OBJECTIVES: In this study, Chromolaena odorata gel and quercetin gel (bioactive flavonoid compound) were successfully formulated and compared with placebo and conventional wound aid gel. The chromatographic profilling was conducted to screen the presence of phytoconstituents. Subsequently, all formulated gels were subjected to physical characteristic and stability study.
METHODS: Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) of C.odorata methanolic leaves extract shows a distinct compound separation at retention time 8.4min to 34.8 min at 254nm. All gels were characterised by evaluating their rheological properties including storage modulus, loss modulus and plastic viscosity. Besides, texture analysis was performed to measure the gels' firmness, consistency, cohesiveness, and viscosity index.
RESULTS: From the observation, C. odorata gel demonstrated better spreadability as compared to the other gels, which acquired less work and favourable to be applied onto the skin. Moreover, C. odorata gel showed no changes in organoleptic properties and proven to be stable after 30 days of accelerated stability study at 40°C ± 2°C with relative humidity (RH) of 75%± 5%.
CONCLUSION: C. odorata gel has shown to be stable, reflecting the combination of materials used in the formulation, which did not degrade throughout the study. This work suggests the potential of this gel as a vehicle to deliver the active ingredients of C. odorata to the skin, which can be further explored as a topical application in antimicrobial wound management or other skin diseases study.
RESULTS: Increases in homogenization pressure and emulsifier concentration were observed to have significant (P 0.05) differences between the prepared and commercial LNDCs in terms of their color, appearance, and overall acceptability.
CONCLUSION: Shelf-stable LNDCs with qualities comparable to commercial LNDC were successfully fabricated. Valuable insights into the effects of homogenization pressure, oil type, and emulsifier concentration, as well as functionality and consumer acceptance of the LNDCs when added into black coffee, were obtained. © 2020 Society of Chemical Industry.