Displaying publications 181 - 200 of 1247 in total

Abstract:
Sort:
  1. Wang KW, Balakrishnan V, Liauw PC, Chua EK, Vengadasalam D, Tan YT
    Singapore Med J, 1988 Feb;29(1):53-5.
    PMID: 3406769
    Diabetes mellitus is a common chronic disease in Singapore. Its occurrence in pregnant women was 1.3% in a previous report. In a survey of 145 consecutive pregnant women registered at Alexandra Hospital the incidence of gestational diabetes was 13.1% when a total screen with 75 gm oral glucose challenge was used. The mean age of this sample was 27 years and the mean gestation at screening 33 weeks. There was an excess of Malay and Indian patients. Fifty percent had traditional risk factors tor gestational diabetes. Whether this higher incidence is a result of more stringent screening and/or increased occurrence remains to be confirmed.
    Matched MeSH terms: Blood Glucose/analysis*; Glucose Tolerance Test
  2. Chen WN, Tang KS, Yeong KY
    Curr Neuropharmacol, 2022;20(8):1554-1563.
    PMID: 34951390 DOI: 10.2174/1570159X20666211223124715
    Alzheimer's disease (AD), the most common form of dementia, is pathologically characterized by the deposition of amyloid-β plaques and the formation of neurofibrillary tangles. In a neurodegenerative brain, glucose metabolism is also impaired and considered as one of the key features in AD patients. The impairment causes a reduction in glucose transporters and the uptake of glucose as well as alterations in the specific activity of glycolytic enzymes. Recently, it has been reported that α-amylase, a polysaccharide-degrading enzyme, is present in the human brain. The enzyme is known to be associated with various diseases such as type 2 diabetes mellitus and hyperamylasaemia. With this information at hand, we hypothesize that α-amylase could have a vital role in the demented brains of AD patients. This review aims to shed insight into the possible link between the expression levels of α-amylase and AD. Lastly, we also cover the diverse role of amylase inhibitors and how they could serve as a therapeutic agent to manage or stop AD progression.
    Matched MeSH terms: Glucose/metabolism; Glucose/therapeutic use
  3. Nasution DLI, Furuta M, Li H, Zakaria MN, Takeshita T, Peres MA, et al.
    J Clin Periodontol, 2023 Aug;50(8):1042-1050.
    PMID: 36935202 DOI: 10.1111/jcpe.13809
    AIM: To investigate the existence of a bidirectional temporal relationship between periodontal condition and glycaemic status.

    MATERIALS AND METHODS: This longitudinal study included 2198 participants with mean age 43.4 ± 7.7 years, who underwent dental examinations in Yokohama, Japan, at two time points, 2003-2004 and 2008-2009, at an interval of 5 years. Periodontal condition was assessed by the mean value of probing pocket depth (PPD) and clinical attachment level (CAL). Glycaemic status was assessed by fasting glucose and glycated haemoglobin (HbA1c).

    RESULTS: The cross-lagged panel models showed the effect of HbA1c at baseline on mean PPD at follow-up (β = 0.044, p = .039). There was a marginal effect of fasting glucose on the mean PPD (β = 0.037, p = .059). It was similar to the effect of fasting glucose or HbAlc on mean CAL. However, in the opposite direction, no effect of mean PPD or CAL at baseline on fasting glucose or HbAlc at follow-up was identified.

    CONCLUSIONS: This study demonstrated a unidirectional relationship between glycaemic status and periodontal condition. The study population, however, had mostly mild periodontitis. Future studies are needed to investigate the effect of periodontal condition on glycaemic status in patients with severe periodontitis.

