Displaying publications 181 - 200 of 831 in total

Abstract:
Sort:
  1. Walker JS, Cadigan FC, Vosdingh RA, Chye CT
    J Infect Dis, 1973 Aug;128(2):223-6.
    PMID: 4198721
    Matched MeSH terms: Disease Models, Animal*
  2. Tiash S, Chowdhury ME
    Curr Pharm Des, 2016;22(37):5752-5759.
    PMID: 26864311
    Despite being widely used for treating cancer, chemotherapy is accompanied by numerous adverse effects as a result of systemic distribution and nonspecific interactions of the drugs with healthy tissues, eventually leading to therapeutic inefficacy and chemoresistance. Cyclophosphamide (Cyp) as one of the chemotherapeutic pro-drugs is activated in liver and used to treat breast cancer in high dose and in combination with other drugs. In an attempt to reduce the off-target effects and enhance the therapeutic efficacy, pH-sensitive carbonate apatite nanoparticles that had predominantly and size-dependently been localized in liver following intravenous administration, were employed to electrostatically immobilize Cyp and purposely deliver it to the liver for activation. Cyp-loaded particles formed by simple 30 min incubation at 37ºC of the DMEM (pH 7.4) medium containing CaCl2 and Cyp, enhanced in vitro cytotoxicity at different degrees depending on the cell types. The size of the particles could be tightly controlled by the amount of CaCl2 required to prepare the particles and thus the bio-distribution pattern inside different organs of the body. Unlike the small particles (~ 200 nm), the large size particles (~ 600 nm) which were more efficiently accumulated in liver, significantly reduced the tumor volume following intravenous injection in 4T1-induced murine breast cancer model at a very low dose (0.17 mg/Kg) of the drug initially added for complex formation, thus shedding light on the potential applications of the Cyp-loaded nano-formulations in the treatment of breast cancer.
    Matched MeSH terms: Disease Models, Animal*
  3. Hooi YT, Ong KC, Tan SH, Perera D, Wong KT
    Lab Invest, 2020 Sep;100(9):1262-1275.
    PMID: 32601355 DOI: 10.1038/s41374-020-0456-x
    Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.
    Matched MeSH terms: Disease Models, Animal*
  4. Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A, et al.
    Am J Pathol, 2003 Nov;163(5):2127-37.
    PMID: 14578210 DOI: 10.1016/S0002-9440(10)63569-9
    A predominantly pig-to-human zoonotic infection caused by the novel Nipah virus emerged recently to cause severe morbidity and mortality in both animals and man. Human autopsy studies showed the pathogenesis to be related to systemic vasculitis that led to widespread thrombotic occlusion and microinfarction in most major organs especially in the central nervous system. There was also evidence of extravascular parenchymal infection, particularly near damaged vessels (Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR, Nipah Virus Pathology Working Group: Nipah virus infection: Pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 2002, 161:2153-2167). We describe here a golden hamster (Mesocricetus auratus) model that appears to reproduce the pathology and pathogenesis of acute human Nipah infection. Hamsters infected by intranasal or intraperitoneal routes died within 9 to 29 days or 5 to 9 days, respectively. Pathological lesions were most severe and extensive in the hamster brain. Vasculitis, thrombosis, and more rarely, multinucleated endothelial syncytia, were found in blood vessels of multiple organs. Viral antigen and RNA were localized in both vascular and extravascular tissues including neurons, lung, kidney, and spleen, as demonstrated by immunohistochemistry and in situ hybridization, respectively. Paramyxoviral-type nucleocapsids were identified in neurons and in vessel walls. At the terminal stage of infection, virus and/or viral RNA could be recovered from most solid organs and urine, but not from serum. The golden hamster is proposed as a suitable model for further studies including pathogenesis studies, anti-viral drug testing, and vaccine development against acute Nipah infection.
    Matched MeSH terms: Disease Models, Animal*
  5. Johnathan M, Muhamad SA, Gan SH, Stanslas J, Mohd Fuad WE, Hussain FA, et al.
    PLoS One, 2021;16(3):e0249091.
