Displaying publications 181 - 200 of 382 in total

Abstract:
Sort:
  1. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Pook PC, et al.
    J Ethnopharmacol, 2011 Jan 27;133(2):881-7.
    PMID: 21093571 DOI: 10.1016/j.jep.2010.11.026
    Andrographis paniculata (AP), Centella asiatica (CA) and Orthosiphon stamineus (OS) are three popular herbs traditionally used worldwide. AP is known for the treatment of infections and diabetes and CA is good for wound healing and healthy skin while OS is usually consumed as tea to treat kidney and urinary disorders. Interaction of these herbs with human cytochrome P450 2C19 (CYP2C19), a major hepatic CYP isoform involved in metabolism of many clinical drugs has not been investigated to date.
    Matched MeSH terms: Enzyme Inhibitors/adverse effects; Enzyme Inhibitors/pharmacology*
  2. Yeo SK, Liong MT
    Int J Food Sci Nutr, 2010 Mar;61(2):161-81.
    PMID: 20085504 DOI: 10.3109/09637480903348122
    Lactobacillus sp. FTDC 2113, L. acidophilus FTDC 8033, L. acidophilus ATCC 4356, L. casei ATCC 393, Bifidobacterium FTDC 8943 and B. longum FTDC 8643 were incorporated into soymilk supplemented with fructooligosaccharides (FOS), inulin, mannitol, maltodextrin and pectin. The objective of the present study was to evaluate the effects of prebiotics on the bioactivity of probiotic-fermented soymilk. Proteolytic activity was increased in the presence of FOS, while the supplementation of inulin and pectin increased the angiotensin I-converting enzyme inhibitory activity accompanied by lower IC(50) values. The beta-glucosidase activity was also enhanced in the presence of pectin. This led to higher bioconversion of glucosides to aglycones by probiotics, especially genistin and malonyl genistin to genistein. Results from this study indicated that the supplementation of prebiotics enhanced the in-vitro antihypertensive effect and production of bioactive aglycones in probiotic-fermented soymilk. Therefore, this soymilk could potentially be used as a dietary therapy to reduce the risks of hypertension and hormone-dependent diseases such as breast cancer, prostate cancer and osteoporosis.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/metabolism; Angiotensin-Converting Enzyme Inhibitors/pharmacology*
  3. Amir O, Hassan Y, Sarriff A, Awaisu A, Abd Aziz N, Ismail O
    Pharm World Sci, 2009 Jun;31(3):387-93.
    PMID: 19255869 DOI: 10.1007/s11096-009-9288-x
    STUDY OBJECTIVE: To determine the incidence of and the risk factors associated with hyperkalemia, induced by ACEI-drug interactions among cardiac patients.

    SETTING: Five medical and cardiology wards of a tertiary care center in Malaysia.

    SUBJECTS: Five hundred cardiac inpatients, who received ACEIs concomitantly with other interacting drugs.

    METHOD: This was a prospective cohort study of 500 patients with cardiovascular diseases admitted to Penang Hospital between January to August 2006, who received ACEIs concomitantly with other interacting drugs. ACEI-drug interactions of clinical significance were identified using available drug information resources. Drug Interaction Probability Scale (DIPS) was used to assess the causality of association between ACEI-drug interactions and the adverse outcome (hyperkalemia).

    MAIN OUTCOME MEASURE: Hyperkalemia as an adverse clinical outcome of the interaction was identified from laboratory investigations.

    RESULTS: Of the 489 patients included in the analysis, 48 (9.8%) had hyperkalemia thought to be associated with ACEI-drug interactions. Univariate analysis using binary logistic regression revealed that advanced age (60 years or more), and taking more than 15 medications were independent risk factors significantly associated with hyperkalemia. However, current and previous smoking history appeared to be a protective factor. Risk factors identified as predictors of hyperkalemia secondary to ACEI-drug interactions by multi-logistic regression were: advanced age (adjusted OR 2.3, CI 1.07-5.01); renal disease (adjusted OR 4.7, CI 2.37-9.39); hepatic disease (adjusted OR 5.2, CI 1.08-25.03); taking 15-20 medications (adjusted OR 4.4, CI 2.08-9.19); and taking 21-26 medications (adjusted OR 9.0, CI 1.64-49.74).

