Displaying publications 181 - 200 of 1525 in total

Abstract:
Sort:
  1. Ghassem M, Arihara K, Mohammadi S, Sani NA, Babji AS
    Food Funct, 2017 May 24;8(5):2046-2052.
    PMID: 28497137 DOI: 10.1039/c6fo01615d
    Edible bird's nest (EBN) is widely consumed as a delicacy and traditional medicine amongst the Chinese. In the present study, for the first time, the antioxidant properties of an EBN pepsin-trypsin hydrolysate of the swiftlet species Aerodramus fuciphagus and its ultrafiltration fractions were investigated. Thirteen peptides with molecular weights between 514.29 and 954.52 Da were identified in the EBN fraction with the use of mass spectrometry. Two novel pentapeptides Pro-Phe-His-Pro-Tyr and Leu-Leu-Gly-Asp-Pro, corresponding to f134-138 and f164-168 of cytochrome b of A. fuciphagus, indicated the highest ORAC values of 14.95 and 14.32 μM of TE μM(-1) peptide, respectively. Both purified peptides showed resistance against simulated gastrointestinal proteases. In addition, both peptides had no in vitro cytotoxicity on human lung MRC-5 cells and prevented human liver carcinoma HepG2 cellular damage caused by hydroxyl radicals. Therefore, it is suggested that EBN protein hydrolysates are a good source of natural antioxidants and could be applied as nutraceutical compounds.
    Matched MeSH terms: Cell Survival/drug effects
  2. Arbain NH, Salim N, Masoumi HRF, Wong TW, Basri M, Abdul Rahman MB
    Drug Deliv Transl Res, 2019 04;9(2):497-507.
    PMID: 29541999 DOI: 10.1007/s13346-018-0509-5
    Bioavailability of quercetin, a flavonoid potentially known to combat cancer, is challenging due to hydrophobic nature. Oil-in-water (O/W) nanoemulsion system could be used as nanocarrier for quercertin to be delivered to lung via pulmonary delivery. The novelty of this nanoformulation was introduced by using palm oil ester/ricinoleic acid as oil phase which formed spherical shape nanoemulsion as measured by transmission electron microscopy and Zetasizer analyses. High energy emulsification method and D-optimal mixture design were used to optimize the composition towards the volume median diameter. The droplet size, polydispersity index, and zeta potential of the optimized formulation were 131.4 nm, 0.257, and 51.1 mV, respectively. The formulation exhibited high drug entrapment efficiency and good stability against phase separation and storage at temperature 4 °C for 3 months. It was discovered that the system had an acceptable median mass aerodynamic diameter (3.09 ± 0.05 μm) and geometric standard deviation (1.77 ± 0.03) with high fine particle fraction (90.52 ± 0.10%), percent dispersed (83.12 ± 1.29%), and percent inhaled (81.26 ± 1.28%) for deposition in deep lung. The in vitro release study demonstrated that the sustained release pattern of quercetin from naneomulsion formulation up to 48 h of about 26.75% release and it was in adherence to Korsmeyer's Peppas mechanism. The cytotoxicity study demonstrated that the optimized nanoemulsion can potentially induce cyctotoxicity towards A549 lung cancer cells without affecting the normal cells. These results of the study suggest that nanoemulsion is a potential carrier system for pulmonary delivery of molecules with low water solubility like quercetin.
    Matched MeSH terms: Cell Survival/drug effects
  3. Boo NY, Cheah IG
    Singapore Med J, 2016 Mar;57(3):144-52.
    PMID: 26996633 DOI: 10.11622/smedj.2016056
    This study aimed to determine whether patient loads, infant status on admission and treatment interventions were significantly associated with inter-institutional variations in sepsis rates in very-low-birth-weight (VLBW) infants in the Malaysian National Neonatal Registry (MNNR).
    Matched MeSH terms: Survival Rate/trends
  4. Reshak AH, Shahimin MM, Buang F
    Prog Biophys Mol Biol, 2013 Nov;113(2):295-8.