    Matched MeSH terms: Blood Glucose/analysis; Glucose
  4. Zolkeflee NKZ, Wong PL, Maulidiani M, Ramli NS, Azlan A, Abas F
    Planta Med, 2023 Aug;89(9):916-934.
    PMID: 36914160 DOI: 10.1055/a-2053-0950
    Diabetes mellitus (DM) is a metabolic endocrine disorder caused by decreased insulin concentration or poor insulin response. Muntingia calabura (MC) has been used traditionally to reduce blood glucose levels. This study aims to support the traditional claim of MC as a functional food and blood-glucose-lowering regimen. The antidiabetic potential of MC is tested on a streptozotocin-nicotinamide (STZ-NA)-induced diabetic rat model by using the 1H-NMR-based metabolomic approach. Serum biochemical analyses reveal that treatment with 250 mg/kg body weight (bw) standardized freeze-dried (FD) 50% ethanolic MC extract (MCE 250) shows favorable serum creatinine (37.77 ± 3.53 µM), urea (5.98 ± 0.84 mM) and glucose (7.36 ± 0.57 mM) lowering capacity, which was comparable to the standard drug, metformin. The clear separation between diabetic control (DC) and normal group in principal component analysis indicates the successful induction of diabetes in the STZ-NA-induced type 2 diabetic rat model. A total of nine biomarkers, including allantoin, glucose, methylnicotinamide, lactate, hippurate, creatine, dimethylamine, citrate and pyruvate are identified in rats' urinary profile, discriminating DC and normal groups through orthogonal partial least squares-discriminant analysis. Induction of diabetes by STZ-NA is due to alteration in the tricarboxylic acid (TCA) cycle, gluconeogenesis pathway, pyruvate metabolism and nicotinate and nicotinamide metabolism. Oral treatment with MCE 250 in STZ-NA-induced diabetic rats shows improvement in the altered carbohydrate metabolism, cofactor and vitamin metabolic pathway, as well as purine and homocysteine metabolism.
    Matched MeSH terms: Blood Glucose/analysis; Glucose
  5. Erejuwa OO, Sulaiman SA, Wahab MS
    Int J Biol Sci, 2012;8(6):913-34.
    PMID: 22811614 DOI: 10.7150/ijbs.3697
    Diabetes mellitus remains a burden worldwide in spite of the availability of numerous antidiabetic drugs. Honey is a natural substance produced by bees from nectar. Several evidence-based health benefits have been ascribed to honey in the recent years. In this review article, we highlight findings which demonstrate the beneficial or potential effects of honey in the gastrointestinal tract (GIT), on the gut microbiota, in the liver, in the pancreas and how these effects could improve glycemic control and metabolic derangements. In healthy subjects or patients with impaired glucose tolerance or diabetes mellitus, various studies revealed that honey reduced blood glucose or was more tolerable than most common sugars or sweeteners. Pre-clinical studies provided more convincing evidence in support of honey as a potential antidiabetic agent than clinical studies did. The not-too-impressive clinical data could mainly be attributed to poor study designs or due to the fact that the clinical studies were preliminary. Based on the key constituents of honey, the possible mechanisms of action of antidiabetic effect of honey are proposed. The paper also highlights the potential impacts and future perspectives on the use of honey as an antidiabetic agent. It makes recommendations for further clinical studies on the potential antidiabetic effect of honey. This review provides insight on the potential use of honey, especially as a complementary agent, in the management of diabetes mellitus. Hence, it is very important to have well-designed, randomized controlled clinical trials that investigate the reproducibility (or otherwise) of these experimental data in diabetic human subjects.
    Matched MeSH terms: Glucose Intolerance/drug therapy; Glucose Intolerance/prevention & control
  6. Ali O, Tan TT, Sakinah O, Khalid BA, Wu LL, Ng ML
    Diabetes Care, 1993 Jan;16(1):68-75.
    PMID: 8422835 DOI: 10.2337/diacare.16.1.68
    OBJECTIVE: To determine the prevalence of diabetes mellitus and IGT in different ethnic groups living in the same physical environment and to find their relationship to nutritional status and dietary intake.

    RESEARCH DESIGN AND METHODS: The study was conducted among Malays and Orang Asli in six rural and urban locations in Malaysia. OGTTs were performed on 706 adult subjects > or = 18 yr of age. WHO criteria were used for diagnosing diabetes mellitus and IGT.

    RESULTS: The overall prevalence of diabetes mellitus and IGT among Orang Asli was 0.3 and 4.4% compared with 4.7 and 11.3%, respectively, among Malays. This increased prevalence of glucose intolerance among Malays was associated with higher levels of social development. Among rural Malays, the crude prevalence of diabetes in a traditional village was 2.8% and in the land scheme was 6.7%, whereas urban Malays had a prevalence of 8.2%. In contrast, the prevalence of IGT (10.5-14.8%) was higher among rural Malays, compared with 9.6% among urban Malays. Ethnic group, > or = 40 yr of age, an income > M$250, fewer daily activity, and obesity were associated with a higher prevalence of diabetes.