    CONCLUSION: Cardiac patients receiving ACEIs concomitantly with potentially interacting drugs are at high risk of experiencing hyperkalemia. Old age, renal disease, hepatic disease, and receiving large number of medications are factors that may significantly increase their vulnerability towards this adverse outcome; thus, frequent monitoring is advocated.

    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/adverse effects*; Angiotensin-Converting Enzyme Inhibitors/therapeutic use
  4. Malami I, Abdul AB, Abdullah R, Bt Kassim NK, Waziri P, Christopher Etti I
    Molecules, 2016 Apr 08;21(4):417.
    PMID: 27070566 DOI: 10.3390/molecules21040417
    Uridine-cytidine kinase 2 is implicated in uncontrolled proliferation of abnormal cells and it is a hallmark of cancer, therefore, there is need for effective inhibitors of this key enzyme. In this study, we employed the used of in silico studies to find effective UCK2 inhibitors of natural origin using bioinformatics tools. An in vitro kinase assay was established by measuring the amount of ADP production in the presence of ATP and 5-fluorouridine as a substrate. Molecular docking studies revealed an interesting ligand interaction with the UCK2 protein for both flavokawain B and alpinetin. Both compounds were found to reduce ADP production, possibly by inhibiting UCK2 activity in vitro. In conclusion, we have identified flavokawain B and alpinetin as potential natural UCK2 inhibitors as determined by their interactions with UCK2 protein using in silico molecular docking studies. This can provide information to identify lead candidates for further drug design and development.
    Matched MeSH terms: Enzyme Inhibitors/therapeutic use; Enzyme Inhibitors/chemistry*
  5. Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, et al.
    Pharmacol Res, 2015 Jul;97:16-26.
    PMID: 25829335 DOI: 10.1016/j.phrs.2015.03.010
    Glycogen synthase kinase 3 (GSK-3) dysregulation plays an important role in the pathogenesis of numerous disorders, affecting the central nervous system (CNS) encompassing both neuroinflammation and neurodegenerative diseases. Several lines of evidence have illustrated a key role of the GSK-3 and its cellular and molecular signaling cascades in the control of neuroinflammation. Glycogen synthase kinase 3 beta (GSK-3β), one of the GSK-3 isomers, plays a major role in neuronal apoptosis and its inhibition decreases expression of alpha-Synuclein (α-Synuclein), which make this kinase an attractive therapeutic target for neurodegenerative disorders. Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. Thus, understanding the role of GSK-3β in PD will enhance our knowledge of the basic mechanisms underlying the pathogenesis of this disorder and facilitate the identification of new therapeutic avenues. In recent years, GSK-3β has been shown to play essential roles in modulating a variety of cellular functions, which have prompted efforts to develop GSK-3β inhibitors as therapeutics. In this review, we summarize GSK-3 signaling pathways and its association with neuroinflammation. Moreover, we highlight the interaction between GSK-3β and several cellular processes involved in the pathogenesis of PD, including the accumulation of α-Synuclein aggregates, oxidative stress and mitochondrial dysfunction. Finally, we discuss about GSK-3β inhibitors as a potential therapeutic strategy in PD.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology; Enzyme Inhibitors/therapeutic use
  6. Zaman K, Rahim F, Taha M, Wadood A, Shah SAA, Ahmed QU, et al.
    Sci Rep, 2019 11 05;9(1):16015.
    PMID: 31690793 DOI: 10.1038/s41598-019-52100-0
    Here in this study regarding the over expression of TP, which causes some physical, mental and socio problems like psoriasis, chronic inflammatory disease, tumor angiogenesis and rheumatoid arthritis etc. By this consideration, the inhibition of this enzyme is vital to secure life from serious threats. In connection with this, we have synthesized twenty derivatives of isoquinoline bearing oxadiazole (1-20), characterized through different spectroscopic techniques such as HREI-MS, 1H- NMR and 13C-NMR and evaluated for thymidine phosphorylase inhibition. All analogues showed outstanding inhibitory potential ranging in between 1.10 ± 0.05 to 54.60 ± 1.50 µM. 7-Deazaxanthine (IC50 = 38.68 ± 1.12 µM) was used as a positive control. Through limited structure activity relationships study, it has been observed that the difference in inhibitory activities of screened analogs are mainly affected by different substitutions on phenyl ring. The effective binding interactions of the most active analogs were confirmed through docking study.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*; Enzyme Inhibitors/metabolism
  7. Ainsah O, Nabishah BM, Osman CB, Khalid BA
    Clin Exp Pharmacol Physiol, 1999 7 1;26(5-6):433-7.
    PMID: 10386234