    PMID: 24080186 DOI: 10.1016/j.pbiomolbio.2013.09.001
    Mammalian adipose tissue derived stem cells (AT-SC) have a tremendous potential in regenerative medicine for tissue engineering and somatic nuclear transfer (SNT). The isolation methods of human and bovine adipose tissue derived stem cells are compared in this paper to determine the feasibility and optimum method of isolation. The optimum isolation method will reduce the processing time, efforts and money as isolation is the first crucial and important step in stem cells research. Human abdominal subcutaneous adipose tissue and bovine abdominal subcutaneous adipose tissue are digested in three collagenase type 1 concentration 0.075%, 0.3% and 0.6% agitated at 1 h and 2 h under 37 °C in 5% CO2 incubator. The cultures are then morphologically characterised. Human adipose tissue stem cells are found to be best isolated using abdominal subcutaneous depot, using 0.075% collagenase type 1 agitated at 1 h under 37 °C in CO2 incubator. While bovine adipose tissue derived stem cells are best isolated using abdominal subcutaneous depot, using 0.6% collagenase type 1 agitated at 2 h under 37 °C in CO2 incubator.
    Matched MeSH terms: Cell Survival/physiology
  5. Tham SY, Loh HS, Mai CW, Fu JY
    Int J Mol Sci, 2019 Jan 16;20(2).
    PMID: 30654580 DOI: 10.3390/ijms20020372
    Malignancy often arises from sophisticated defects in the intricate molecular mechanisms of cells, rendering a complicated molecular ground to effectively target cancers. Resistance toward cell death and enhancement of cell survival are the common adaptations in cancer due to its infinite proliferative capacity. Existing cancer treatment strategies that target a single molecular pathway or cancer hallmark fail to fully resolve the problem. Hence, multitargeted anticancer agents that can concurrently target cell death and survival pathways are seen as a promising alternative to treat cancer. Tocotrienols, a minor constituent of the vitamin E family that have previously been reported to induce various cell death mechanisms and target several key survival pathways, could be an effective anticancer agent. This review puts forward the potential application of tocotrienols as an anticancer treatment from a perspective of influencing the life or death decision of cancer cells. The cell death mechanisms elicited by tocotrienols, particularly apoptosis and autophagy, are highlighted. The influences of several cell survival signaling pathways in shaping cancer cell death, particularly NF-κB, PI3K/Akt, MAPK, and Wnt, are also reviewed. This review may stimulate further mechanistic researches and foster clinical applications of tocotrienols via rational drug designs.
    Matched MeSH terms: Cell Survival/drug effects
  6. Chew MT, Nisbet A, Suzuki M, Matsufuji N, Murakami T, Jones B, et al.
    J Radiat Res, 2019 Jan 01;60(1):59-68.
    PMID: 30452663 DOI: 10.1093/jrr/rry081
    Glioblastoma (GBM), a Grade IV brain tumour, is a well-known radioresistant cancer. To investigate one of the causes of radioresistance, we studied the capacity for potential lethal damage repair (PLDR) of three altered strains of GBM: T98G, U87 and LN18, irradiated with various ions and various levels of linear energy transfer (LET). The GBM cells were exposed to 12C and 28Si ion beams with LETs of 55, 100 and 200 keV/μm, and with X-ray beams of 1.7 keV/μm. Mono-energetic 12C ions and 28Si ions were generated by the Heavy Ion Medical Accelerator at the National Institute of Radiological Science, Chiba, Japan. Clonogenic assays were used to determine cell inactivation. The ability of the cells to repair potential lethal damage was demonstrated by allowing one identical set of irradiated cells to repair for 24 h before subplating. The results show there is definite PLDR with X-rays, some evidence of PLDR at 55 keV/μm, and minimal PLDR at 100 keV/μm. There is no observable PLDR at 200 keV/μm. This is the first study, to the authors' knowledge, demonstrating the capability of GBM cells to repair potential lethal damage following charged ion irradiations. It is concluded that a GBM's PLDR is dependent on LET, dose and GBM strain; and the more radioresistant the cell strain, the greater the PLDR.