    CONCLUSIONS: Diabetes mellitus and IGT, which were more common among Malays than Orang Asli, were associated with more affluent life-styles and modernization.
    Matched MeSH terms: Blood Glucose/analysis; Blood Glucose/metabolism; Glucose Tolerance Test*
  7. Zulkawi N, Ng KH, Zamberi NR, Yeap SK, Satharasinghe DA, Tan SW, et al.
    Drug Des Devel Ther, 2018;12:1373-1383.
    PMID: 29872261 DOI: 10.2147/DDDT.S157803
    Background: Fermented food has been widely consumed as health food to ameliorate or prevent several chronic diseases including diabetes. Xeniji™, a fermented food paste (FFP), has been previously reported with various bioactivities, which may be caused by the presence of several metabolites including polyphenolic acids, flavonoids, and vitamins. In this study, the anti-hyperglycemic and anti-inflammatory effects of FFP were assessed.

    Methods: In this study, type 2 diabetes model mice were induced by streptozotocin and high-fat diet (HFD) and used to evaluate the antihyperglycemic and anti-inflammatory effects of FFP. Mice were fed with HFD and challenged with 30 mg/kg body weight (BW) of streptozotocin for 1 month followed by 6 weeks of supplementation with 0.1 and 1.0 g/kg BW of FFP. Metformin was used as positive control treatment.

    Results: Xeniji™-supplemented hyperglycemic mice were recorded with lower glucose level after 6 weeks of duration. This effect was contributed by the improvement of insulin sensitivity in the hyperglycemic mice indicated by the oral glucose tolerance test, insulin tolerance test, and end point insulin level. In addition, gene expression study has shown that the antihyperglycemic effect of FFP is related to the improvement of lipid and glucose metabolism in the mice. Furthermore, both 0.1 and 1 g/kg BW of FFP was able to reduce hyperglycemia-related inflammation indicated by the reduction of proinflammatory cytokines, NF-kB and iNOS gene expression and nitric oxide level.

    Conclusion: FFP potentially demonstrated in vivo antihyperglycemic and anti-inflammatory effects on HFD and streptozotocin-induced diabetic mice.

    Matched MeSH terms: Blood Glucose/drug effects; Glucose/administration & dosage; Glucose Tolerance Test
  8. Tai ES, Lim SC, Chew SK, Tan BY, Tan CE
    Diabetes Res Clin Pract, 2000 Aug;49(2-3):159-68.
    PMID: 10963828 DOI: 10.1016/s0168-8227(00)00152-2
    We studied insulin resistance and beta-cell function with reference to ethnic group, glucose tolerance and other coronary artery disease risk factors in a cross section of the Singapore population which comprises Chinese, Malays and Asian Indians. 3568 individuals aged 18-69 were examined. Blood pressure, anthropometric data, blood lipids, glucose and insulin were assayed in the fasting state. Glucose and serum insulin were measured 2 h after an oral glucose challenge. Insulin resistance and beta-cell function were calculated using homeostasis model assessment. Asian Indians had higher insulin resistance than Chinese or Malays. Impaired glucose tolerance (IGT) and diabetes mellitus (DM) were associated with greater insulin resistance and impaired beta-cell function compared to normal glucose tolerance (NGT). Insulin resistance was positively correlated with blood pressure in women and total cholesterol, LDL cholesterol and triglyceride in both men and women. It was negatively correlated with HDL cholesterol and LDL/apolipoprotein B ratio. beta-cell function showed no significant correlations with the cardiovascular risk factors studied. It appears that both impaired beta-cell function and insulin resistance are important for the development of hyperglycemia whereas insulin resistance alone seems more important in the development of coronary artery disease as it correlates with several known coronary artery disease risk factors.
    Matched MeSH terms: Blood Glucose/metabolism; Glucose Tolerance Test; Glucose Intolerance/epidemiology
  9. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Exp. Clin. Endocrinol. Diabetes, 2018 Apr;126(4):205-212.
    PMID: 29117620 DOI: 10.1055/s-0043-119352
    Metabolic syndrome is a cluster of metabolic abnormalities including central obesity, hyperglycemia, hypertension, and dyslipidemia. A previous study has established that high-carbohydrate high-fat diet (HCHF) can induce MetS in rats. In this study, we modified components of the diet so that it resembled the diet of Southeast Asians. This study aimed to determine the effects of this modified HCHF diet on metabolic parameters in rats. Male Wistar rats (n=14) were randomised into two groups. The normal group was given standard rat chow. The MetS group was given the HCHF diet, comprises of fructose, sweetened condensed milk, ghee, Hubble Mendel and Wakeman salt mixture, and powdered rat food. The diet regimen was assigned for a period of 16 weeks. Metabolic syndrome parameters (abdominal circumference, blood glucose, blood pressure, and lipid profile) were measured at week 0, 8, 12, and 16 of the study. The measurement of whole body composition (fat mass, lean mass, and percentage of fat) was performed using dual-energy X-ray absorptiometry at week 0, 8, and 16. Our results indicated that the components of MetS were partially developed after 8 weeks of HCHF diet. Systolic blood pressure, triglyceride, low density lipoprotein cholesterol, fat content, and percentage of fat was significantly higher in the HCHF group compared to normal group (p<0.05). After 12 weeks of HCHF diet, the rats showed significant increases in abdominal circumference, blood pressure, glucose intolerance, and dyslipidemia compared to normal control (p<0.05). In conclusion, MetS is successfully established in male rats induced by the modified HCHF diet after 12 weeks.
    Matched MeSH terms: Blood Glucose/metabolism*; Glucose Intolerance/etiology; Glucose Intolerance/metabolism
  10. Molugulu N, Yee LS, Ye YT, Khee TC, Nie LZ, Yee NJ, et al.
    Diabetes Res Clin Pract, 2017 Oct;132:157-168.
    PMID: 28797524 DOI: 10.1016/j.diabres.2017.07.025
    BACKGROUND: Type 2 Diabetes Mellitus (T2DM) is a chronic disorder and its treatment with only metformin often does not provide optimum glycemic control. Addition of sodium glucose cotransporter 2 inhibitor (SGLT2) will improve the glycemic control in patients on metformin alone. In this study, an attempt is made to investigate the combined therapy of SGLT-2 with metformin in managing T2DM in terms of lowering HbA1c and body weight and monotherapy using metformin alone in HbA1c and body weight reduction.

