The protection against ethanol-induced lipid peroxidation is rendered by antioxidants such as vitamin E and glutathione (GSH) interacting with each other and also functioning independently. A study of the levels of GSH and activities of glutathione peroxidase (GP), glutathione reductase (GR) and glutathione transferase (GST) in the cerebral cortex (CC), cerebellum (CB) and brain stem (BS) of vitamin E-supplemented and -deficient rats subjected to ethanol administration for 30 days was carried out. Chronic ethanol administration to vitamin E-supplemented rats elevated GP, GR and GST activities in the three regions and GSH levels in the CB. Chronic ethanol administration to vitamin E-deficient rats elevated GR activity in the three regions and GP activity in the CC and CB, decreased GST activity in the CC and CB, but did not alter GSH levels compared with normal rats subjected to chronic ethanol administration. The results indicate that vitamin E helps to maintain GSH levels to combat increased peroxidation while its absence has a deleterious effect.
Candida rugosa lipase was modified via reductive alkylation to increase its hydrophobicity to work better in organic solvents. The free amino group of lysines was alkylated using propionaldehyde with different degrees of modification obtained (49 and 86%). Far-ultraviolet circular dichroism (CD) spectroscopy of the lipase in aqueous solvent showed that such chemical modifications at the enzyme surface caused a loss in secondary and tertiary structure that is attributed to the enzyme unfolding. Using molecular modeling, we propose that in an aqueous environment the loss in protein structure of the modified lipase is owing to disruption of stabilizing salt bridges, particularly of surface lysines. Indeed, molecular modeling and simulation of a salt bridge formed by Lys-75 to Asp-79, in a nonpolar environment, suggests the adoption of a more flexible alkylated lysine that may explain higher lipase activity in organic solvents on alkylation.
A new cellulose nanocrystal-reduced graphene oxide (CNC-rGO) nanocomposite was successfully used for mediatorless electrochemical sensing of methyl paraben (MP). Fourier-transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM) studies confirmed the formation of the CNC-rGO nanocomposite. Cyclic voltammetry (CV) studies of the nanocomposite showed quasi-reversible redox behavior. Differential pulse voltammetry (DPV) was employed for the sensor optimization. Under optimized conditions, the sensor demonstrated a linear calibration curve in the range of 2 × 10-4-9 × 10-4 M with a limit of detection (LOD) of 1 × 10-4 M. The MP sensor showed good reproducibility with a relative standard deviation (RSD) of about 8.20%. The sensor also exhibited good stability and repeatability toward MP determinations. Analysis of MP in cream samples showed recovery percentages between 83% and 106%. Advantages of this sensor are the possibility for the determination of higher concentrations of MP when compared with most other reported sensors for MP. The CNC-rGO nanocomposite-based sensor also depicted good reproducibility and reusability compared to the rGO-based sensor. Furthermore, the CNC-rGO nanocomposite sensor showed good selectivity toward MP with little interference from easily oxidizable species such as ascorbic acid.
Mercuric species, Hg(II), interacts strongly with dissolved organic matter (DOM) through the oxidation, reduction, and complexation that affect the fate, bioavailability, and cycling of mercury, Hg, in aquatic environments. Despite its importance, the reactions between Hg(II) and DOM have rarely been studied in the presence of different concentrations of chloride ions (Cl-) under anoxic conditions. Here, we report that the extent of Hg(II) reduction in the presence of the reduced DOM decreases with increasing Cl- concentrations. The rate constants of Hg(II) reduction ranged from 0.14 to 1.73 h-1 in the presence of Cl- and were lower than the rate constant (2.41 h-1) in the absence of Cl-. Using a thermodynamic model, we showed that stable Hg(II)-chloride complexes were formed in the presence of Cl-. We further examined that H(0) was oxidized to Hg(II) in the presence of the reduced DOM and Cl- under anoxic conditions, indicating that Hg(II) reduction is inhibited by the Hg(0) oxidation. Therefore, the Hg(II) reduction by the reduced DOM can be offset due to the Hg(II)-chloride complexation and Hg(0) oxidation in chloride-rich environments. These processes can significantly influence the speciation of Hg and have an important implication for the behavior of Hg under environmentally relevant concentrations.