    1. The present study examined the effect of naloxone (NAL), glycyrrhizic acid (GCA), deoxycorticosterone (DOC) and dexamethasone (DEX) on daily repeated 2 h chronic restrained stress (RS) on the locomotor activity (LA) of rats tested in the open field arena to elucidate the possible roles of opioids, glucocorticoids and mineralocorticoids in response to stress. 2. Intact and adrenalectomized (ADX) rats were either injected with 0.1 mL of NAL (0.32 microgram/100 g BW), 2.4 mg/kg DOC or 120 micrograms/kg DEX or had 1.0 mg/mL GCA dissolved in their drinking water or normal saline (for the ADX group) dissolved in their drinking water. 3. In intact groups, treatment with NAL completely blocked the stress response and treatment with GCA, DOC and DEX partially prevented the stress response. Adaptation occurred on either days 4, 5, 6 or 7 for intact rats treated with DEX, DOC, GCA or control rats, respectively. All ADX control rats died following the first 2 h RS. Adrenalectomized rats treated with DEX or DOC adapted later compared with intact rats, while rats given either GCA or NAL were unable to block or adapt to chronic RS. 4. These findings demonstrate that the stress response is primarily mediated by endogenous opioids, in that it is blocked by NAL. Both mineralocorticoids and glucocorticoids, which can act centrally to inhibit endorphins, partially blocked the stress response. The effect of GCA in intact rats was similar to that of both DEX and DOC in intact rats. Adrenalectomized rats treated with GCA (despite their lack of endogenous corticosterone) showed a stress response that was significantly different from the other ADX groups, implying that GCA had effects independent of endogenous corticosterone.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology; Enzyme Inhibitors/therapeutic use
  8. Saleem H, Htar TT, Naidu R, Zengin G, Ahmad I, Ahemad N
    Nat Prod Res, 2020 Sep;34(18):2602-2606.
    PMID: 30600720 DOI: 10.1080/14786419.2018.1543684
    In this study, phytochemical composition, antioxidant, enzyme inhibition and cytotoxic activities of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (B. glabra) flowers were investigated. Methanol extract was found to have higher total bioactive contents and UHPLC-MS analysis of methanol extract revealed the presence of well-known phenolic and flavonoid compounds. Antioxidant activities were performed by radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum (TAC) and metal chelating assays. From our result, we observed that methanol extract had many antioxidant compounds. The DCM extract exhibited higher cholinesterases and α-glucosidase enzyme inhibition, while methanol extract showed significant urease inhibition. Both extracts exhibited strong to moderate cytotoxicity against MCF-7, MDA-MB-231, CaSki, DU-145 and SW-480 cancer cells with IC50 values ranging from 88.49 to 304.7 µg/mL. The findings showed the B. glabra to possess considerable antioxidant, enzyme inhibition and cytotoxic potentials and therefore has potential to discover novel bioactive molecules.
    Matched MeSH terms: Enzyme Inhibitors/isolation & purification*; Enzyme Inhibitors/pharmacology
  9. Hassani A, Hussain SA, Abdullah N, Kamarudin S, Rosli R
    AAPS PharmSciTech, 2019 Jan 07;20(2):53.
    PMID: 30617521 DOI: 10.1208/s12249-018-1238-2
    Orotic acid (OA) nanoparticles were prepared using the freeze-drying method. The antihypertensive activity and antioxidant capacity of OA and orotic acid-loaded gum arabic nanoparticles (OAGANPs) were examined using the angiotensin-converting enzyme (ACE), 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO), and β-carotene assays, as well as the quantification of total phenolic content (TPC). The DPPH and NO scavenging activities of OAGANPs were significantly higher than those of the OA solution. The β-carotene bleaching assay of OAGANPs showed a dose-dependent trend, while 500 μg/ml was significantly more effective than the other concentrations, which exerted 63.4% of the antioxidant activity. The in vitro antihypertensive assay revealed that the OAGANPs exhibited the most potent ACE inhibition activity, when compared to the OA solution. Hence, results revealed the potential of preparing the OA as a nanoparticle formulation in enhancing the antioxidant and antihypertensive properties compared to the OA solution.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/administration & dosage*; Angiotensin-Converting Enzyme Inhibitors/chemistry
  10. Nyon MP, Rice DW, Berrisford JM, Hounslow AM, Moir AJ, Huang H, et al.
    J Mol Biol, 2009 Jan 9;385(1):226-35.
    PMID: 18983850 DOI: 10.1016/j.jmb.2008.10.050