    Matched MeSH terms: Cell Survival/radiation effects
  7. Kamarudin MNA, Sarker MMR, Zhou JR, Parhar I
    J Exp Clin Cancer Res, 2019 Dec 12;38(1):491.
    PMID: 31831021 DOI: 10.1186/s13046-019-1495-2
    Growing evidence showed the increased prevalence of cancer incidents, particularly colorectal cancer, among type 2 diabetic mellitus patients. Antidiabetic medications such as, insulin, sulfonylureas, dipeptyl peptidase (DPP) 4 inhibitors and glucose-dependent insulinotropic peptide (GLP-1) analogues increased the additional risk of different cancers to diabetic patients. Conversely, metformin has drawn attention among physicians and researchers since its use as antidiabetic drug exhibited beneficial effect in the prevention and treatment of cancer in diabetic patients as well as an independent anticancer drug. This review aims to provide the comprehensive information on the use of metformin at preclinical and clinical stages among colorectal cancer patients. We highlight the efficacy of metformin as an anti-proliferative, chemopreventive, apoptosis inducing agent, adjuvant, and radio-chemosensitizer in various colorectal cancer models. This multifarious effects of metformin is largely attributed to its capability in modulating upstream and downstream molecular targets involved in apoptosis, autophagy, cell cycle, oxidative stress, inflammation, metabolic homeostasis, and epigenetic regulation. Moreover, the review highlights metformin intake and colorectal cancer risk based on different clinical and epidemiologic results from different gender and specific population background among diabetic and non-diabetic patients. The improved understanding of metformin as a potential chemotherapeutic drug or as neo-adjuvant will provide better information for it to be used globally as an affordable, well-tolerated, and effective anticancer agent for colorectal cancer.
    Matched MeSH terms: Cell Survival/drug effects
  8. Gul I, Yunus U, Ajmal M, Bhatti MH, Chaudhry GE
    Biomed Mater, 2021 Aug 31;16(5).
    PMID: 34375958 DOI: 10.1088/1748-605X/ac1c61
    Cancer is the leading cause of death worldwide. Capecitabine (CP) shows severe side effects because of early metabolism in stomach that affects the normal cells and organs, particularly liver and stomach. In this scope, we report the biocompatible, nontoxic polymeric thin films loaded with anti-cancer drug, CP for target specific, sublingual delivery of CP. Chitosan (CS) and polyvinyl alcohol (PVA) were used as biodegradable polymers alongwith glutaraldehyde (GLA) cross linker. CP-loaded thin films (TFCP1-TFCP5) were fabricated by solvent casting method. The results of Fourier transform infrared spectroscopy confirmed the presence of CP and polymers (CS and PVA) with GLA which binds through hydrogen bonding, and compatibility of drug with different excipients. Thermogravemetric analysis showed that the thin films are highly stable while differential scanning calorimeter thermograms confirmed the complete miscibility/entrapment of CP within PVA/CS thin film matrix. X-ray diffraction patterns revealed the molecular ineractions between CP and polymer matrix. High degree of swelling index of thin films at pH 7.4 was observed in comparison to pH 5.5. CP release studies in acetate (pH 5.5) and phosphate buffer (pH 7.4) showed that the thin films swell and result in drug diffusion faster in phosphate buffer through diffusion governed by Higuchi's model. Cytotoxicity results displayed that CPTFs killed MCF-7 and T47D (human breast adenocarcinoma) cells more effectively as compared to CP alone. The results of adhesion assay also showed that the PVA and CS both are safe and biocompatible. TFCP1 and TFCP3 thin films efficiently induced the apoptosis as compared to CP alone. The improved ability of TFCP1 and TFCP3 to induce cytotoxicity in MCF-7 cells reflects the potential of these thin films for targeted drug delivery. The CPTFs were stable for 4 months at 4 °C/60% ± 2%RH and 25 °C/70% ± 2%RH. In conclusion, the thin film formulations showed target specific controlled and burst release properties and thus could prove to be effective for human breast cancer treatment.
