Displaying publications 181 - 200 of 302 in total

Abstract:
Sort:
  1. Sudheer S, Alzorqi I, Ali A, Cheng PG, Siddiqui Y, Manickam S
    Int J Med Mushrooms, 2018;20(1):89-100.
    PMID: 29604916 DOI: 10.1615/IntJMedMushrooms.2017024588
    This study investigates the cultivation of Ganoderma lucidum using different agricultural biomasses from Malaysia. Five different combinations of rubber wood sawdust, empty fruit bunch fiber, and mesocarp fiber from oil palm, alone and in combination, were used to cultivate G. lucidum. Although all the substrate combinations worked well to grow the mushroom, the highest biological efficiency was obtained from the combination of empty fruit bunch fiber with sawdust. A total yield of 27% was obtained from empty fruit bunch fiber with sawdust, followed by sawdust (26%), empty fruit bunch fiber (19%), mesocarp fiber with sawdust (19%), and mesocarp fiber (16%). The quality of mushrooms was proved by proximate analysis and detection of phenolic compounds and flavonoids. The antioxidant activity verified by DPPH, ferric-reducing ability of plasma, and ABTS analyses revealed that the empty fruit bunch fiber with sawdust had higher activity than the other substrates.
    Matched MeSH terms: Dietary Fiber/pharmacology
  2. Shahril MR, Zakarai NS, Appannah G, Nurnazahiah A, Mohamed HJJ, Ahmad A, et al.
    Nutrients, 2021 Sep 24;13(10).
    PMID: 34684340 DOI: 10.3390/nu13103339
    Dietary pattern (DP) and its relationship with disease biomarkers have received recognition in nutritional epidemiology investigations. However, DP relationships with adipokines (i.e., adiponectin and leptin) among breast cancer survivors remain unclear. Therefore, we assessed relationships between DP and high-molecular weight (HMW) adiponectin and leptin concentration among breast cancer survivors. This cross-sectional study involved 128 breast cancer survivors who attended the oncology outpatient clinic at two main government hospitals in the East Coast of Peninsular Malaysia. The serum concentration of HMW adiponectin and leptin were measured using enzyme-linked immunosorbent assay (ELISA) kits. A reduced rank regression method was used to analyze DP. Relationships between DP with HMW adiponectin and leptin were examined using regression models. The findings show that with every 1-unit increase in the 'energy-dense, high-SFA, low-fiber' DP z-score, there was a reduction by 0.41 μg/mL in HMW adiponectin which was independent of age, BMI, education level, occupation status, cancer stage, and duration since diagnosis. A similar relationship with leptin concentration was not observed. In conclusion, the 'energy-dense, high-saturated fat and low-fiber' DP, which is characterized by high intake levels of sugar-sweetened drinks and fat-based spreads but low intake of fruits and vegetables, is an unhealthy dietary pattern and unfavorable for HMW adiponectin concentration, but not for leptin. These findings could serve as a basis in developing specific preventive strategies that are tailored to the growing population of breast cancer survivors.
    Matched MeSH terms: Dietary Fiber/pharmacology*
  3. Hoshino S, Seino S, Funahashi T, Hoshino T, Clauss M, Matsuda I, et al.
    PLoS One, 2021;16(9):e0256548.
    PMID: 34543310 DOI: 10.1371/journal.pone.0256548
    Colobine monkeys are known for the anatomical complexity of their stomachs, making them distinct within the primate order. Amongst foregut fermenters, they appear peculiar because of the occurrence of two different stomach types, having either three ('tripartite') or four ('quadripartite', adding the praesaccus) chambers. The functional differences between tri and quadripartite stomachs largely remain to be explained. In this study, we aim to compare the apparent digestibility (aD) in tripartite and quadripartite colobines. Hence, we measured the aD in two colobine species, Nasalis larvatus (quadripartite) and Trachypithecus cristatus (tripartite), in two zoos. We also included existing colobine literature data on the aD and analysed whether the aD of fibre components is different between the stomach types to test the hypothesis of whether quadripartite colobines show higher aD of fibre components than tripartite colobines did. Our captive N. larvatus specimen had a more distinctively varying nutrient intake across seasons with a larger seasonal variation in aD than that of a pair of T. cristatus, which mostly consumed commercial foods with a lower proportion of browse and less seasonal variation. We observed higher aD of dry matter (DM), neutral detergent fibre (NDF) and acid detergent fibre (ADF) in the N. larvatus specimen, suggesting a higher gut capacity of N. larvatus provided by the additional praesaccus forestomach chamber. Based on the analysis of literature data for aD, we also found that quadripartite species achieved higher fibre digestibility at similar dietary fibre levels compared with tripartite species, supporting the hypothesis that the additional gut capacity offered by the praesaccus facilitates a longer retention and hence more thorough microbial fermentation of plant fibre.
