapeutic failure. Many bacterial cells can remain latent within a diseased tissue so that their genetic material can be incorporated into the genetic material of the host tissue. This incorporated genetic material reproduces in a manner similar to that of cellular DNA. After the cell division, the incorporated gene is reproduced normally and distributed proportionately between the two progeny. This inherent adoption of long-term persistence and incorporating the bacterial genetic material into that of the host tissue remains and is considered imperative for microbial advancement and chemotherapeutic resistance; moreover, new evidence indicates that the bacteria might pass on genetic material to the host DNA sequence. Several studies focused on the survival mechanism of M. tuberculosis in the host immune system with the aim of helping the efforts to discover new drugs and vaccines against tuberculosis. This review explored the mechanisms through which this bacterium affects the expression of human genes. The first part of the review summarizes the current knowledge about the interactions between microbes and host microenvironment, with special reference to the M. tuberculosis neglected persistence in immune cells and stem cells. Then, we focused on how bacteria can affect human genes and their expression. Furthermore, we analyzed the literature base on the process of cell death during tuberculosis infection, giving particular emphasis to gene methylation as an inherited process in the neutralization of possibly injurious gene components in the genome. The final section discusses recent advances related to the M. tuberculosis interaction with host epigenetic circuitry.