Reduction of graphene oxide becomes an alternative way to produce a scalable graphene and the resulting nanomaterial namely reduced graphene oxide (rGO) has been utilized in a wide range of potential applications. In this article, the level of green reduction strategies, especially the solution-based reduction methods are overviewed based on recent progression, to get insights towards biomedical applications. The degrees of gaining tips with the solution-based green reduction methods, conditions, complexity and the resulting rGO characteristics have been elucidated comparatively. Moreover, the application of greenly produced rGO in electrochemical biosensors has been elucidated as well as their electrical performance in term of linear range and limit of detections for various healthcare biological analytes. In addition, the characterization scheme for graphene-based materials and the analyses on the reduction especially for the solution-based green reduction methods are outlined for the future endeavours.
Slaughtering is the first step in meat processing. It involves killing an animal for the production of meat. Effectiveness of slaughter is determined by the amount of blood removed from the animal. This study aimed to compare the chemical changes and microbiological quality of broiler chicken meat slaughtered by Halal and Non-Halal slaughter methods during refrigerated storage. A total of sixty (60) broiler chickens were slaughtered by: i) Neck cutting (NC) - by severing the jugular veins, carotid arteries, trachea and the oesophagus according to the Islamic ritual method of slaughter and (ii) Neck poking (NP) - by poking the neck of the bird with a sharp object. Residual blood was quantified by measuring the haem iron content in the breast meat samples. Storage stability of chicken meat was evaluated by measuring the extent of lipid oxidation determined by thiobarbituric acid reactive substances (TBARS) and by assessing the microbiological quality of the meat. Haem iron content decreased significantly (P0.05) on chicken meat lipid oxidation at 1, 3, and 9 day of storage at 4oC. However, at 5 and 7 day of storage, significant differences (P
An earlier electrochemical mechanism of DNA detection was adapted and specified for the detection of Vibrio parahaemolyticus in real samples. The reader, based on a screen printed carbon electrode, was modified with polylactide-stabilized gold nanoparticles and methylene blue was employed as the redox indicator. Detection was assessed using a microprocessor to measure current response under controlled potential. The fabricated sensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0 × 10(-8)-2.0 × 10(-13) M with a detection limit of 2.16 pM. The relative standard deviation for 6 replications of differential pulse voltammetry (DPV) measurement of 0.2 µM complementary DNA was 4.33%. Additionally, cross-reactivity studies against various other food-borne pathogens showed a reliably sensitive detection of the target pathogen. Successful identification of Vibrio parahaemolyticus (spiked and unspiked) in fresh cockles, combined with its simplicity and portability demonstrate the potential of the device as a practical screening tool.
A portable electrochemical sensor was developed to determine xylazine in spiked beverages by adsorptive stripping voltammetry (AdSV). The sensor was based on a graphene nanoplatelets-modified screen-printed carbon electrode (GNPs/SPCE). The electrochemical behavior of xylazine at the GNPs/SPCE was an adsorption-controlled irreversible oxidation reaction. The loading of graphene nanoplatelets (GNPs) on the modified SPCE, electrolyte pH, and AdSV accumulation potential and time were optimized. Under optimal conditions, the GNPs/SPCE provided high sensitivity, linear ranges of 0.4-6.0 mg L-1 (r = 0.997) and 6.0-80.0 mg L-1 (r = 0.998) with a detection limit of 0.1 mg L-1 and a quantitation limit of 0.4 mg L-1. Repeatability was good. The accuracy of the proposed sensor was investigated by spiking six beverage samples at 1.0, 5.0, and 10.0 mg L-1. The recoveries from this method ranged from 80.8 ± 0.2-108.1 ± 0.3 %, indicating the good accuracy of the developed sensor. This portable electrochemical sensor can be used to screen for xylazine in beverage samples as evidence in cases of sexual assault or robbery.
Microbial electrosynthesis is a new approach to converting C1 carbon (CO2) to more complex carbon-based products. In the present study, CO2, a potential greenhouse gas, was used as a sole carbon source and reduced to value-added chemicals (acetate, ethanol) with the help of bioelectrochemical reduction in microbial electrosynthesis systems (MES). The performance of MES was studied with varying electrode materials (carbon felt, stainless steel, and cobalt electrodeposited carbon felt). The MES performance was assessed in terms of acetic acid and ethanol production with the help of gas chromatography (GC). The electrochemical characterization of the system was analyzed with chronoamperometry and cyclic voltammetry. The study revealed that the MES operated with hybrid cobalt electrodeposited carbon felt electrode yielded the highest acetic acid (4.4 g/L) concentration followed by carbon felt/stainless steel (3.7 g/L), plain carbon felt (2.2 g/L), and stainless steel (1.87 g/L). The alcohol concentration was also observed to be highest for the hybrid electrode (carbon felt/stainless steel/cobalt oxide is 0.352 g/L) as compared to the bare electrodes (carbon felt is 0.22 g/L) tested, which was found to be in correspondence with the pH changes in the system. Electrochemical analysis revealed improved electrotrophy in the hybrid electrode, as confirmed by the increased redox current for the hybrid electrode as compared to plain electrodes. Cyclic voltammetry analysis also confirmed the role of the biocatalyst developed on the electrode in CO2 sequestration.