    OBJECTIVES: To compare the clinical effectiveness of combined therapy using SGLT2 inhibitor and metformin with monotherapy using metformin alone in HbA1c and body weight reduction.

    METHOD: A systematic review of the randomized controlled trials has been carried out and Cochrane risk of bias tool was used for the quality assessment. Patient, Intervention, Comparison and Outcomes (PICO) technique is used to select the relevant articles to meet the objective.

    RESULTS: The studies used in this article are multicenter, double-blinded randomized controlled trials on SGLT2 inhibitors with methformin, there were a total of 3897 participants, with a range of 182 to 1186 individual study size were included. Studies showed that combined therapy were more effective in HbA1c and body weight reduction as compared to monotherapy.

    CONCLUSION: The combined therapy of SGLT2 inhibitor along with metformin is more effective in HbA1c reduction and weight reduction as compared to monotherapy using metformin alone. Among the three SGLT2 inhibitors such as dapagliflozin canagliflozin and empagliflozin do not differ much in the efficiency of weight reduction. However, Empagliflozin 25mg is effective in HbA1c reduction.

    Matched MeSH terms: Blood Glucose/drug effects*; Sodium-Glucose Transporter 2/pharmacology; Sodium-Glucose Transporter 2/therapeutic use*
  11. Lee JY, Wong CP, Tan CSS, Nasir NH, Lee SWH
    Sci Rep, 2017 08 31;7(1):10119.
    PMID: 28860546 DOI: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55790
    We determined the impact of a remote blood glucose telemonitoring program with feedback in type 2 diabetes mellitus patients fasting during Ramadan compared to conventional self-monitoring method. A twelve-week cluster randomised study, with 85 participants who wish to fast for at least 15 days during Ramadan was conducted. Self-measurement and transmission of blood glucose results were performed six times daily during Ramadan. Results were transmitted to a secure website for review with feedback from case manager if necessary. The control group received usual care. The main outcome was the number of participants experiencing hypoglycaemia during Ramadan and at the end of the study. During Ramadan, the number of participants reporting hypoglycaemia was significantly lower in the telemonitoring group [Odds ratio (OR): 0.186, 95% confidence interval: 0.04-0.936; p = 0.04]. Similarly, the proportion of participants reporting symptomatic hypoglycaemia at the end of the study was significantly lower in the telemonitoring group (OR: 0.257, 95% CI: 0.07-0.89; p = 0.03). A reduction of 1.07% in glycated haemoglobin levels was observed in the telemonitoring group compared to 0.24% in the control group (p 
    Matched MeSH terms: Blood Glucose/analysis*; Blood Glucose Self-Monitoring/methods*; Blood Glucose Self-Monitoring/standards
  12. Chi C, Loy SL, Chan SY, Choong C, Cai S, Soh SE, et al.
    BMC Pregnancy Childbirth, 2018 03 21;18(1):69.
    PMID: 29562895 DOI: 10.1186/s12884-018-1707-3
    BACKGROUND: We assessed the impact of adopting the 2013 World Health Organization (WHO) diagnostic criteria on the rates of gestational diabetes (GDM), pregnancy outcomes and identification of women at future risk of type 2 diabetes.