    PMID: 33784348 DOI: 10.1371/journal.pone.0249091
    Lignosus rhinocerotis Cooke. (L. rhinocerotis) is a medicinal mushroom traditionally used in the treatment of asthma and several other diseases by the indigenous communities in Malaysia. In this study, the effects of L. rhinocerotis on allergic airway inflammation and hyperresponsiveness were investigated. L. rhinocerotis extract (LRE) was prepared by hot water extraction using soxhlet. Airway hyperresponsiveness (AHR) study was performed in house dust mite (HDM)-induced asthma in Balb/c mice while airway inflammation study was performed in ovalbumin (OVA)-induced asthma in Sprague-Dawley rats. Treatment with different doses of LRE (125, 250 and 500 mg/kg) significantly inhibited AHR in HDM-induced mice. Treatment with LRE also significantly decreased the elevated IgE in serum, Th2 cytokines in bronchoalveolar lavage fluid and ameliorated OVA-induced histological changes in rats by attenuating leukocyte infiltration, mucus hypersecretion and goblet cell hyperplasia in the lungs. LRE also significantly reduced the number of eosinophils and neutrophils in BALF. Interestingly, a significant reduction of the FOXP3+ regulatory T lymphocytes was observed following OVA induction, but the cells were significantly elevated with LRE treatment. Subsequent analyses on gene expression revealed regulation of several important genes i.e. IL17A, ADAM33, CCL5, IL4, CCR3, CCR8, PMCH, CCL22, IFNG, CCL17, CCR4, PRG2, FCER1A, CLCA1, CHIA and Cma1 which were up-regulated following OVA induction but down-regulated following treatment with LRE. In conclusion, LRE alleviates allergy airway inflammation and hyperresponsiveness, thus suggesting its therapeutic potential as a new armamentarium against allergic asthma.
    Matched MeSH terms: Disease Models, Animal*
  6. Sani MH, Taher M, Susanti D, Kek TL, Salleh MZ, Zakaria ZA
    Biol Res Nurs, 2015 Jan;17(1):68-77.
    PMID: 25504952 DOI: 10.1177/1099800414529648
    Elucidate the antinociceptive mechanisms of α-mangostin isolated from Garcinia malaccensis Linn.
    Matched MeSH terms: Disease Models, Animal
  7. Johnston SC, Briese T, Bell TM, Pratt WD, Shamblin JD, Esham HL, et al.
    PLoS One, 2015;10(2):e0117817.
    PMID: 25706617 DOI: 10.1371/journal.pone.0117817
    Henipaviruses are implicated in severe and frequently fatal pneumonia and encephalitis in humans. There are no approved vaccines or treatments available for human use, and testing of candidates requires the use of well-characterized animal models that mimic human disease. We performed a comprehensive and statistically-powered evaluation of the African green monkey model to define parameters critical to disease progression and the extent to which they correlate with human disease. African green monkeys were inoculated by the intratracheal route with 2.5 × 10(4) plaque forming units of the Malaysia strain of Nipah virus. Physiological data captured using telemetry implants and assessed in conjunction with clinical pathology were consistent with shock, and histopathology confirmed widespread tissue involvement associated with systemic vasculitis in animals that succumbed to acute disease. In addition, relapse encephalitis was identified in 100% of animals that survived beyond the acute disease phase. Our data suggest that disease progression in the African green monkey is comparable to the variable outcome of Nipah virus infection in humans.
    Matched MeSH terms: Disease Models, Animal
  8. Somchit MN, Sanat F, Hui GE, Wahab SI, Ahmad Z
    Adv Pharm Bull, 2014 Dec;4(4):401-4.
    PMID: 25436198 DOI: 10.5681/apb.2014.059
    PURPOSE: Nonsteroidal anti-inflammatory drugs (NSAIDs) are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model.

    METHODS: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil) or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day). Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN) and creatinine activities were measured.

    RESULTS: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine.

    CONCLUSION: RESULTS from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

    Matched MeSH terms: Models, Animal
  9. Voon SH, Kiew LV, Lee HB, Lim SH, Noordin MI, Kamkaew A, et al.
    Small, 2014 Dec 29;10(24):4993-5013.
