METHODS: Urine and urethral swab samples were collected from the primary public sexual health clinic in Singapore and tested for C. trachomatis (CT) or N. gonorrhoeae (NG) infection and for the presence of M. genitalium. Antibiotic resistance in M. genitalium strains detected was determined by screening for genomic mutations associated with macrolide and fluroquinolone resistance.
RESULTS: We report the results of a study into M. genitalium prevalence at the national sexual health clinic in Singapore. M. genitalium was heavily associated with CT infection (8.1% of cases), but present in only of 2.4% in CT negative cases and not independently linked to NG infection. Furthermore, we found high rates of resistance mutations to both macrolides (25%) and fluoroquinolones (37.5%) with a majority of resistant strains being dual-resistant. Resistance mutations were only found in strains from patients with CT co-infection.
CONCLUSIONS: Our results support targeted screening of CT positive patients for M. genitalium as a cost-effective strategy to reduce the incidence of M. genitalium in the absence of comprehensive routine screening. The high rate of dual resistance also highlights the need to ensure the availability of alternative antibiotics for the treatment of multi-drug resistant M. genitalium isolates.
RESULTS: The dichloromethane extract of P. crispum exhibited the highest phenolic content (42.31 ± 0.50 mg GAE g(-1) ) and ferric reducing ability (0.360 ± 0.009 mmol g(-1) ) of the various extractions performed. The extract showed DPPH radical scavenging activity with an IC50 value of 3310.0 ± 80.5 µg mL(-1) . Mouse fibroblasts (3T3-L1) pre-treated with 400 µg mL(-1) of the extract showed 50.9% protection against H2 O2 -induced DNA damage, suggesting its potential in cancer prevention. The extract (300 µg mL(-1) ) inhibited H2 O2 -induced MCF-7 cell migration by 41% ± 4%. As cell migration is necessary for metastasis of cancer cells, inhibition of migration is an indication of protection against metastasis.
CONCLUSION: Petroselinum crispum has health-promoting properties with the potential to prevent oxidative stress-related diseases and can be developed into functional food.