    Matched MeSH terms: Cell Survival/drug effects
  9. Awang N, Kamaludin NF, Ghazali AR
    Pak J Biol Sci, 2011 Aug 01;14(15):768-74.
    PMID: 22303582
    Cancer is one of the main causes of mortality and morbidity in world. New compounds are currently being synthesized to combat this disease. The organotins are gaining more attention as anti-cancer agents due to their potent cytotoxicity properties. In this study, a series of newly synthesized organotins namely dimethyltin (IV) (compound 1), dibutyltin (IV) (compound 2) and triphenyltin (IV) benzylisopropyldithiocarbamate (compound 3) were assessed for their cytotoxic activities against human Chang liver cells and hepatocarcinoma HepG2 cells. The cytotoxicity of these organotins in both cells upon 24 h treatment was assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Compound 2 and 3 exhibited potent cytotoxic activities towards both cells where the IC50 values were less then 10 microM. The IC50 value for compound 2 was 2.5 microM in Chang liver cells and 7.0 microM in HepG2 cells whereas compound 3 exhibited an IC50 value of 1.5 microM in Chang liver cells and 2.5 microM in HepG2 cells. Therefore, compound 2 and 3 were more toxic against human Chang liver cells as compared to hepatocarcinoma HepG2 cells. Interestingly, compound 1 did not have any IC50 value in both cells and hence can be classified as non-toxic. In conclusion, organotin (IV) benzylisopropyldithiocarbamate with insertion of dibutyl and triphenyl functional group possess potent cytotoxicity properties. Structural modification of these compounds can be carried out in further studies to produce less or non toxic effects towards normal human cell.
    Matched MeSH terms: Cell Survival/drug effects
  10. Butt AM, Mohd Amin MC, Katas H
    Int J Nanomedicine, 2015;10:1321-34.
    PMID: 25709451 DOI: 10.2147/IJN.S78438
    BACKGROUND: Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells.

    METHODS: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay.

    RESULTS: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX.

    CONCLUSION: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.

    Matched MeSH terms: Cell Survival/drug effects
  11. Ashraf MF, Abd Aziz M, Stanslas J, Ismail I, Abdul Kadir M
    ScientificWorldJournal, 2013;2013:216894.
    PMID: 24223502 DOI: 10.1155/2013/216894
    The present paper focused on antioxidant and cytotoxicity assessment of crude and total saponin fraction of Chlorophytum borivilianum as an important medicinal plant. In this study, three different antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferrous ion chelating (FIC), and β -carotene bleaching (BCB) activity) of crude extract and total saponin fraction of C. borivilianum tubers were performed. Crude extract was found to possess higher free radical scavenging activity (ascorbic acid equivalents 2578 ± 111 mg AA/100 g) and bleaching activity (IC50 = 0.7 mg mL(-1)), while total saponin fraction displayed higher ferrous ion chelating (EC50 = 1 mg mL(-1)). Cytotoxicity evaluation of crude extract and total saponin fraction against MCF-7, PC3, and HCT-116 cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) cell viability assay indicated a higher cytotoxicity activity of the crude extract than the total saponin fraction on all cell lines, being most effective and selective on MCF-7 human breast cancer cell line.
    Matched MeSH terms: Cell Survival/drug effects
  12. Rather GA, Selvakumar P, Srinivas KS, Natarajan K, Kaushik A, Rajan P, et al.
    Sci Rep, 2024 Jul 02;14(1):15095.