    METHODS: During a period when the 1999 WHO GDM criteria were in effect, pregnant women were universally screened using a one-step 75 g 2-h oral glucose tolerance test at 26-28 weeks' gestation. Women were retrospectively reclassified according to the 2013 criteria, but without the 1-h glycaemia measurement. Pregnancy outcomes and glucose tolerance at 4-5 years post-delivery were compared for women with GDM classified by the 1999 criteria alone, GDM by the 2013 criteria alone, GDM by both criteria and without GDM by both sets of criteria.

    RESULTS: Of 1092 women, 204 (18.7%) and 142 (13.0%) were diagnosed with GDM by the 1999 and 2013 WHO criteria, respectively, with 27 (2.5%) reclassified to GDM and 89 (8.2%) reclassified to non-GDM when shifting from the 1999 to 2013 criteria. Compared to women without GDM by both criteria, cases reclassified to GDM by the 2013 criteria had an increased risk of neonatal jaundice requiring phototherapy (relative risk (RR) = 2.78, 95% confidence interval (CI) 1.32, 5.86); despite receiving treatment for GDM, cases reclassified to non-GDM by the 2013 criteria had higher risks of prematurity (RR = 2.17, 95% CI 1.12, 4.24), neonatal hypoglycaemia (RR = 3.42, 95% CI 1.04, 11.29), jaundice requiring phototherapy (RR = 1.71, 95% CI 1.04, 2.82), and a higher rate of abnormal glucose tolerance at 4-5 years post-delivery (RR = 3.39, 95% CI 2.30, 5.00).

    CONCLUSIONS: Adoption of the 2013 WHO criteria, without the 1-h glycaemia measurement, reduced the GDM rate. Lowering the fasting glucose threshold identified women who might benefit from treatment, but raising the 2-h threshold may fail to identify women at increased risk of adverse pregnancy and future metabolic outcomes.

    TRIAL REGISTRATION: NCT01174875 . Registered 1 July 2010 (retrospectively registered).

