Displaying publications 201 - 220 of 335 in total

Abstract:
Sort:
  1. Suhaimi FW, Yusoff NH, Hassan R, Mansor SM, Navaratnam V, Müller CP, et al.
    Brain Res Bull, 2016 09;126(Pt 1):29-40.
    PMID: 27018165 DOI: 10.1016/j.brainresbull.2016.03.015
    Kratom or its main alkaloid, mitragynine is derived from the plant Mitragyna speciosa Korth which is indigenous to Southeast Asian countries. This substance has become widely available in other countries like Europe and United States due to its opium- and coca-like effects. In this article, we have reviewed available reports on mitragynine and other M. speciosa extracts. M. speciosa has been proven to have a rewarding effect and is effective in alleviating the morphine and ethanol withdrawal effects. However, studies in human revealed that prolonged consumption of this plant led to dependence and tolerance while cessation caused a series of aversive withdrawal symptoms. Findings also showed that M. speciosa extracts possess antinociceptive, anti-inflammatory, anti-depressant, and muscle relaxant properties. Available evidence further supports the adverse effects of M. speciosa preparations, mitragynine on cognition. Pharmacological activities are mainly mediated via opioid receptors as well as neuronal Ca2+ channels, expression of cAMP and CREB protein and via descending monoaminergic system. Physicochemical properties of mitragynine have been documented which may further explain the variation in pharmacological responses. In summary, current researchs on its main indole alkaloid, mitragynine suggest both therapeutic and addictive potential but further research on its molecular effects is needed.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids/adverse effects*
  2. Kam TS, Sim KM, Pang HS, Koyano T, Hayashi M, Komiyama K
    Bioorg Med Chem Lett, 2004 Sep 6;14(17):4487-9.
    PMID: 15357977
    A series of indole alkaloids of the ibogan-type was assessed for their cytotoxic effects as well as their potential in reversing MDR in vincristine-resistant KB cells. Of a total of 25 compounds tested, 3(S)-cyanocoronaridine, 3(S)-cyanoisovoacangine, 3(S)-cyanovoacangine, and 10,11-demethoxychippiine were found to show appreciable cytotoxicity toward KB cells, while coronaridine, heyneanine, 19-epi-heyneanine, dippinine B, and dippinine C, were found to reverse MDR in vincristine-resistant KB cells.
    Matched MeSH terms: Indole Alkaloids/toxicity*
  3. Ayipo YO, Mordi MN, Mustapha M, Damodaran T
    Eur J Pharmacol, 2021 Feb 15;893:173837.
    PMID: 33359647 DOI: 10.1016/j.ejphar.2020.173837
    Neuropsychiatric disorders are diseases of the central nervous system (CNS) which are characterised by complex pathomechanisms that including homeostatic failure, malfunction, atrophy, pathology remodelling and reactivity anomaly of the neuronal system where treatment options remain challenging. β-Carboline (βC) alkaloids are scaffolds of structurally diverse tricyclic pyrido[3,4-b]indole alkaloid with vast occurrence in nature. Their unique structural features which favour interactions with enzymes and protein receptor targets account for their potent neuropharmacological properties. However, our current understanding of their biological mechanisms for these beneficial effects, especially for neuropsychiatric disorders is sparse. Therefore, we present a comprehensive review of the scientific progress in the last two decades on the prospective pharmacology and physiology of the βC alkaloids in the treatment of some neuropsychiatric conditions such as depression, anxiety, Alzheimer's disease, Parkinson's disease, brain tumour, essential tremor, epilepsy and seizure, licking behaviour, dystonia, agnosia, spasm, positive ingestive response as demonstrated in non-clinical models. The current evidence supports that βC alkaloids offer potential therapeutic agents against most of these disorders and amenable for further drug design.
    Matched MeSH terms: Alkaloids; Indole Alkaloids
  4. Tan CH, Yeap JS, Lim SH, Low YY, Sim KS, Kam TS
    J Nat Prod, 2021 05 28;84(5):1524-1533.
    PMID: 33872002 DOI: 10.1021/acs.jnatprod.1c00013
    A new linearly fused macroline-sarpagine bisindole, angustilongine M (1), was isolated from the methanolic extract of Alstonia penangiana. The structure of the alkaloid was elucidated based on analysis of the spectroscopic data, and its biological activity was evaluated together with another previously reported macroline-akuammiline bisindole from the same plant, angustilongine A (2). Compounds 1 and 2 showed pronounced in vitro growth inhibitory activity against a wide panel of human cancer cell lines. In particular, the two compounds showed potent and selective antiproliferative activity against HT-29 cells, as well as strong growth inhibitory effects against HT-29 spheroids. Cell death mechanistic studies revealed that the compounds induced mitochondrial apoptosis and G0/G1 cell cycle arrest in HT-29 cells in a time-dependent manner, while in vitro tubulin polymerization assays and molecular docking analysis showed that the compounds are microtubule-stabilizing agents, which are predicted to bind at the β-tubulin subunit at the Taxol-binding site.