    PMID: 38956125 DOI: 10.1038/s41598-024-65999-x
    Nanogels offer hope for precise drug delivery, while addressing drug delivery hurdles is vital for effective prostate cancer (PCa) management. We developed an injectable elastin nanogels (ENG) for efficient drug delivery system to overcome castration-resistant prostate cancer (CRPC) by delivering Decursin, a small molecule inhibitor that blocks Wnt/βcatenin pathways for PCa. The ENG exhibited favourable characteristics such as biocompatibility, flexibility, and low toxicity. In this study, size, shape, surface charge, chemical composition, thermal stability, and other properties of ENG were used to confirm the successful synthesis and incorporation of Decursin (DEC) into elastin nanogels (ENG) for prostate cancer therapy. In vitro studies demonstrated sustained release of DEC from the ENG over 120 h, with a pH-dependent release pattern. DU145 cell line induces moderate cytotoxicity of DEC-ENG indicates that nanomedicine has an impact on cell viability and helps strike a balance between therapeutics efficacy and safety while the EPR effect enables targeted drug delivery to prostate tumor sites compared to free DEC. Morphological analysis further supported the effectiveness of DEC-ENG in inducing cell death. Overall, these findings highlight the promising role of ENG-encapsulated decursin as a targeted drug delivery system for CRPC.
    Matched MeSH terms: Cell Survival/drug effects
  13. Boidin L, Moinard M, Moussaron A, Merlier M, Moralès O, Grolez GP, et al.
    J Control Release, 2024 Jul;371:351-370.
    PMID: 38789088 DOI: 10.1016/j.jconrel.2024.05.033
    Ovarian cancer (OC) is one of the most lethal cancers among women. Frequent recurrence in the peritoneum due to the presence of microscopic tumor residues justifies the development of new therapies. Indeed, our main objective is to develop a targeted photodynamic therapy (PDT) treatment of peritoneal carcinomatosis from OC to improve the life expectancy of cancer patients. Herein, we propose a targeted-PDT using a vectorized photosensitizer (PS) coupled with a newly folic acid analog (FAA), named PSFAA, in order to target folate receptor alpha (FRα) overexpressed on peritoneal metastasis. This PSFAA was the result of the coupling of pyropheophorbide-a (Pyro-a), as the PS, to a newly synthesized FAA via a polyethylene glycol (PEG) spacer. The selectivity and the PDT efficacy of PSFAA was evaluated on two human OC cell lines overexpressing FRα compared to fibrosarcoma cells underexpressing FRα. Final PSFAA, including the synthesis of a newly FAA and its conjugation to Pyro-a, was obtained after 10 synthesis steps, with an overall yield of 19%. Photophysical properties of PSFAA in EtOH were performed and showed similarity with those of free Pyro-a, such as the fluorescence and singlet oxygen quantum yields (Φf = 0.39 and ΦΔ = 0.53 for free Pyro-a, and Φf = 0.26 and ΦΔ = 0.41 for PSFAA). Any toxicity of PSFAA was noticed. After light illumination, a dose-dependent effect on PS concentration and light dose was shown. Furthermore, a PDT efficacy of PSFAA on OC cell secretome was detected inducing a decrease of a pro-inflammatory cytokine secretion (IL-6). This new PSFAA has shown promising biological properties highlighting the selectivity of the therapy opening new perspectives in the treatment of a cancer in a therapeutic impasse.
    Matched MeSH terms: Cell Survival/drug effects
  14. Gilbert-Jaramillo J, Komarasamy TV, Balasubramaniam VR, Heather LC, James WS
    Antiviral Res, 2024 Aug;228:105933.