    Cutinase belongs to a group of enzymes that catalyze the hydrolysis of esters and triglycerides. Structural studies on the enzyme from Fusarium solani have revealed the presence of a classic catalytic triad that has been implicated in the enzyme's mechanism. We have solved the crystal structure of Glomerella cingulata cutinase in the absence and in the presence of the inhibitors E600 (diethyl p-nitrophenyl phosphate) and PETFP (3-phenethylthio-1,1,1-trifluoropropan-2-one) to resolutions between 2.6 and 1.9 A. Analysis of these structures reveals that the catalytic triad (Ser136, Asp191, and His204) adopts an unusual configuration with the putative essential histidine His204 swung out of the active site into a position where it is unable to participate in catalysis, with the imidazole ring 11 A away from its expected position. Solution-state NMR experiments are consistent with the disrupted configuration of the triad observed crystallographically. H204N, a site-directed mutant, was shown to be catalytically inactive, confirming the importance of this residue in the enzyme mechanism. These findings suggest that, during its catalytic cycle, cutinase undergoes a significant conformational rearrangement converting the loop bearing the histidine from an inactive conformation, in which the histidine of the triad is solvent exposed, to an active conformation, in which the triad assumes a classic configuration.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology; Enzyme Inhibitors/chemistry
  11. Hassani A, Azarian MMS, Ibrahim WN, Hussain SA
    Sci Rep, 2020 10 20;10(1):17808.
    PMID: 33082415 DOI: 10.1038/s41598-020-71175-8
    Gallic acid (GA) is a natural phenolic compound with therapeutic effects that are often challenged by its rapid metabolism and clearance. Therefore,  GA was encapsulated using gum arabic into nanoparticles to increase its bioavailability. The formulated nanoparticles (GANPs) were characterized for physicochemical properties and size and were then evaluated for antioxidant and antihypertensive effects using various established in vitro assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide scavenging (NO), β-carotene bleaching and angiotensin-converting enzyme (ACE) inhibitory assays. The GANPs were further evaluated for the in vitro cytotoxicity, cell uptake and cell migration in four types of human cancer cell lines including (MCF-7, MDA-MB231) breast adenocarcinoma, HepG2 hepatocellular cancer, HT-29 colorectal adenocarcinoma, and MCF-10A breast epithelial cell lines. The GANPs demonstrated potent antioxidant effects and have shown promising anti-cancer properties in a dose-dependent manner with a predilection toward HepG2 and MCF7 cancer cells. The uptake of GANPs was successful in the majority of cancer cells with a propensity to accumulate in the nuclear region of the cells. The HepG2 and MCF7 cancer cells also had a significantly higher percentage of apoptosis and were more sensitive to gallic acid nanoparticle treatment in the cell migration assay. This study is the first to confirm the synergistic effects of gum arabic in the encapsulation of gallic acid by increasing the selectivity towards cancer cells and enhancing  the antioxidant properties. The formulated nanoparticles also had remarkably low toxicity in normal cells. Based on these findings, GANPs may have promising therapeutic applications towards the development of more effective treatments with a probable targeting precision in cancer cells.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/pharmacology*; Angiotensin-Converting Enzyme Inhibitors/chemistry
  12. Ngoh YY, Lim TS, Gan CY
    Enzyme Microb Technol, 2016 Jul;89:76-84.
    PMID: 27233130 DOI: 10.1016/j.enzmictec.2016.04.001
    The objective of this study was to screen and identify α-amylase inhibitor peptides from Pinto bean. Five Pinto bean bioactive peptides were successfully identified: PPHMLP (P1), PLPWGAGF (P3), PPHMGGP (P6), PLPLHMLP (P7) and LSSLEMGSLGALFVCM (P9). Based on ELISA results, their promising optical density values were 1.27; 3.71, 1.67, 3.20 and 1.03, respectively, which indicated the binding interaction between the peptide and α-amylase occurred. The highest inhibitory activity (66.72%) of the chemically synthesized peptide was shown in SyP9 followed by SyP1 (48.86%), SyP3 (31.17%), SyP7 (27.88%) and SyP6 (23.96%). The IC50 values were 1.97, 8.96, 14.63, 18.45 and 20.56mgml(-1), respectively. Structure activity relationship study revealed that α-amylase was inhibited due to its residues of Ala230, Asp229, Asp326, Tyr54, Met195, Leu194 and His233 were bound. On the other hand, the residues of PBBP (i.e. histidine, proline and methionine) were found to have the highest potency in the binding interaction.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology; Enzyme Inhibitors/chemistry
  13. Abuelizz HA, Anouar EH, Marzouk M, Hasan MH, Saleh SR, Ahudhaif A, et al.
    Anticancer Agents Med Chem, 2020;20(14):1714-1721.
    PMID: 32593283 DOI: 10.2174/1871520620666200627212128
    BACKGROUND: The use of tyrosinase has confirmed to be the best means of recognizing safe, effective, and potent tyrosinase inhibitors for whitening skin. Twenty-four 2-phenoxy(thiomethyl)pyridotriazolopyrimidines were synthesized and characterized in our previous studies.