    Matched MeSH terms: Dietary Fiber/metabolism
  4. Asrofi M, Abral H, Putra YK, Sapuan SM, Kim HJ
    Int J Biol Macromol, 2018 Mar;108:167-176.
    PMID: 29191420 DOI: 10.1016/j.ijbiomac.2017.11.165
    This paper characterizes properties of biocomposite sonicated during gelatinization. The biocomposite consisted of tapioca starch based plastic reinforced by 10% volume fraction of water hyacinth fiber (WHF). During gelatinization, the biocomposite was poured into a rectangular glass mold then vibrated in an ultrasonic bath using 40kHz, 250W for varying durations (0, 15, 30, and 60min). The resulting biocomposite was then dried in a drying oven at 50°C for 20h. The results of this study indicate that a biocomposite with optimal properties can be produced using tapioca starch and WHF if the gelatinizing mixture is exposed to ultrasound vibration for 30min. After this vibration duration, tensile strength (TS) and tensile modulus (TM) increased 83% and 108%. A further 60min vibration only increased the TS at 13% and TM at 23%. Moisture resistance of the biocomposite after vibration increased by around 25% reaching a maximal level after 30min. Thermal resistance of the vibrated biocomposites was also increased.
    Matched MeSH terms: Dietary Fiber*
  5. Soo YT, Ng SW, Tang TK, Ab Karim NA, Phuah ET, Lee YY
    J Sci Food Agric, 2021 Aug 15;101(10):4161-4172.
    PMID: 33428211 DOI: 10.1002/jsfa.11054
    BACKGROUND: Palm pressed fibre (PPF) is a cellulose-rich biomass residue produced during palm oil extraction. Its high cellulose content allows the isolation of cellulose nanocrystal (CNC). CNC has attracted scientific interest due to its biodegradability, biocompatibility and low cost. The present study isolated CNC from PPF using a cation exchange resin, which is an environmentally friendly and less harsh hydrolysis method than conventional mineral acid hydrolysis. Isolated CNC was used to stabilise an oil-in-water emulsion and the emulsion stability was evaluated in terms of droplet size, morphology and physical stability.

    RESULTS: PPF was subjected to alkali and bleach treatment prior to hydrolysis, which successfully removed 54% and 75% of non-cellulosic components (hemicellulose and lignin, respectively). Hydrolysis conditions of 5 h, 15:1 (w/w) resin-to-pulp ratio and 50 °C produced CNC particles of 50-100 nm in length. CNC had a crystallinity index of 42% and appeared rod-like morphologically. CNC-stabilised emulsion had better stability when used in combination with soy lecithin (SL), a well-established, commonly used food stabiliser. Emulsion stabilised by the binary mixture of CNC and SL had droplet size, morphology and physical stability comparable to those of emulsion stabilised using SL.

    CONCLUSIONS: CNC was successfully isolated from PPF through a cation exchange resin. This offers an alternative usage for the underutilised PPF to be converted into value-added products. Isolated CNC was also found to have promising potential in the stabilisation of Pickering emulsions. These results provide useful information indicating CNC as a natural and sustainable stabiliser for food, cosmeceutical and pharmaceutical applications. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Dietary Fiber/analysis*
  6. Jafari Khorshidi K, Abedi Chemazkoti S, Kioumarsi H, Shariman Yahya Z
    Pak J Biol Sci, 2013 Sep 01;16(17):898-900.