    PMID: 38851593 DOI: 10.1016/j.antiviral.2024.105933
    The underlying threat of new Zika virus (ZIKV) outbreaks remains, as no vaccines or therapies have yet been developed. In vitro research has shown that glycolysis is a key factor to enable sustained ZIKV replication in neuroprogenitors. However, neither in vivo nor clinical investigation of glycolytic modulators as potential therapeutics for ZIKV-related fetal abnormalities has been conducted. Accordingly, we tested the therapeutic potential of metabolic modulators in relevant in vitro systems comprising two pools of neuroprogenitors (NPCs), which resemble early and late stages of pregnancy. Effective doses of metabolic modulators [3.0 μM] dimethyl fumarate (DMF), [3.2 mM] dichloroacetate (DCA), and [6.3 μM] VER-246608 were determined for these cells by their effect on lactate release, pyruvate dehydrogenase (PDH) activity and cell survival. The drugs were used in a 24h pre-treatment and kept throughout ZIKV infection of NPCs. Drug effects and ZIKV replication were assessed at 24- and 56-h post-infection. In early NPCs treated with DMF, DCA and VER-246608, there was a significant reduction in the extracellular release of ZIKV potentially by PDH-mediated increased mitochondrial oxidation of glucose. Out of the three drugs, only DCA was observed to reduce viral replication in late NPCs treated with DCA. Altogether, our findings suggest that reduction of anaerobic glycolysis could be of therapeutic potential against ZIKV-related fetal abnormalities and that clinical translation should consider the use of specific glycolytic modulators over different trimesters.
    Matched MeSH terms: Cell Survival/drug effects
  15. Sugito SFA, Wibrianto A, Chang JY, Fahmi MZ, Khairunisa SQ, Sakti SCW, et al.
    Dalton Trans, 2024 Jul 09;53(27):11368-11379.
    PMID: 38896134 DOI: 10.1039/d4dt01123f
    The design of multimodal cancer therapy was focused on reaching an efficient process and minimizing harmful effects on patients. In the present study, the Au-MnO2 nanostructures have been successfully constructed and produced as novel multipurpose photosensitive agents simultaneously for photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT). The prepared AuNPs were conjugated with MnO2 NPs by its participation in the thermal decomposition process of KMnO4 confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy (FT-IR). The 16.5 nm Au-MnO2 nanostructure exhibited an absorbance at 438 nm, which is beneficial for application in light induction therapy due to the NIR band, as well as its properties of generating reactive oxygen species (ROS) associated with the 808 nm laser light for PDT. The photothermal transduction efficiency was calculated and compared with that of the non-irradiated nanostructure, in which it was found that the 808 nm laser induced a high efficiency of 83%, 41.5%, and 37.5% for PDT, PTT, and CDT, respectively. The results of DPBF and TMB assays showed that the efficiency of PDT and PTT was higher than that of CDT. The nanostructure also confirmed the time-dependent peroxidase properties at different H2O2, TMB, and H2TMB concentrations, promising good potency in applying nanomedicine in clinical cancer therapy.
    Matched MeSH terms: Cell Survival/drug effects
  16. Abd Aziz NA, Awang N, Kamaludin NF, Anuar NNM, Hamid A, Chan KM, et al.
    Anticancer Agents Med Chem, 2024;24(12):942-953.
    PMID: 38629375 DOI: 10.2174/0118715206309421240402093335
    BACKGROUND: Organotin(IV) complexes of dithiocarbamate are vital in medicinal chemistry, exhibiting potential in targeting cancer cells due to their unique properties that enhance targeted delivery. This study aimed to synthesize and characterize organotin(IV) N-ethyl-N-benzyldithiocarbamate complexes (ONBDCs) and evaluate their cytotoxicity against A549 cells, which are commonly used as a model for human lung cancer research.

    METHODS: The two ONBDC derivatives - ONBDC 1 (dimethyltin(IV) N-ethyl-N-benzyldithiocarbamate) and ONBDC 2 (triphenyltin(IV) N-ethyl-N-benzyldithiocarbamate) - were synthesized via the reaction of tin(IV) chloride with N-ethylbenzylamine in the presence of carbon disulfide. A range of analytical techniques, including elemental analysis, IR spectroscopy, NMR spectroscopy, UV-Vis spectrometry, TGA/DTA analysis, and X-ray crystallography, was conducted to characterize these compounds comprehensively. The cytotoxic effects of ONBDCs against A549 cells were evaluated using MTT assay.