    PMID: 25164105 DOI: 10.1002/smll.201401416
    Animal models, particularly rodents, are major translational models for evaluating novel anticancer therapeutics. In this review, different types of nanostructure-based photosensitizers that have advanced into the in vivo evaluation stage for the photodynamic therapy (PDT) of cancer are described. This article focuses on the in vivo efficacies of the nanostructures as delivery agents and as energy transducers for photosensitizers in animal models. These materials are useful in overcoming solubility issues, lack of tumor specificity, and access to tumors deep in healthy tissue. At the end of this article, the opportunities made possible by these multiplexed nanostructure-based systems are summarized, as well as the considerable challenges associated with obtaining regulatory approval for such materials. The following questions are also addressed: (1) Is there a pressing demand for more nanoparticle materials? (2) What is the prognosis for regulatory approval of nanoparticles to be used in the clinic?
    Matched MeSH terms: Disease Models, Animal
  10. Pamidi N, Nayak S
    Biomed J, 2014 Jul-Aug;37(4):225-31.
    PMID: 25116719 DOI: 10.4103/2319-4170.125651
    BACKGROUND: Environmental enrichment (EE) exposure is known to influence the structural changes in the neuronal network of hippocampus. In the present study, we evaluated the effects of EE exposure on the streptozotocin (STZ)-induced diabetic and stressed rat hippocampus.
    METHODS: Male albino rats of Wistar strain (4-5 weeks old) were grouped into normal control (NC), vehicle control (VC), diabetes (DI), diabetes + stress (DI + S), diabetes + EE (DI + E), and diabetes + stress + EE (DI + S + E) groups (n = 8 in each group). Rats were exposed to stress and EE after inducing diabetes with STZ (40 mg/kg). Rats were sacrificed on Day 30 and brain sections were processed for cresyl violet staining to quantify the number of surviving neurons in the CA1, CA3, and dentate hilus (DH) regions of hippocampus.
    RESULTS: A significant (p < 0.001) decrease in the number of survived neurons was noticed in DI (CA1, 34.06 ± 3.2; CA3, 36.1 ± 3.62; DH, 9.83 ± 2.02) as well as DI + S (CA1, 14.03 ± 3.12; CA3, 20.27 ± 4.09; DH, 6.4 ± 1.21) group rats compared to NC rats (CA1, 53.64 ± 2.96; CA3, 62.1 ± 3.34; DH, 21.11 ± 1.03). A significant (p < 0.001) increase in the number of survived neurons was observed in DI + E (CA1, 42.3 ± 3.66; CA3, 46.73 ± 4.74; DH, 17.03 ± 2.19) and DI + S + E (CA1, 29.69 ± 4.47; CA3, 36.73 ± 3.89; DH, 12.23 ± 2.36) group rats compared to DI and DI + S groups, respectively.
    CONCLUSIONS: EE exposure significantly reduced the amount of neuronal damage caused by complications of diabetes and stress to the neurons of hippocampus.
    Matched MeSH terms: Disease Models, Animal
  11. Muthuraju S, Islam MR, Pati S, Jaafar H, Abdullah JM, Yusoff KM
    Int J Neurosci, 2015;125(9):686-92.
    PMID: 25180987 DOI: 10.3109/00207454.2014.961065
    Dopamine (DA) is one of the key neurotransmitters in the striatum, which is functionally important for a variety of cognitive and motor behaviours. It is known that the striatum is vulnerable to damage from traumatic brain injury (TBI). However, a therapeutic approach has not yet been established to treat TBI. Hence, the present work aimed to evaluate the ability of Normobaric hyperoxia treatment (NBOT) to recover dopaminergic neurons following a fluid percussion injury (FPI) as a TBI experimental animal model. To examine this, mice were divided into four groups: (i) Control, (ii) Sham, (iii) FPI and (iv) FPI+NBOT. Mice were anesthetized and surgically prepared for FPI in the striatum and immediate exposure to NBOT at various time points (3, 6, 12 and 24 h). Dopamine levels were then estimated post injury by utilizing a commercially available ELISA method specific to DA. We found that DA levels were significantly reduced at 3 h, but there was no reduction at 6, 12 and 24 h in FPI groups when compared to the control and sham groups. Subjects receiving NBOT showed consistent increased DA levels at each time point when compared with Sham and FPI groups. These results suggest that FPI may alter DA levels at the early post-TBI stages but not in later stages. While DA levels increased in 6, 12 and 24 h in the FPI groups, NBOT could be used to accelerate the prevention of early dopaminergic neuronal damage following FPI injury and improve DA levels consistently.