    OBJECTIVE: The present work aimed to evaluate their cytotoxicity against HepG2 (hepatocellular carcinoma), A549 (pulmonary adenocarcinoma), MCF-7 (breast adenocarcinoma) and WRL 68 (embryonic liver) cell lines.

    METHODS: MTT assay was employed to investigate the cytotoxicity, and a tyrosinase inhibitor screening kit was used to evaluate the Tyrosinase (TYR) inhibitory activity of the targets.

    RESULTS: The tested compounds exhibited no considerable cytotoxicity, and nine of them were selected for a tyrosinase inhibitory test. Compounds 2b, 2m, and 5a showed good inhibitory percentages against TYR compared to that of kojic acid (reference substance). Molecular docking was performed to rationalize the Structure-Activity Relationship (SAR) of the target pyridotriazolopyrimidines and analyze the binding between the docked-selected compounds and the amino acid residues in the active site of tyrosinase.

    CONCLUSION: The target pyridotriazolopyrimidines were identified as a new class of tyrosinase inhibitors.

    Matched MeSH terms: Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  14. Abidin MHZ, Abdullah N, Abidin NZ
    Int J Med Mushrooms, 2018;20(3):283-290.
    PMID: 29717672 DOI: 10.1615/IntJMedMushrooms.2018025821
    This study evaluates the in vitro inhibition of angiotensin-converting enzyme (ACE) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA) by Pleurotus pulmonarius extracts. The protective effect on the endothelial membrane against oxidative stress through the protection of nitric oxide bioavailability, as well as inhibition of endocan expression, was evaluated using human aortic endothelial cells (HAECs). Crude cold aqueous extract exhibited the most potent inhibitory activities against ACE and HMG-CoA reductase, with 61.79% and 44.30% inhibition, respectively. It also protected the bioavailability of NO released by HAECs, with 84.88% cell viability. The crude hot water extract was the most potent in inhibiting endocan expression, with 18.61% inhibition.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/isolation & purification; Angiotensin-Converting Enzyme Inhibitors/pharmacology*
  15. Shamsi S, Tran H, Tan RS, Tan ZJ, Lim LY
    Drug Metab. Dispos., 2017 01;45(1):49-55.
    PMID: 27821437
    Inhibition of cytochrome P450 (P450) enzymes (CYP) has been shown to lower the metabolism of drugs that are P450 substrates and to consequently alter their pharmacokinetic profiles. Curcumin (CUR), piperine (PIP), and capsaicin (CAP) are spice components (SC) that inhibit the activities of a range of P450 enzymes, but the selection of which SC to be prioritized for further development as an adjuvant will depend on the ranking order of the inhibitory potential of the SCs on specific P450 isozymes. We used common human recombinant enzyme platforms to provide a comparative evaluation of the inhibitory activities of CUR, PIP, and CAP on the principal drug-metabolizing P450 enzymes. SC-mediated inhibition of CYP3A4 was found to rank in the order of CAP (IC501.84 ± 0.71 