    RESULTS: Both compounds were synthesized and characterized successfully via elemental and spectroscopies analysis. MTT assay revealed that ONBDC 2 demonstrated remarkable cytotoxicity towards A549 cells, with an IC50 value of 0.52 μM. Additionally, ONBDC 2 displayed significantly higher cytotoxic activity against the A549 cell line when compared to the commercially available chemotherapeutic agent cisplatin (IC50: 32 μM).

    CONCLUSION: Thus, it was shown that ONBDC 2 could have important anticancer properties and should be further explored as a top contender for creating improved and specialized cancer treatments.

    Matched MeSH terms: Cell Survival/drug effects
  17. Awang-Junaidi AH, Singh J, Honaramooz A
    Reprod Fertil Dev, 2020 Mar;32(6):594-609.
    PMID: 32051087 DOI: 10.1071/RD19043
    Ectopic implantation of donor testis cell aggregates in recipient mice results in de novo formation or regeneration of testis tissue and, as such, provides a unique invivo model for the study of testis development. However, currently the results are inconsistent and the efficiency of the model remains low. This study was designed to: (1) examine several factors that can potentially improve the consistency and efficiency of this model and (2) explore the use of ultrasound biomicroscopy (UBM) for the non-invasive invivo evaluation of implants. Testis cell aggregates, containing ~40% gonocytes, from 1-week-old donor piglets were implanted under the back skin of immunodeficient mice through skin incisions using gel matrices or through subcutaneous injection without using gel matrices. The addition of gel matrices led to inconsistent tissue development; gelatin had the greatest development, followed by collagen, whereas agarose resulted in poor development. The results also depended on the implanted cell numbers since implants with 100×106 cells were larger than those with 50×106 cells. The injection approach for cell implantation was less invasive and resulted in more consistent and efficient testis tissue development. UBM provided promising results as a means of non-invasive monitoring of implants.
    Matched MeSH terms: Graft Survival*
  18. Ngan CL, Basri M, Tripathy M, Abedi Karjiban R, Abdul-Malek E
    Eur J Pharm Sci, 2015 Apr 5;70:22-8.
    PMID: 25619806 DOI: 10.1016/j.ejps.2015.01.006
    Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit.
    Matched MeSH terms: Cell Survival/drug effects; Cell Survival/physiology
  19. Johari SA, Mohtar M, Mohammad SA, Sahdan R, Shaameri Z, Hamzah AS, et al.
    Biomed Res Int, 2015;2015:823829.
    PMID: 25710030 DOI: 10.1155/2015/823829
    28 new pyrrolidine types of compounds as analogues for natural polyhydroxy alkaloids of codonopsinine were evaluated for their anti-MRSA activity using MIC and MBC value determination assay against a panel of S. aureus isolates. One pyrrolidine compound, MFM 501, exhibited good inhibitory activity with MIC value of 15.6 to 31.3 μg/mL against 55 S. aureus isolates (43 MRSA and 12 MSSA isolates). The active compound also displayed MBC values between 250 and 500 μg/mL against 58 S. aureus isolates (45 MRSA and 13 MSSA isolates) implying that MFM 501 has a bacteriostatic rather than bactericidal effect against both MRSA and MSSA isolates. In addition, MFM 501 showed no apparent cytotoxicity activity towards three normal cell lines (WRL-68, Vero, and 3T3) with IC50 values of >625 µg/mL. Selectivity index (SI) of MFM 501 gave a value of >10 suggesting that MFM 501 is significant and suitable for further in vivo investigations. These results suggested that synthetically derived intermediate compounds based on natural products may play an important role in the discovery of new anti-infective agents against MRSA.
    Matched MeSH terms: Cell Survival/drug effects; Cell Survival/physiology
  20. Abdul Hamid Z, Lin Lin WH, Abdalla BJ, Bee Yuen O, Latif ES, Mohamed J, et al.
    ScientificWorldJournal, 2014;2014:258192.
    PMID: 25405216 DOI: 10.1155/2014/258192
    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1(+) cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.
    Matched MeSH terms: Cell Survival/drug effects; Cell Survival/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links