    Matched MeSH terms: Disease Models, Animal
  12. Kamaruzaman NA, Sulaiman SA, Kaur G, Yahaya B
    PMID: 24886260 DOI: 10.1186/1472-6882-14-176
    Honey is widely used in folk medicine to treat cough, fever, and inflammation. In this study, the effect of aerosolised honey on airway tissues in a rabbit model of ovalbumin (OVA)-induced asthma was investigated. The ability of honey to act either as a rescuing agent in alleviating asthma-related symptoms or as a preventive agent to preclude the occurrence of asthma was also assessed.
    Matched MeSH terms: Disease Models, Animal
  13. Mohd Hilmi AB, Halim AS, Jaafar H, Asiah AB, Hassan A
    Biomed Res Int, 2013;2013:795458.
    PMID: 24324974 DOI: 10.1155/2013/795458
    Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%), longest epithelial tongue (1.62 ± 0.13 mm), and shortest migratory tongue distance (7.11 ± 0.25 mm). The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm) and chitosan skin substitute (0.16 ± 0.05 cm) were significantly decreased (P < 0.05) compared with duoderm (0.45 ± 0.11 cm). Human leukocyte antigen (HLA) expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.
    Matched MeSH terms: Disease Models, Animal
  14. Naveen SV, Ahmad RE, Hui WJ, Suhaeb AM, Murali MR, Shanmugam R, et al.
    Int J Med Sci, 2014;11(1):97-105.
    PMID: 24396291 DOI: 10.7150/ijms.6964
    Monosodium -iodoacetate (MIA)-induced animal model of osteoarthritis (OA) is under-utilised despite having many inherent advantages. At present, there is lack of studies that directly compare the degenerative changes induced by MIA with the surgical osteoarthritis induction method and human osteoarthritis, which would further verify a greater use of this model. Therefore, we compared the histological, biochemical and biomechanical characteristics in rat model using MIA against the anterior cruciate ligament transection (ACLT) and human cartilage with clinically established osteoarthritis. The right knees of Sprague-Dawley rats were subjected to either MIA or ACLT (n=18 in each group). Six rats were used as controls. Human cartilage samples were collected and compared from patients clinically diagnosed with (n=7) and without osteoarthritis (n=3). Histological, biochemical (Glycosaminoglycans/total protein) and biomechanical (cartilage stiffness) evaluations were performed at the end of the 1(st) and 2(nd) week after OA induction. For human samples, evaluations were performed at the time of sampling. Histopathological changes in the MIA group were comparable to that observed in the ACLT group and human OA. The Mankin scores of the 3 groups were comparable (MIA: 11.5 ± 1.0; ACLT: 10.1 ± 1.1; human OA: 13.2 ± 0.8). Comparable reduction in Glycosaminoglycan/total protein content in the intervention groups were observed (MIA: 7 ± 0.6; ACLT: 6.6 ± 0.5; human OA: 3.1 ± 0.7). Cartilage stiffness score were 24.2 ± 15.3 Mpa for MIA, 25.3 ± 4.8 for ACLT and 0.5 ± 0.0 Mpa for human OA. The MIA model produces comparable degenerative changes to ACLT and human OA with the advantage of being rapid, minimally invasive and reproducible. Therefore, wider utilisation of MIA as animal translational OA model should perhaps be advocated.
    Matched MeSH terms: Disease Models, Animal
  15. Kunasundari B, Murugaiyah V, Kaur G, Maurer FH, Sudesh K
    PLoS One, 2013;8(10):e78528.