Indoor air pollution with toxic volatile organic compounds (VOCs) and fine particulate matter (PM2.5) is a threat to human health, causing cancer, leukemia, fetal malformation, and abortion. Therefore, the development of technologies to mitigate indoor air pollution is important to avoid adverse effects. Adsorption and photocatalytic oxidation are the current approaches for the removal of VOCs and PM2.5 with high efficiency. In this review we focus on the recent development of indoor air pollution mitigation materials based on adsorption and photocatalytic decomposition. First, we review on the primary indoor air pollutants including formaldehyde, benzene compounds, PM2.5, flame retardants, and plasticizer: Next, the recent advances in the use of adsorption materials including traditional biochar and MOF (metal-organic frameworks) as the new emerging porous materials for VOCs absorption is reviewed. We review the mechanism for mitigation of VOCs using biochar (noncarbonized organic matter partition and adsorption) and MOF together with parameters that affect indoor air pollution removal efficiency based on current mitigation approaches including the mitigation of VOCs using photocatalytic oxidation. Finally, we bring forward perspectives and directions for the development of indoor air mitigation technologies.
Refined red palm olein (RPOo) is the first cooking oil that is a pro-Vitamin A source due to its high carotenoid concentration. The quality specifications from the manufacturers are usually applied to freshly produced oil. However, there is currently no information regarding the oxidative stability and phytonutrient content (Vitamin E and Carotene) for RPOo after prolonged storage time. The objective then is to study the effect of two local storage conditions and storage period(s) on the oxidative stability of RPOo. In this study, peroxide value (PV), p-anisidine value (AnV), induction period (IP), free fatty acid (FFA), and Vitamin E content were determined periodically for twelve months under local storage conditions (supermarket and kitchen). Carotene content, however, was determined only at initial and at the 12th month of storage time periods. It was found that there was an overall progressive but slow increase in PV and p-AnV. For PV, the storage effects were inconsistent. However, the effects were significant (p < 0.01) on the AnV throughout storage. At the end of the 12-months, for both storage conditions, the PV < 10 meq O2 g-1, the AnV < 10, the FFA < 0.2 % (palmitic acid), with a 30% drop in the total Vitamin E, and carotenoids content showed no significant drop (p < 0.01). The PV and AnV were also within Codex Alimentarius' recommended limits. Finally, the oxidative parameters showed that RPOo remains stable after year storage under the two simulated local storage conditions (the aforementioned supermarket and kitchen).
Oleic acid is a mono-unsaturated fatty acid that can be found abundantly in various vegetable oils and potentially attractive to be used as raw material for epoxide chemical. In-situ epoxidation of oleic acid was conducted in batch reactor using peroxy-formic at 30-60°C. Pseudo-steady-state-hypothesis (PSSH) was applied to develop the kinetic model. Heterogeneous liquid-liquid system was chosen and four models which emphasized on the ring opening agent (ROA) and reversibility of the epoxidation reaction were proposed. It has been suggested that reversible model is well suited to represent the experimental data. Activation energy obtained from Arrhenius equation is in the range of 40-195 kJ/mol.
Discovery and use of biocompatible polymers offers great promise in the pharmaceutical field, particularly in drug delivery systems. Disulphide bonds, which commonly occur in peptides and proteins and have been used as drug-glutathione conjugates, are reductively cleaved in the colon. The intrinsic stability of a disulphide relative to thiol groups is determined by the redox potential of the environment. The objective of this study was to synthesise a trimesic acid-based disulphide cross-linked polymer that could potentially be used for targeted delivery to the colon. The monomer was synthesised by an amide coupling reaction between trimesic acid and (triphenylmethyl) thioethylamine using a two-step synthesis method. The s-trityl group was removed using a cocktail of trifluoroacetic acid and triethylsilane to expose the thiols in preparation for further polymerisation. The resulting polymers (P10, P15, P21, P25, and P51, generated using different molar ratios) were reduced after 1.5 h of reduction time. Scanning electron microscopy images of the polymers showed spherical, loose, or tight patterns depending on the molar ratio of polymerisation. These polymers also exhibited efficient dissolution under various gastrointestinal conditions. Of the five polymers tested, P10 and P15 appeared to be promising drug delivery vehicles for poorly soluble drugs, due to the hydrophobic nature of the polymers.