    PMID: 24498847
    This research was conducted in order to investigate rumen degradability of some factors includes; Dray Matter (DM), Organic Matter (OM), Crude Protein (CP), Acid Detergent Fiber (ADF) in three different plant protein supplements includes; soybean, canola and cottonseed meal. The experiment was carried out using in three castrated and fistulated male Zel sheep. Each feedstuff was weighed into duplicate nylon bags and incubated in each of the three rumen fistulated sheep for 0, 2, 4, 8, 16, 24 and 48 h. Results revealed that effective degradability of DM of soybean, canola and cottonseed meal were 55.8, 73.8 and 48.5%, respectively. Effective degradabilities of the CP in feedstuffs were 55.8, 62 and 48.3% for the respective feedstuffs. Effective degradabilities of the OM were 55.7, 56.4 and 47.4%, respectively. Results also showed that effective degradabilities of the ADF were 55, 56.4 and 37.6, respectively. According to the results the researchers concluded that canola and soybean were more degradable in the rumen of the sheep while cottonseed meal were less degradable and, hence resulted in higher rumen undegradable protein.
    Matched MeSH terms: Dietary Fiber/metabolism
  7. Grube B, Chong PW, Alt F, Uebelhack R
    J Obes, 2015;2015:953138.
    PMID: 26435849 DOI: 10.1155/2015/953138
    Litramine (IQP-G-002AS) was shown to be effective and safe for weight loss in overweight and obese subjects. However, long-term effectiveness on maintenance of body weight loss has yet to be ascertained.
    Matched MeSH terms: Dietary Fiber/pharmacology; Dietary Fiber/therapeutic use*
  8. Robert SD, Ismail AA, Rosli WI
    Eur J Nutr, 2016 Oct;55(7):2275-80.
    PMID: 26358163 DOI: 10.1007/s00394-015-1037-4
    PURPOSE: This study aimed to determine whether fenugreek seed powder could reduce the glycemic response and glycemic index (GI) when added to buns and flatbreads.

    METHODS: In a randomised, controlled crossover trial, ten healthy human subjects (five men, five women) were given 50 g glucose (reference food, twice); buns (0 and 10 % fenugreek seed powder); and flatbreads (0 and 10 % fenugreek seed powder) on six different occasions. Finger prick capillary blood samples were collected at 0, 15, 30, 45, 60, 90 and 120 min after the start of the meal. The palatability of the test meals was scored using Likert scales.

    RESULTS: The incremental areas under the glucose curve value of buns and flatbreads with 10 % fenugreek (138 ± 17 mmol × min/L; 121 ± 16 mmol × min/L) were significantly lower than those of 0 % fenugreek bun and flatbreads (227 ± 15 mmol × min/L; 174 ± 14 mmol × min/L, P = <0.01). Adding 10 % fenugreek seed powder reduced the GI of buns from 82 ± 5 to 51 ± 7 (P 

    Matched MeSH terms: Dietary Fiber/administration & dosage; Dietary Fiber/analysis
  9. Lim SY, Tham PY, Lim HYL, Heng WS, Chang YP
    J Food Sci, 2018 Jun;83(6):1522-1532.
    PMID: 29745989 DOI: 10.1111/1750-3841.14155
    The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study.

    PRACTICAL APPLICATION: To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them.

    Matched MeSH terms: Dietary Fiber/analysis; Dietary Fiber/pharmacology*
  10. Yulistiani D, Jelan ZA, Liang JB, Yaakub H, Abdullah N
    Asian-Australas J Anim Sci, 2015 Apr;28(4):494-501.