    PMID: 24205250 DOI: 10.1371/journal.pone.0078528
    Cupriavidus necator H16 (formerly known as Hydrogenomonas eutropha) was famous as a potential single cell protein (SCP) in the 1970s. The drawback however was the undesirably efficient accumulation of non-nutritive polyhydroxybutyrate (PHB) storage compound in the cytoplasm of this bacterium. Eventually, competition from soy-based protein resulted in SCP not receiving much attention. Nevertheless, C. necator H16 remained in the limelight as a producer of PHB, which is a material that resembles commodity plastics such as polypropylene. PHB is a 100% biobased and biodegradable polyester. Although tremendous achievements have been attained in the past 3 decades in the efficient production of PHB, this bioplastic is still costly. One of the main problems has been the recovery of PHB from the cell cytoplasm. In this study, we showed for the first time that kilogram quantities of PHB can be easily recovered in the laboratory without the use of any solvents and chemicals, just by using the cells as SCP. In addition, the present study also demonstrated the safety and tolerability of animal model used, Sprague Dawley given lyophilized cells of C. necator H16. The test animals readily produced fecal pellets that were whitish in color, as would be expected of PHB granules. The pellets were determined to contain about 82-97 wt% PHB and possessed molecular mass of around 930 kg/mol. The PHB granules recovered biologically possessed similar molecular mass compared to chloroform extracted PHB [950 kg/mol]. This method now allows the production and purification of substantial quantities of PHB for various experimental trials. The method reported here is easy, does not require expensive instrumentation, scalable and does not involve extensive use of solvents and strong chemicals.
    Matched MeSH terms: Models, Animal
  16. Chang HC, Tsai TS, Tsai IH
    J Proteomics, 2013 Aug 26;89:141-53.
    PMID: 23796489 DOI: 10.1016/j.jprot.2013.06.012
    This study deciphers the geographic variations of king cobra (Ophiophagus hannah) venom using functional proteomics. Pooled samples of king cobra venom (abbreviated as Ohv) were obtained from Indonesia, Malaysia, Thailand, and two provinces of China, namely Guangxi and Hainan. Using two animal models to test and compare the lethal effects, we found that the Chinese Ohvs were more fatal to mice, while the Southeast Asian Ohvs were more fatal to lizards (Eutropis multifasciata). Various phospholipases A2 (PLA2s), three-finger toxins (3FTxs) and Kunitz-type inhibitors were purified from these Ohvs and compared. Besides the two Chinese Ohv PLA2s with known sequences, eight novel PLA2s were identified from the five Ohv samples and their antiplatelet activities were compared. While two 3FTxs (namely oh-55 and oh-27) were common in all the Ohvs, different sets of 3FTx markers were present in the Chinese and Southeast Asian Ohvs. All the Ohvs contain the Kunitz inhibitor, OH-TCI, while only the Chinese Ohvs contain the inhibitor variant, Oh11-1. Relative to the Chinese Ohvs which contained more phospholipases, the Southeast Asian Ohvs had higher metalloproteinase, acetylcholine esterase, and alkaline phosphatase activities.
    Matched MeSH terms: Disease Models, Animal
  17. Yahaya B, McLachlan G, Collie DD
    ScientificWorldJournal, 2013;2013:871932.
    PMID: 23533365 DOI: 10.1155/2013/871932
    The response of S-phase cells labelled with bromodeoxyuridine (BrdU) in sheep airways undergoing repair in response to endobronchial brush biopsy was investigated in this study. Separate sites within the airway tree of anaesthetised sheep were biopsied at intervals prior to pulse labelling with BrdU, which was administered one hour prior to euthanasia. Both brushed and spatially disparate unbrushed (control) sites were carefully mapped, dissected, and processed to facilitate histological analysis of BrdU labelling. Our study indicated that the number and location of BrdU-labelled cells varied according to the age of the repairing injury. There was little evidence of cell proliferation in either control airway tissues or airway tissues examined six hours after injury. However, by days 1 and 3, BrdU-labelled cells were increased in number in the airway wall, both at the damaged site and in the regions flanking either side of the injury. Thereafter, cell proliferative activity largely declined by day 7 after injury, when consistent evidence of remodelling in the airway wall could be appreciated. This study successfully demonstrated the effectiveness of in vivo pulse labelling in tracking cell proliferation during repair which has a potential value in exploring the therapeutic utility of stem cell approaches in relevant lung disease models.