The commercial application of liquid-state Pickering emulsions in food systems remains a major challenge. In this study, we developed a spray-dried Pickering emulsion powder using chitosan as a Pickering emulsifier and alginate as a coating material. The functionality of the powder was evaluated in terms of its oxidative stability, pH-responsiveness, mucoadhesivity, and lipid digestibility. The Pickering emulsion powder was oxidatively more stable than the conventional emulsion powder stabilized by gum Arabic. The powder exhibited pH-responsiveness, whereby it remained intact in acidic pH, but dissolved to release the emulsion in 'Pickering form' at near-neutral pH. The Pickering emulsion powder was also mucoadhesive and could be digested by lipase in a controlled manner. These findings suggested that the multi-functional Pickering emulsion powder could be a potential delivery system for applications in the food industry.
3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) are processed-developed contaminants presence in vegetable oils after undergo refining process under excessive heat. Refined oils are extensively used in various frying applications, nevertheless, the reservation against their quality and safety aspects are of major concern to consumers and food industry. Realizing the importance to address these issues, this article deliberates an overview of published studies on the manifestation of 3-MCPDE and GE when vegetable oils undergo for frying process. With the modest number of published frying research associated to 3-MCPDE and GE, we confined our review from the perspectives of frying conditions, product properties, antioxidants and additives, pre-frying treatments and frying oil management. Simplicity of the frying process is often denied by the complexity of reactions occurred between oil and food which led to the development of unwanted contaminants. The behavior of 3-MCPDE and GE is closely related to physico-chemical characteristics of oils during frying. As such, relationships between 3-MCPDE and/or GE with frying quality indices - i.e. acidity in term of free fatty acid or acid value); secondary oxidation in term of p-anisidine value, total polar compounds and its fractions, and refractive index - were also discussed when oils were subjected under intermittent and continuous frying conditions.
Excess levels of nitrite ion in drinking water interact with amine functionalized compounds to form carcinogenic nitrosamines, which cause stomach cancer. Thus, it is indispensable to develop a simple protocol to detect nitrite. In this paper, a Cu-metal-organic framework (Cu-MOF) with graphene oxide (GO) composite was synthesized by ultrasonication followed by solvothermal method and then fabricated on a glassy carbon (GC) electrode for the sensitive and selective determination of nitrite contamination. The SEM image of the synthesized Cu-MOF showed colloidosome-like structure with an average size of 8 μm. Interestingly, the Cu-MOF-GO composite synthesized by ultrasonic irradiation followed by solvothermal process produce controlled size of 3 μm colloidosome-like structure. This was attributed to the formation of an exfoliated sheet-like structure of GO by ultrasonication in addition to the obvious influence of GO providing the oxygen functional groups as a nucleation node for size-controlled growth. On the other hand, the composite prepared without ultrasonication exhibited 6.6 μm size agglomerated colloidosome-like structures, indicating the crucial role of ultrasonication for the formation of size-controlled composites. XPS results confirmed the presence of Cu(II) in the as-synthesized Cu-MOF-GO based on the binding energies at 935.5 eV for Cu 2p3/2 and 955.4 eV for Cu 2p1/2. The electrochemical impedance studies in [Fe(CN)6]3-/4- redox couple at the composite fabricated electrode exhibited more facile electron transfer than that with Cu-MOF and GO modified electrodes, which helped to utilize Cu-MOF-GO for trace level determination of nitrite in environmental effluent samples. The Cu-MOF-GO fabricated electrode offered a superior sensitive platform for nitrite determination than the Cu-MOF and GO modified electrodes demonstrating oxidation at less positive potential with enhanced oxidation current. The present sensor detects nitrite in the concentration range of 1 × 10-8 to 1 × 10-4 M with the lowest limit of detection (LOD) of 1.47 nM (S/N = 3). Finally, the present Cu-MOF-GO electrode was successfully exploited for nitrite ion determination in lake and dye contaminated water samples.