    Matched MeSH terms: Glucose Tolerance Test/standards; Glucose Intolerance/diagnosis; Glucose Intolerance/ethnology
  13. Kanagasabapathy G, Kuppusamy UR, Abd Malek SN, Abdulla MA, Chua KH, Sabaratnam V
    PMID: 23259700 DOI: 10.1186/1472-6882-12-261
    BACKGROUND: Pleurotus sajor-caju (P. sajor-caju) has been extremely useful in the prevention of diabetes mellitus due to its low fat and high soluble fiber content for thousands of years. Insulin resistance is a key component in the development of diabetes mellitus which is caused by inflammation. In this study, we aimed to investigate the in vivo efficacy of glucan-rich polysaccharide of P. sajor-caju (GE) against diabetes mellitus and inflammation in C57BL/6J mice fed a high-fat diet.
    METHODS: Diabetes was induced in C57BL/6J mice by feeding a high-fat diet. The mice were randomly assigned to 7 groups (n=6 per group). The control groups in this study were ND (for normal diet) and HFD (for high-fat diet). The treated groups were ND240 (for normal diet) (240 mg/kg b.w) and HFD60, HFD120 and HFD240 (for high-fat), where the mice were administrated with three dosages of GE (60, 120, 240 mg GE/kg b.w respectively). Metformin (2 mg/kg b.w) served as positive control. The glucose tolerance test, glucose and insulin levels were measured at the end of 16 weeks. Expressions of genes for inflammatory markers, GLUT-4 and adiponectin in the adipose tissue of the mice were assessed. One-way ANOVA and Duncan's multiple range tests (DMRT) were used to determine the significant differences between groups.
    RESULTS: GE treated groups improved the glucose tolerance, attenuated hyperglycemia and hyperinsulinemia in the mice by up-regulating the adiponectin and GLUT-4 gene expressions. The mice in GE treated groups did not develop insulin resistance. GE also down-regulated the expression of inflammatory markers (IL-6, TNF-α, SAA2, CRP and MCP-1) via attenuation of nuclear transcription factors (NF-κB).
    CONCLUSION: Glucan-rich polysaccharide of P. sajor-caju can serve as a potential agent for prevention of glucose intolerance, insulin resistance and inflammation.
    Matched MeSH terms: Blood Glucose/metabolism; Glucose Intolerance/drug therapy; Glucose Intolerance/immunology; Glucose Intolerance/metabolism; Glucose Intolerance/prevention & control*
  14. Atangwho IJ, Yin KB, Umar MI, Ahmad M, Asmawi MZ
    PMID: 25358757 DOI: 10.1186/1472-6882-14-426
    This study evaluated the impact of Vernonia amygdalina (VA) on the transcription of key enzymes involved in cellular modulation of glucose in streptozotocin-induced diabetic rats in a bid to understand the possible anti-diabetic mechanism of VA.
    Matched MeSH terms: Blood Glucose/metabolism; Glucose/metabolism*; Glucose-6-Phosphatase/metabolism; Glucosephosphate Dehydrogenase/genetics; Glucosephosphate Dehydrogenase/metabolism
  15. Bakar MH, Sarmidi MR, Kai CK, Huri HZ, Yaakob H
    Int J Mol Sci, 2014 Dec 02;15(12):22227-57.
    PMID: 25474091 DOI: 10.3390/ijms151222227
    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.
    Matched MeSH terms: Glucose/metabolism; Glucose Transporter Type 1/metabolism; Glucose Transporter Type 4/metabolism
  16. Tiong XT, Nursara Shahirah A, Pun VC, Wong KY, Fong AYY, Sy RG, et al.
    Nutr Metab Cardiovasc Dis, 2018 08;28(8):856-863.
    PMID: 29853430 DOI: 10.1016/j.numecd.2018.04.014
    BACKGROUND AND AIM: Despite a growing body of evidence from Western populations on the health benefits of Dietary Approaches to Stop Hypertension (DASH) diets, their applicability in South East Asian settings is not clear. We examined cross-sectional associations between DASH diet and cardio-metabolic risk factors among 1837 Malaysian and 2898 Philippines participants in a multi-national cohort.

    METHODS AND RESULTS: Blood pressures, fasting lipid profile and fasting glucose were measured, and DASH score was computed based on a 22-item food frequency questionnaire. Older individuals, women, those not consuming alcohol and those undertaking regular physical activity were more likely to have higher DASH scores. In the Malaysian cohort, while total DASH score was not significantly associated with cardio-metabolic risk factors after adjusting for confounders, significant associations were observed for intake of green vegetable [0.011, standard error (SE): 0.004], and red and processed meat (-0.009, SE: 0.004) with total cholesterol. In the Philippines cohort, a 5-unit increase in total DASH score was significantly and inversely associated with systolic blood pressure (-1.41, SE: 0.40), diastolic blood pressure (-1.09, SE: 0.28), total cholesterol (-0.015, SE: 0.005), low-density lipoprotein cholesterol (-0.025, SE: 0.008), and triglyceride (-0.034, SE: 0.012) after adjusting for socio-demographic and lifestyle groups. Intake of milk and dairy products, red and processed meat, and sugared drinks were found to significantly associated with most risk factors.

    CONCLUSIONS: Differential associations of DASH diet and dietary components with cardio-metabolic risk factors by country suggest the need for country-specific tailoring of dietary interventions to improve cardio-metabolic risk profiles.

    Matched MeSH terms: Blood Glucose/metabolism*; Glucose Metabolism Disorders/blood; Glucose Metabolism Disorders/diet therapy*; Glucose Metabolism Disorders/epidemiology
  17. Dharmani M, Kamarulzaman K, Giribabu N, Choy KW, Zuhaida MZ, Aladdin NA, et al.
    Phytomedicine, 2019 Dec;65:153101.
    PMID: 31648126 DOI: 10.1016/j.phymed.2019.153101
    BACKGROUND: Oestrogen deficiency leads to metabolic disturbances such as insulin resistance and impairment of adipose tissue or lipid metabolism. Marantodes pumilum (Blume) Kuntze (Primulaceae) is believed to have phytoestrogenic properties and is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), but the mechanism behind its phytoestrogenic effects on estrogen-deficient diabetic condition have not been fully examined.