    Matched MeSH terms: Models, Animal
  18. Chew WK, Wah MJ, Ambu S, Segarra I
    Exp Parasitol, 2012 Jan;130(1):22-5.
    PMID: 22027550 DOI: 10.1016/j.exppara.2011.10.004
    Toxoplasma gondii is an intra-cellular parasite that infects humans through vertical and horizontal transmission. The cysts remain dormant in the brain of infected humans and can reactivate in immunocompromised hosts resulting in acute toxoplasmic encephalitis which may be fatal. We determined the onset and progression of brain cysts generation in a mouse model following acute toxoplasmosis as well as the ability of brain cysts to reactivate in vitro. Male Balb/c mice, (uninfected control group, n = 10) were infected orally (study group, n = 50) with 1000 tachyzoites of T. gondii (ME49 strain) and euthanized at 1, 2, 4, 8 and 16 weeks post infection. Brain tissue was harvested, homogenized, stained and the number of brain cysts counted. Aliquots of brain homogenate with cysts were cultured in vitro with confluent Vero cells and the number of cysts and tachyzoites counted after 1 week. Brain cysts but not tachyzoites were detected at week 2 post infection and reached a plateau by week 4. In vitro Vero cells culture showed similar pattern for cysts and tachyzoites and reactivation of cyst in vitro was not influenced by the age of the brain cysts.
    Matched MeSH terms: Disease Models, Animal
  19. Sasidharan S, Nilawatyi R, Xavier R, Latha LY, Amala R
    Molecules, 2010 Apr 30;15(5):3186-99.
    PMID: 20657471 DOI: 10.3390/molecules15053186
    ETHNOPHARMACOLOGICAL RELEVANCE: Elaeis guineensis Jacq (Arecaceae) is one of the plants that are central to the lives of traditional societies in West Africa. It has been reported as a traditional folkloric medicine for a variety of ailments. The plant leaves are also used in some parts of Africa for wound healing, but there are no scientific reports on any wound healing activity of the plant.

    AIM OF THE STUDY: To investigate the effects of E. guineensis leaf on wound healing activity in rats.

    METHODS: A phytochemical screening was done to determine the major phytochemicals in the extract. The antimicrobial activity of the extract was examined using the disk diffusion technique and broth dilution method. The wound healing activity of leaves of E. guineensiswas studied by incorporating the methanolic extract in yellow soft paraffin in concentration of 10% (w/w). Wound healing activity was studied by determining the percentage of wound closure, microbial examination of granulated skin tissue and histological analysis in the control and extract treated groups.

    RESULTS: Phytochemical screening reveals the presence of tannins, alkaloids, steroids, saponins, terpenoids, and flavonoids in the extract. The extract showed significant activity against Candida albicans with an MIC value of 6.25 mg/mL. The results show that the E. guineensis extract has potent wound healing capacity, as evident from better wound closure, improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Assessment of granulation tissue every fourth day showed a significant reduction in microbial count.

    CONCLUSIONS: E. guineensis accelerated wound healing in rats, thus supporting this traditional use.

    Matched MeSH terms: Disease Models, Animal
  20. Ferdaos N, Nathan S, Nordin N
    Med J Malaysia, 2008 Jul;63 Suppl A:75-6.
    PMID: 19024991
    Amniotic fluid (AF) serves as an excellent alternative source of pluripotent stem cells, as they are not bound with ethical issues and the stem cells are more primitive than adult stem (AS) cells. Hence, they have higher potential. Here we aim to isolate and characterize pluripotent stem cells from mid-term and full-term pregnant rat amniotic fluid. The results demonstrate the evidence of heterogeneous population of cells in the amniotic fluid and some of the cells morphology shows similarity with ES cells.
    Matched MeSH terms: Models, Animal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links