µM) ∼ PIP (2.12 ± 0.45 µM) > CUR (11.93 ± 3.49 µM), while CYP2C9 inhibition was in the order of CAP (11.95 ± 4.24 µM) ∼ CUR (14.58 ± 4.57 µM) > PIP (89.62 ± 9.17 µM). CAP and PIP were significantly more potent inhibitors of CYP1A2 (IC502.14 ± 0.22 µM and 14.19 ± 4.15 µM, respectively) than CUR (IC50> 100 µM), while all three SCs exhibited weak activity toward CYP2D6 (IC5095.42 ± 12.09 µM for CUR, 99.99 ± 5.88 µM for CAP, and 110.40 ± 3.23 µM for PIP). Of the three SCs, CAP thus has the strongest potential for further development into an inhibitor of multiple CYPs for use in the clinic. Data from this study are also useful for managing potential drug-SC interactions.
    Matched MeSH terms: Cytochrome P-450 Enzyme Inhibitors/pharmacology*; Cytochrome P-450 Enzyme Inhibitors/chemistry
  16. Hanafi MA, Hashim SN, Chay SY, Ebrahimpour A, Zarei M, Muhammad K, et al.
    Food Res Int, 2018 04;106:589-597.
    PMID: 29579964 DOI: 10.1016/j.foodres.2018.01.030
    As a protein-rich, underutilized crop, green soybean could be exploited to produce hydrolysates containing angiotensin-I converting enzyme (ACE) inhibitory peptides. Defatted green soybean was hydrolyzed using four different food-grade proteases (Alcalase, Papain, Flavourzyme and Bromelain) and their ACE inhibitory activities were evaluated. The Alcalase-generated green soybean hydrolysate showed the highest ACE inhibitory activity (IC50: 0.14 mg/mL at 6 h hydrolysis time) followed by Papain (IC50: 0.20 mg/mL at 5 h hydrolysis time), Bromelain (IC50: 0.36 mg/mL at 6 h hydrolysis time) and Flavourzyme (IC50: 1.14 mg/mL at 6 h hydrolysis time) hydrolysates. The Alcalase-generated hydrolysate was profiled based on its hydrophobicity and isoelectric point using reversed phase high performance liquid chromatography (RP-HPLC) and isoelectric point focusing (IEF) fractionators. The Alcalase-generated green soybean hydrolysate comprising of peptides EAQRLLF, PSLRSYLAE, PDRSIHGRQLAE, FITAFR and RGQVLS, revealed the highest ACE inhibitory activity of 94.19%, 99.31%, 92.92%, 101.51% and 90.40%, respectively, while their IC50 values were 878 μM, 532 μM, 1552 μM, 1342 μM and 993 μM, respectively. It can be concluded that Alcalase-digested green soybean hydrolysates could be exploited as a source of peptides to be incorporated into functional foods with antihypertensive activity.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/isolation & purification; Angiotensin-Converting Enzyme Inhibitors/pharmacology*
  17. Haque AKMM, Leong KH, Lo YL, Awang K, Nagoor NH
    Phytomedicine, 2017 Jul 15;31:1-9.
    PMID: 28606510 DOI: 10.1016/j.phymed.2017.05.002
    BACKGROUND: The compound, 1'-S-1'-acetoxychavicol acetate (ACA), isolated from the rhizomes of a Malaysian ethno-medicinal plant, Alpinia conchigera Griff. (Zingiberaceae), was previously shown to have potential in vivo antitumour activities. In the development of a new drug entity, potential interactions of the compound with the cytochrome P450 superfamily metabolizing enzymes need to be ascertain.