Fire is one of the major issues facing Southeast Asian peatlands causing socio-economic, human health and climate crises. Many of these fires in the region are associated with land clearing or management practices for oil palm plantations. Here we study the direct post-fire impacts of slash-and-burn oil palm agriculture on greenhouse gas emissions, peat physico-chemical properties and nutrient concentrations. Greenhouse gas (GHG) emissions were measured using Los Gatos ultraportable greenhouse gas analyser one month after a fire in dry season and five months after the fire event, in wet season. Surface soil samples were collected from each individual GHG measurement points, along with 50 cm cores from both burnt and non-burnt control areas for lab analyses. As an immediate post-fire impact, carbon dioxide (CO2) and methane (CH4) emissions, pH, electrical conductivity, and all macronutrient concentrations except nitrogen (N) were increased multi-fold, while the redox potential, carbon (C) and N content were greatly reduced in the burnt region. While some of the properties such as CO2 emissions, and electrical conductivity reverted to normal after five months, other properties such as CH4 emissions, pH and nutrient concentrations remained high in the burnt region. This study also found very high loss of surface peat C content in the burnt region post fire, which is irreversible. The results also show that surface peat layers up to 20 cm depth were affected the most by slash-and-burn activity in oil palm agriculture, however the intensity of fire can vary widely between different oil palm management and needs further research to fully understand the long term and regional impacts of such slash-and-burn activity in tropical peatlands.
Aripiprazole (ARP) is one of antipsychotics and binds to human serum albumin (HSA) with a high affinity. In this study, we investigated the binding characteristics of ARP to oxidized HSA as observed in chronic disease conditions. Oxidized HSAs were prepared using chloramine-T (CT-HSA) or metal-catalyzed oxidation system (MCO-HSA) in vitro, respectively. An increase in the carbonyl content was confirmed in oxidized HSAs. From the results of circular dichroism (CD) and tryptophan fluorescence spectra, no significant structural change of oxidized HSAs was observed. These results indicate that prepared HSAs are mildly oxidized and well reflects the status of HSA during chronic diseases. However, oxidized HSAs were observed to have a significant decrease in binding to ARP. The results of the induced CD spectrum suggested that ARP bound to oxidized HSAs with a similar orientation. These results suggest that oxidation of HSA during chronic disease state significantly affected the microenvironment of the binding site for ARP and binding capacity of HSA to ARP.
Semiconductor oxides such as titanium dioxide (TiO2) and zinc oxide (ZnO) are used as the photocatalyst for removing contaminants. In addition, TiO2 and ZnO nanoparticles in the suspension form makes it difficult to be recovered and recycled. This study was conducted to investigate the efficiency of immobilizing TiO2 and ZnO nanoparticles in epoxy beads. The immobilization process using different ratios of photocatalysts TiO2/ZnO (1:0, 3:1, 1:1, 1:3 and 0:1) fixed on epoxy material. These epoxy beads were used for dye removal in photocatalysis using methylene blue (MB) solution at a concentration of 10mg/L. Besides, epoxy beads also characterized using scanning electron microscope (SEM), attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and thermogravimetric analysis (TGA). The results showed that the highly recommended epoxy bead is 3:1 ratio of TiO2/ZnO because it has good performance in dye degradation that proved from reducing concentration of MB to 2.4mg/L (76%). However, TiO2/ZnO characterization of 3:1 by SEM show on the surface the particle are found to be spherical in shape which is relatively high efficiency for the degradation, ATR-FTIR pattern in broad band 4000 cm-1 - 400cm-1 which correspond to hydroxyl stretching to be adsorbed at peak (474.49 cm-1 - 3722.61cm-1) respectively to the optimum for the degradation and TGA rate of change are 5mg to 2.5mg that residue (49.78%) due to decomposition or oxidation from mass loss. These findings are very effective and economical technique to be cost saving and highly efficient photocatalyst.
Solar photocatalysis is a green technology that takes advantage of sustainable solar energy for enhancing oxidation process of numerous harmful water contaminants. In this study, a custom solar driven zinc oxide (ZnO)-mediated photocatalytic system was developed and its efficiency to remove organic contaminants as well as to disinfect selected bacteria was investigated. Methylene blue (MB) dye was used as the model organic contaminant, while Escherichia coli(E.coli) was used as the model fecal coliform bacteria in contaminated water. A series of photodegradation experiments were conducted on water contaminated with either 10 mg/L of MB or ~1010CFU/ml of E.coli. The experiments were completed under sunlight irradiation in the presence of 1 g/L of nano ZnO photocatalyst for up to 6 hours. Using a solar thermal collector, the photoreactor operated in the temperature range of 25 to 50 oC. The findings revealed that the combination of solar thermal with solar photocatalysis usingZnO intensified the degradation of MB and disinfection of E.coli. 98.08% of MB dye and 99.99% of E.coliwere successfully removed from the water within the first 3 hours of treatment. Almost complete removal was eventually achieved after 6 hours of treatment. It is therefore suggested that ZnO-based solar photocatalytic system developed in this study is highly efficient at enhancing water decontamination process.