    PURPOSE: The present study investigated the effects of oral treatment with M. pumilum var. alata (MPA) extracts on the estrogen receptor, metabolic characteristics and insulin signaling pathway in pancreas and liver of ovariectomised nicotidamide streptozotocin-induced diabetes in female rats.

    MATERIALS AND METHODS: Ovariectomised diabetic (OVXS) Sprague-Dawley rats were orally administered with either aqueous leaf extract and ethanol (50%) stem-root extract of MPA (50 or 100 mg/kg) respectively for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin, oral glucose and insulin tolerance test. Distribution and expression level of insulin, oxidative stress and inflammatory marker in the pancreatic islets and liver were evaluated by immunohistochemistry and western blot, respectively.

    RESULTS: Oral treatment with aqueous leaf and ethanol (50%) stem-root extracts of MPA (100 mg/kg) significantly reversed the elevated fasting blood glucose, impaired glucose and insulin tolerance. The protein expression of insulin, glucose transporter (GLUT-2 and GLUT-4) increased in the pancreatic islets and liver. Furthermore, marked improvement in the tissue morphology following treatment with MPA was observed. Similarly, the western blots analysis denotes improved insulin signaling in the liver and decreased reactive oxygen species producing enzymes, inflammatory and pro-apoptotic molecules with MPA treatment.

    CONCLUSIONS: Taken together, this work demonstrate that 100 mg/kg of aqueous leaf extract and ethanol (50%) stem-root extract of MPA improves β-cell function and insulin signaling in postmenopausal diabetes through attenuation of oxidative stress and partially mediated by oestrogen receptor stimulation.

    Matched MeSH terms: Blood Glucose/metabolism; Glucose Transporter Type 2/metabolism; Glucose Transporter Type 4/metabolism
  18. Wong RS
    Exp Diabetes Res, 2011;2011:406182.
    PMID: 21747828 DOI: 10.1155/2011/406182
    Diabetes mellitus is a chronic disease with many debilitating complications. Treatment of diabetes mellitus mainly revolves around conventional oral hypoglycaemic agents and insulin replacement therapy. Recently, scientists have turned their attention to the generation of insulin-producing cells (IPCs) from stem cells of various sources. To date, many types of stem cells of human and animal origins have been successfully turned into IPCs in vitro and have been shown to exert glucose-lowering effect in vivo. However, scientists are still faced with the challenge of producing a sufficient number of IPCs that can in turn produce sufficient insulin for clinical use. A careful choice of stem cells, methods, and extrinsic factors for induction may all be contributing factors to successful production of functional beta-islet like IPCs. It is also important that the mechanism of differentiation and mechanism by which IPCs correct hyperglycaemia are carefully studied before they are used in human subjects.
    Matched MeSH terms: Glucose/metabolism; Glucose/physiology
  19. Umar A, Ahmed QU, Muhammad BY, Dogarai BB, Soad SZ
    J Ethnopharmacol, 2010 Aug 19;131(1):140-5.
    PMID: 20600771 DOI: 10.1016/j.jep.2010.06.016
    The present study was aimed to investigate the anti-diabetic potential of the leaves of Tetracera scandens Linn. Merr. (Dilleniaceae) in vivo with regard to prove its efficacy by local herbalists in the treatment of diabetes frailties.
    Matched MeSH terms: Blood Glucose/drug effects; Blood Glucose/metabolism
  20. Goh CS, Lee KT, Bhatia S
    Bioresour Technol, 2010 Oct;101(19):7362-7.
    PMID: 20471249 DOI: 10.1016/j.biortech.2010.04.048
    This work presents the pretreatment of oil palm fronds (OPF) using hot compressed water (HCW) to enhance sugar recovery in enzymatic hydrolysis. A central, composite rotatable design was used to optimize the effect of reaction temperature, reaction time and liquid-solid ratio on the pretreatment process. All variables were found to significantly affect the glucose yield. A quadratic polynomial equation was used to model glucose yield by multiple regression analysis, using response surface methodology (RSM). Using a 10 bar pressurized reactor, the optimum conditions for pretreatment of OPF were found at 178 degrees C, 11.1 min and a liquid-solid ratio of 9.6. The predicted glucose yield was 92.78 wt.% at the optimum conditions. Experimental verification of the optimum conditions gave a glucose yield in good agreement with the estimated value of the model.
    Matched MeSH terms: Glucose/analysis; Glucose/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links