    PURPOSE: The concomitant use of therapeutic drugs may cause potential drug-drug interactions by decreasing or increasing plasma levels of the administered drugs, leading to a suboptimal clinical efficacy or a higher risk of toxicity. Thus, evaluating the inhibitory potential of a new chemical entity, and to clarify the mechanism of inhibition and kinetics in the various CYP enzymes is an important step to predict drug-drug interactions.

    STUDY DESIGN: This study was designed to assess the potential inhibitory effects of Alpinia conchigera Griff. rhizomes extract and its active constituent, ACA, on nine c-DNA expressed human cytochrome P450s (CYPs) enzymes using fluorescent CYP inhibition assay.

    METHODS/RESULTS: The half maximal inhibitory concentration (IC50) of Alpinia conchigera Griff. rhizomes extract and ACA was determined for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5. A. conchigera extract only moderately inhibits on CYP3A4 (IC50 = 6.76 ± 1.88µg/ml) whereas ACA moderately inhibits the activities of CYP1A2 (IC50 = 4.50 ± 0.10µM), CYP2D6 (IC50 = 7.50 ± 0.17µM) and CYP3A4 (IC50 = 9.50 ± 0.57µM) while other isoenzymes are weakly inhibited. In addition, mechanism-based inhibition studies reveal that CYP1A2 and CYP3A4 exhibited non-mechanism based inhibition whereas CYP2D6 showed mechanism-based inhibition. Lineweaver-Burk plots depict that ACA competitively inhibited both CYP1A2 and CYP3A4, with a Ki values of 2.36 ± 0.03 µM and 5.55 ± 0.06µM, respectively, and mixed inhibition towards CYP2D6 with a Ki value of 4.50 ± 0.08µM. Further, molecular docking studies show that ACA is bound to a few key amino acid residues in the active sites of CYP1A2 and CYP3A4, while one amino residue of CYP2D6 through predominantly Pi-Pi interactions.

    CONCLUSION: Overall, ACA may demonstrate drug-drug interactions when co-administered with other therapeutic drugs that are metabolized by CYP1A2, CYP2D6 or CYP3A4 enzymes. Further in vivo studies, however, are needed to evaluate the clinical significance of these interactions.