    PMID: 25656207 DOI: 10.5713/ajas.14.0406
    A digestibility study was conducted to evaluate the effects of supplementing mulberry foliage and urea rice-bran as a source of fermentable energy and protein to 12 sheep fed diets based on urea-treated rice straw (TRS). The three dietary treatments were: T1, TRS with mulberry; T2, TRS with 50% mulberry replaced with rice bran and urea; and T3, TRS with rice bran and urea. The study was arranged in a completely randomized design with four replications for each treatment. The sheep were fed one of the three diets and the supplements were offered at 1.2% of the body weight (BW) and the TRS was provided ad libitum. There were no differences (p>0.05) among the three treatment groups with respect to dry matter (DM) intake (76.8±4.2 g/kg BW(0.75)) and DM, organic matter (OM), and crude protein (CP) digestibility (55.3±1.22; 69.9±0.85; 46.3±1.65% respectively for DM, OM, and CP). The digestibility of fiber (neutral detergent fiber [NDF] and acid detergent fiber) was significantly lower (p<0.05) for T3 (46.2 and 46.6 respectively) compared to T1 (55.8 and 53.7 respectively) and T2 (54.1 and 52.8 respectively). Nitrogen (N) intake by sheep on diet T3 was significantly (p<0.05) higher than sheep fed diet T1. However, N balance did not differ among the three diets (3.0±0.32 g/d). In contrast, the rumen ammonia (NH3-N) concentrations in sheep fed T2 and T3 were significantly (p<0.05) higher than in sheep fed T1. The NH3-N concentrations for all three diets were above the critical value required for optimum rumen microbial growth and synthesis. Total volatile fatty acid concentrations were highest (p<0.05) in T1 (120.3 mM), whilst the molar proportion of propionic acid was highest in T3 (36.9%). However, the microbial N supply in sheep fed T1 and T3 was similar but was significantly (p<0.05) higher than for sheep fed T2. It was concluded that mulberry foliage is a potential supplement of fermentable energy and protein for sheep fed TRS based diet. The suggested level of supplementation is 1.2% of BW or 32% of the total diet since it resulted in similar effects on the intake of DM, OM, and NDF, digestibility of DM, OM, and CP, N utilization and microbial supply when compared to rice bran and urea supplementation.
    Matched MeSH terms: Dietary Fiber
  11. Wahid R, Ward AJ, Møller HB, Søegaard K, Eriksen J
    Bioresour Technol, 2015 Dec;198:124-32.
    PMID: 26386414 DOI: 10.1016/j.biortech.2015.08.154
    This study investigated the potentials of forbs; caraway, chicory, red clover and ribwort plantain as substrates for biogas production. One-, two- and four-cut systems were implemented and the influence on dry matter yields, chemical compositions and methane yields were examined. The two- and four-cut systems resulted in higher dry matter yields (kg [total solid, TS] ha(-1)) compared to the one-cut system. The effect of plant compositions on biogas potentials was not evident. Cumulative methane yields (LCH4kg(-1) [volatile solid, VS]) were varied from 279 to 321 (chicory), 279 to 323 (caraway), 273 to 296 (ribwort plantain), 263 to 328 (red clover) and 320 to 352 (grass-clover mixture), respectively. Methane yield was modelled by modified Gompertz equation for comparison of methane production rate. Near infrared spectroscopy showed potential as a tool for biogas and chemical composition prediction. The best prediction models were obtained for methane yield at 29 days (99 samples), cellulose, acid detergent fibre, neutral detergent fibre and crude protein, (R(2)>0.9).
    Matched MeSH terms: Dietary Fiber
  12. Abdul PM, Jahim JM, Harun S, Markom M, Lutpi NA, Hassan O, et al.
    Bioresour Technol, 2016 Jul;211:200-8.
    PMID: 27017130 DOI: 10.1016/j.biortech.2016.02.135
    Oil palm empty fruit bunch (OPEFB) fibre is widely available in Southeast Asian countries and found to have 60% (w/w) sugar components. OPEFB was pretreated using the ammonia fibre expansion (AFEX) method and characterised physically by the Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that there were significant structural changes in OPEFB after the pretreatment step, and the sugar yield after enzymatic hydrolysis using a cocktail of Cellic Ctec2® and Cellic Htec2® increased from 0.15gg(-1) of OPEFB in the raw untreated OPEFB sample to 0.53gg(-1) of OPEFB in AFEX-pretreated OPEFB (i.e. almost a fourfold increase in sugar conversion), which enhances the economic value of OPEFB. A biohydrogen fermentability test of this hydrolysate was carried out using a locally isolated bacterium, Enterobacter sp. KBH6958. The biohydrogen yield after 72h of fermentation was 1.68mol H2 per mol sugar. Butyrate, ethanol, and acetate were the major metabolites.
