OBJECTIVE: In this presented work, an analytical method by gas chromatography coupled with flame ionization detection (GC-FID) has been developed to determine organic solvents in radiopharmaceutical samples. The effect of injection holding time, temperature variation in the injection port, and the column temperature on the analysis time and resolution (R ≥ 1.5) of ethanol and acetonitrile was studied extensively.
METHODS: The experimental conditions were optimized with the aid of further statistical analysis; thence, the proposed method was validated following the International Council for Harmonisation (ICH) Q2 (R1) guideline.
RESULTS: The proposed analytical method surpassed the acceptance criteria including the linearity > 0.990 (correlation coefficient of R2), precision < 2%, LOD, and LOQ, accuracy > 90% for all solvents. The separation between ethanol and acetonitrile was acceptable with a resolution R > 1.5. Further statistical analysis of Oneway ANOVA revealed that the increment in injection holding time and variation of temperature at the injection port did not significantly affect the analysis time. Nevertheless, the variation in injection port temperature substantially influenced the resolution of ethanol and acetonitrile peaks (p < 0.05).
CONCLUSION: The proposed analytical method has been successfully implemented to determine the organic solvent in the [18F]fluoro-ethyl-tyrosine ([18F]FET), [18F]fluoromisonidazole ([18F]FMISO), and [18F]fluorothymidine ([18F]FLT).
OBJECTIVE: This study aimed to optimize the yield of pectin extracted from sweet potato residue and investigate its emulsifying properties.
METHODS: Response surface methodology (RSM) has been utilized to investigate the pectin extracted from sweet potato peels using citric acid as the extracting solvent. Investigation of the effect of different extraction conditions namely temperature (°C), time (min) and solution pH on pectin yield (%) were conducted. A Box-Benhken design with three levels of variation was used to optimize the extraction conditions.
RESULTS: The optimal conditions determined were temperature 76°C, time 64 min and pH 1.2 with 65.2% yield of pectin. The degree of esterification (DE) of the sweet potato pectin was determined using Fourier Transform Infrared (FTIR) Spectroscopy. The pectin is high-methoxyl pectin with DE of 58.5%. Emulsifying properties of sweet potato pectin were investigated by measuring the zeta-potential, particle size and creaming index with addition of 0.4 and 1.0 wt % pectin to the emulsion.
CONCLUSION: Extraction using citric acid could improve the pectin yield. Improved emulsion stability was observed with the addition of the sweet potato pectin.