    Matched MeSH terms: Cytochrome P-450 Enzyme Inhibitors/pharmacology*; Cytochrome P-450 Enzyme Inhibitors/chemistry
  18. Rehman A, Abbasi MA, Siddiqui SZ, Mohyuddin A, Nadeem S, Shah SA
    Pak J Pharm Sci, 2016 Sep;29(5):1489-1496.
    PMID: 27731801
    New potent organic compounds were synthesized with an aim of good biological activities such as antibacterial and anti-enzymatic. Three series of sulfonamide derivatives were synthesized by treating N-alkyl/aryl substituted amines (2a-f) with 4-chlorobenzensulfonyl chloride (1) to yield N-alkyl/aryl-4-chlorobenzenesulfonamide(3af) that was then derivatized by gearing up with ethyl iodide (4), benzyl chloride (5) and 4-chlorobenzyl chloride (6) using sodium hydride as base to initialize the reaction in a polar aprotic solvent (DMF) to synthesize the derivatives, 7a-f, 8af and 9a-f respectively. Structure elucidation was brought about by IR, 1H-NMR and EIMS spectra for all the synthesized molecules which were evaluated for their antibacterial activities and inhibitory potentials for certain enzymes.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*; Enzyme Inhibitors/pharmacology*
  19. Salar U, Khan KM, Chigurupati S, Taha M, Wadood A, Vijayabalan S, et al.
    Sci Rep, 2017 12 05;7(1):16980.
    PMID: 29209017 DOI: 10.1038/s41598-017-17261-w
    Current research is based on the identification of novel inhibitors of α-amylase enzyme. For that purpose, new hybrid molecules of hydrazinyl thiazole substituted chromones 5-27 were synthesized by multi-step reaction and fully characterized by various spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemistry of the iminic bond was confirmed by NOESY analysis of a representative molecule. All compounds 5-27 along with their intervening intermediates 1-4, were screened for in vitro α-amylase inhibitory, DPPH and ABTS radical scavenging activities. All compounds showed good inhibition potential in the range of IC50 = 2.186-3.405 µM as compared to standard acarbose having IC50 value of 1.9 ± 0.07 µM. It is worth mentioning that compounds were also demonstrated good DPPH (IC50 = 0.09-2.233 µM) and ABTS (IC50 = 0.584-3.738 µM) radical scavenging activities as compared to standard ascorbic acid having IC50 = 0.33 ± 0.18 µM for DPPH and IC50 = 0.53 ± 0.3 µM for ABTS radical scavenging activities. In addition to that cytotoxicity of the compounds were checked on NIH-3T3 mouse fibroblast cell line and found to be non-toxic. In silico studies were performed to rationalize the binding mode of compounds (ligands) with the active site of α-amylase enzyme.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  20. Ab Rahman NS, Abd Majid FA, Abd Wahid ME, Zainudin AN, Zainol SN, Ismail HF, et al.
    Drug Metab Lett, 2018;12(1):62-67.
    PMID: 29542427 DOI: 10.2174/1872312812666180314112457
    BACKGROUND: SynacinnTM contains five standardized herbal extracts of Orthosiphon Stamineus (OS), Syzygium polyanthum (SZ), Curcuma xantorrizza (CX), Cinnamomum zeylanicum (CZ) and Andrographis paniculata (AP) and is standardized against phytochemical markers of rosmarinic acid, gallic acid, curcumin, catechin and andrographolide respectively. This herbal medicine has been used as health supplement for diabetes. SynacinnTM is recommended to be consumed as supplement to the diabetic drugs. However, herb-drug interaction of SynacinnTM polyherbal with present drugs is unknown.

    METHODS: This study was designed to investigate the effect of SynacinnTM and its individual biomarkers on drug metabolizing enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam), CYP3A4 (Testosteron)), to assess its herb-drug interaction potential through cytochrome P450 inhibition assay. This study was conducted using liquid chromatography- tandem mass spectroscopy (LC-MS/MS) using probe substrates using human liver microsomes against CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam) and CYP3A4 (Testosteron).

    RESULTS: Result showed that SynacinnTM at maximum concentration (5000 µg/ml) 100% inhibit CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam) and CYP3A4 (Testosteron). IC50 values determined were 0.23, 0.60, 0.47, 0.78, 1.23, 0.99, 1.01, and 0.91 mg/ml for CYP 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4 (midazolam) and 3A4 (testosterone), respectively. Meanwhile, all individual biomarkers showed no, less or moderate inhibitory effect towards all the tested CYP450 except for curcumin that showed inhibition of CYP2C8 (91%), CYP2C9 (81%) and CYP2C19 (72%) at 10µM.

    CONCLUSION: Curcumin was found to be an active constituent that might contribute to the inhibition of SynacinnTM against CYP2C8, CYP2C9 and CYP2C19. It can be suggested that SynacinnTM can be consumed separately from a drug known to be metabolized by all tested CYP450 enzymes.

    Matched MeSH terms: Cytochrome P-450 Enzyme Inhibitors/pharmacology*; Cytochrome P-450 Enzyme Inhibitors/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links