    Matched MeSH terms: Dietary Fiber
  13. Amran M, Fediuk R, Vatin N, Lee YH, Murali G, Ozbakkaloglu T, et al.
    Materials (Basel), 2020 Sep 28;13(19).
    PMID: 32998362 DOI: 10.3390/ma13194323
    Foamed concrete (FC) is a high-quality building material with densities from 300 to 1850 kg/m3, which can have potential use in civil engineering, both as insulation from heat and sound, and for load-bearing structures. However, due to the nature of the cement material and its high porosity, FC is very weak in withstanding tensile loads; therefore, it often cracks in a plastic state, during shrinkage while drying, and also in a solid state. This paper is the first comprehensive review of the use of man-made and natural fibres to produce fibre-reinforced foamed concrete (FRFC). For this purpose, various foaming agents, fibres and other components that can serve as a basis for FRFC are reviewed and discussed in detail. Several factors have been found to affect the mechanical properties of FRFC, namely: fresh and hardened densities, particle size distribution, percentage of pozzolanic material used and volume of chemical foam agent. It was found that the rheological properties of the FRFC mix are influenced by the properties of both fibres and foam; therefore, it is necessary to apply an additional dosage of a foam agent to enhance the adhesion and cohesion between the foam agent and the cementitious filler in comparison with materials without fibres. Various types of fibres allow the reduction of by autogenous shrinkage a factor of 1.2-1.8 and drying shrinkage by a factor of 1.3-1.8. Incorporation of fibres leads to only a slight increase in the compressive strength of foamed concrete; however, it can significantly improve the flexural strength (up to 4 times), tensile strength (up to 3 times) and impact strength (up to 6 times). At the same time, the addition of fibres leads to practically no change in the heat and sound insulation characteristics of foamed concrete and this is basically depended on the type of fibres used such as Nylon and aramid fibres. Thus, FRFC having the presented set of properties has applications in various areas of construction, both in the construction of load-bearing and enclosing structures.
    Matched MeSH terms: Dietary Fiber
  14. Abdul Azam F', Razak Z, Md Radzi MKF, Muhamad N, Che Haron CH, Sulong AB
    Polymers (Basel), 2020 Sep 13;12(9).
    PMID: 32933225 DOI: 10.3390/polym12092083
    The incorporation of kenaf fiber fillers into a polymer matrix has been pronounced in the past few decades. In this study, the effect of multiwalled carbon nanotubes (MWCNTs) with a short kenaf fiber (20 mesh) with polypropylene (PP) added was investigated. The melt blending process was performed using an internal mixer to produce polymer composites with different filler contents, while the suitability of this melt composite for the injection molding process was evaluated. Thermogravimetric analysis (TGA) was carried out to investigate the thermal stability of the raw materials. Rheological analyses were conducted by varying the temperature, load factor, and filler content. The results demonstrate a non-Newtonian pseudoplastic behavior in all samples with changed kenaf fillers (10 to 40 wt %) and MWCNT contents (1 to 4 wt %), which confirm the suitability of the feedstock for the injection molding process. The addition of MWCNTs had an immense effect on the viscosity and an enormous reduction in the feedstock flow behavior. The main contribution of this work is the comprehensive observation of the rheological characteristics of newly produced short PP/kenaf composites that were altered after MWCNT additions. This study also presented an adverse effect on the composites containing MWCNTs, indicating a hydrophilic property with improved water absorption stability and the low flammability effect of PP/kenaf/MWCNT composites. This PP/kenaf/MWCNT green composite produced through the injection molding technique has great potential to be used as car components in the automotive industry.
    Matched MeSH terms: Dietary Fiber
  15. Chen C, Mohamad Razali UH, Saikim FH, Mahyudin A, Mohd Noor NQI
    Foods, 2021 Mar 23;10(3).
    PMID: 33807100 DOI: 10.3390/foods10030689
    Morus alba L. (M. alba) is a highly adaptable plant that is extensively incorporated in many traditional and Ayurveda medications. Various parts of the plant, such as leaves, fruits, and seeds, possess nutritional and medicinal value. M. alba has abundant phytochemicals, including phenolic acids, flavonoids, flavonols, anthocyanins, macronutrients, vitamins, minerals, and volatile aromatic compounds, indicating its excellent pharmacological abilities. M. alba also contains high nutraceutical values for protein, carbohydrates, fiber, organic acids, vitamins, and minerals, as well as a low lipid value. However, despite its excellent biological properties and nutritional value, M. alba has not been fully considered as a potential functional food ingredient. Therefore, this review reports on the nutrients and bioactive compounds available in M. alba leaves, fruit, and seeds; its nutraceutical properties, functional properties as an ingredient in foodstuffs, and a microencapsulation technique to enhance polyphenol stability. Finally, as scaling up to a bigger production plant is needed to accommodate industrial demand, the study and limitation on an M. alba upscaling process is reviewed.
    Matched MeSH terms: Dietary Fiber
  16. Fouad H, Kian LK, Jawaid M, Alotaibi MD, Alothman OY, Hashem M
    Polymers (Basel), 2020 Dec 07;12(12).
    PMID: 33297332 DOI: 10.3390/polym12122926
    Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively. Characterizations of samples were carried out with Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared-Ray (FTIR), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Differential Scanning Calorimetry (DSC). From morphology study, the bundle fiber feature of CPBLH disintegrated into micro-size fibrils of CPMCC, showing the amorphous compounds were substantially removed through chemical depolymerization. Meanwhile, the elemental analysis also proved that the traces of impurities such as cations and anions were successfully eliminated from CPMCC. The CPMCC also gave a considerably high yield of 27%, which endowed it with great sustainability in acting as alternative biomass for MCC production. Physicochemical analysis revealed the existence of crystalline cellulose domain in CPMCC had contributed it 75.7% crystallinity. In thermal analysis, CPMCC had stable decomposition behavior comparing to CPBLH and CPAKL fibers. Therefore, Conocarpus fiber could be a promising candidate for extracting MCC with excellent properties in the future.
    Matched MeSH terms: Dietary Fiber
  17. Rizal S, Ikramullah, Gopakumar DA, Thalib S, Huzni S, Abdul Khalil HPS
    Polymers (Basel), 2018 Nov 28;10(12).
    PMID: 30961241 DOI: 10.3390/polym10121316
    Natural fiber composites have been widely used for various applications such as automotive components, aircraft components and sports equipment. Among the natural fibers Typha spp have gained considerable attention to replace synthetic fibers due to their unique nature. The untreated and alkali-treated fibers treated in different durations were dried under the sun for 4 h prior to the fabrication of Typha fiber reinforced epoxy composites. The chemical structure and crystallinity index of composites were examined via FT-IR and XRD respectively. The tensile, flexural and impact tests were conducted to investigate the effect of the alkali treated Typha fibers on the epoxy composite. From the microscopy analysis, it was observed that the fracture mechanism of the composite was due to the fiber and matrix debonding, fiber pull out from the matrix, and fiber damage. The tensile, flexural and impact strength of the Typha fiber reinforced epoxy composite were increased after 5% alkaline immersion compared to untreated Typha fiber composite. From these results, it can be concluded that the alkali treatment on Typha fiber could improve the interfacial compatibility between epoxy resin and Typha fiber, which resulted in the better mechanical properties and made the composite more hydrophobic. So far there is no comprehensive report about Typha fiber reinforcing epoxy composite, investigating the effect of the alkali treatment duration on the interfacial compatibility, and their effect on chemical and mechanical of Typha fiber reinforced composite, which plays a vital role to provide the overall mechanical performance to the composite.
    Matched MeSH terms: Dietary Fiber
  18. Chieng BW, Lee SH, Ibrahim NA, Then YY, Loo YY
    Polymers (Basel), 2017 Aug 11;9(8).
    PMID: 30971032 DOI: 10.3390/polym9080355
    The aim was to explore the utilization of oil palm mesocarp fiber (OPMF) as a source for the production of cellulose nanocrystals (CNC). OPMF was first treated with alkali and then bleached before the production of CNC by acid hydrolysis (H₂SO₄). The produced materials were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), a scanning electron microscope (SEM) and a transmission electron microscope (TEM). It was proven that acid hydrolysis can increase the crystallinity of bleached OPMF and reduce the dimension of cellulose to nano scale. Changes in the peaks of the FTIR spectrum at 2852 (C-H stretching), 1732 (C=O stretching) and 1234 cm-1 (C-O stretching) indicated that the alkali treatment completely removed hemicelluloses and lignin from the fiber surface. This can be seen from the thermogram obtained from the TGA characterization. Morphological characterization clearly showed the formation of rod-shaped CNCs. The promising results prove that OPMF is a valuable source for the production of CNC.
    Matched MeSH terms: Dietary Fiber
  19. Jumaidin R, Diah NA, Ilyas RA, Alamjuri RH, Yusof FAM
    Polymers (Basel), 2021 Apr 28;13(9).
    PMID: 33924842 DOI: 10.3390/polym13091420
    Increasing environmental concerns have led to greater attention to the development of biodegradable materials. The aim of this paper is to investigate the effect of banana leaf fibre (BLF) on the thermal and mechanical properties of thermoplastic cassava starch (TPCS). The biocomposites were prepared by incorporating 10 to 50 wt.% BLF into the TPCS matrix. The samples were characterised for their thermal and mechanical properties. The results showed that there were significant increments in the tensile and flexural properties of the materials, with the highest strength and modulus values obtained at 40 wt.% BLF content. Thermogravimetric analysis showed that the addition of BLF had increased the thermal stability of the material, indicated by higher-onset decomposition temperature and ash content. Morphological studies through scanning electron microscopy (SEM) exhibited a homogenous distribution of fibres and matrix with good adhesion, which is crucial in improving the mechanical properties of biocomposites. This was also attributed to the strong interaction of intermolecular hydrogen bonds between TPCS and fibre, proven by the FT-IR test that observed the presence of O-H bonding in the biocomposite.
    Matched MeSH terms: Dietary Fiber
  20. Au Jee Yuan, Faridah Yahya
    MyJurnal
    The aim of this study was to determine the effect of different ratios of low protein flour to oyster mushroom (Pleurotus sajor-caju) powder on the physicochemical properties and sensory acceptability of edible tablespoon. Fresh grey oyster mushroom was dried in a convection oven at temperature of 55.0˚C ± 2.0˚C for 20 h prior to the grinding process. The low protein flour (LPF) was then incorporated with oyster mushroom powder (OMP) at different ratios of 100:0, 96:4, 92:8, 88:12 and 84:16, before being with vegetable oil, sugar, egg white and water in formulating the edible tablespoon. The proximate analyses were carried out in triplicate for calorie content, colour profile, hardness value and morphological structure of edible tablespoon. This study revealed that with decreasing LPF and increasing OMP in the formulation, the ash content (1.24% to 1.92%), crude fat content (8.98% to 10.40%) and fiber content (0.13% to 1.24%) were observed to have increased as well as the hardness value (2042.03g to 2844.57g) and pore’s size of the morphological structure of edible tablespoon. However, the carbohydrate content (78.64% to 75.56%) significantly decreased (p>0.05) together with L* value (from 68.47 to 61.71) when the decrease was in the the percentage of LPF and an increase the percentage of OMP. The calorie content, moisture content and protein content of edible tablespoon were not significantly (p>0.05) affected by different ratios of LPF to OMP. The edible tablespoon formulated with up to 8% of OMP was accepted by the sensory panelists but further increase in OMP addition significantly decreased the degree of likeness in terms of colour, odour, taste and overall acceptability of edible tablespoon. This study suggested that oyster mushroom edible tablespoon could be potential alternative disposable cutlery which will help to reduce the use of huge amount of non-biodegradable materials for environmental conservation.
    Matched MeSH terms: Dietary Fiber
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links