    Matched MeSH terms: Alkaloids; Indole Alkaloids
  5. Jagabalan JDY, Murugaiyah V, Zainal H, Mansor SM, Ramanathan S
    J Asian Nat Prod Res, 2019 Apr;21(4):351-363.
    PMID: 29667422 DOI: 10.1080/10286020.2018.1461088
    The intestinal permeability of mitragynine was investigated in situ using a single pass intestinal perfusion (SPIP) absorption model, in small intestine of rat using mitragynine in the absence/presence of the permeability markers, P-gp and/or CYP3A4 inhibitors. Mitragynine demonstrated high intestinal permeability (Peff of 1.11 × 10-4 cm/s) that is in the range of highly permeable drugs such as propranolol (Peff of 1.27 × 10-4 cm/s) indicating that it readily crosses the intestine. The addition of azithromycin (P-glycoprotein inhibitor) and ciprofloxacin (CYP3A4 inhibitor) or combination of both has no effect on intestinal permeability of mitragynine across the rat small intestine.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids/pharmacokinetics*
  6. Wu J, Zhang H, Wang S, Yuan L, Grünhofer P, Schreiber L, et al.
    J Plant Res, 2019 Jul;132(4):531-540.
    PMID: 31127431 DOI: 10.1007/s10265-019-01115-9
    Areca nuts (seeds of Areca catechu L.) are a traditional and popular masticatory in India, Bangladesh, Malaysia, certain parts of China, and some other countries. Four related pyridine alkaloids (arecoline, arecaidine, guvacoline, and guvacine) are considered being the main functional ingredients in areca nut. Until now, A. catechu is the only known species producing these alkaloids in the Arecaceae family. In the present study, we investigated alkaloid contents in 12 Arecaceae species and found that only Areca triandra Roxb. contained these pyridine alkaloids. We further analyzed in more detail tissue-specific and development-related distribution of these alkaloids in leaves, male and female flowers and fruits in different stages of maturity in A. triandra by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Results revealed that the alkaloids were most abundant in young leaves, the pericarp of ripe fruits and the endosperm of unripe fruits in developmental stage 2. Abundance of the 4 different alkaloids in A. triandra fruits varied during maturation. Pericarps of ripe fruits had the highest arecaidine concentration (4.45 mg g-1) and the lowest guvacoline concentration (0.0175 mg g-1), whereas the endosperm of unripe fruits of developmental stage 2 contained the highest guvacoline concentration (3.39 mg g-1) and the lowest guvacine concentration (0.245 mg g-1). We conclude that A. triandra is useful in future as a further valuable source of Areca alkaloids.
    Matched MeSH terms: Alkaloids/metabolism*
  7. Chear NJ, León F, Sharma A, Kanumuri SRR, Zwolinski G, Abboud KA, et al.
    J Nat Prod, 2021 04 23;84(4):1034-1043.
    PMID: 33635670 DOI: 10.1021/acs.jnatprod.0c01055
    Ten indole and oxindole alkaloids (1-10) were isolated from the freshly collected leaves of Malaysian Mitragyna speciosa (Kratom). The chemical structures of these compounds were established on the basis of extensive 1D and 2D NMR and HRMS data analysis. The spectroscopic data of mitragynine oxindole B (4) are reported herein for the first time. The spatial configuration of mitragynine oxindole B (4) was confirmed by single-crystal X-ray diffraction. Simultaneous quantification of the isolated alkaloids in the M. speciosa leaf specimens collected from different locations in the northern region of Peninsular Malaysia was also performed using UPLC-MS/MS. The oxindole alkaloids (1-4) and the indole alkaloid (10) were assessed for binding affinity at opioid receptors. Corynoxine (1) showed high binding affinity to μ-opioid receptors with a Ki value of 16.4 nM. Further, corynoxine (1) was 1.8-fold more potent than morphine in rats subjected to a nociceptive hot plate assay. These findings have important implications for evaluating the combined effects of the minor oxindole alkaloids in the overall therapeutic activity of M. speciosa.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids/pharmacology
  8. Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, et al.
    Sci Rep, 2018 Jul 13;8(1):10617.
    PMID: 30006510 DOI: 10.1038/s41598-018-28880-2
    The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.
    Matched MeSH terms: Indole Alkaloids/chemical synthesis; Indole Alkaloids/isolation & purification; Indole Alkaloids/pharmacology*; Indole Alkaloids/chemistry
  9. Yap VA, Loong BJ, Ting KN, Loh SH, Yong KT, Low YY, et al.
    Phytochemistry, 2015 Jan;109:96-102.
    PMID: 25468714 DOI: 10.1016/j.phytochem.2014.10.032
    Hispidacine, an 8,4'-oxyneolignan featuring incorporation of an unusual 2-hydroxyethylamine moiety at C-7, and hispiloscine, a phenanthroindolizidine alkaloid, were isolated from the stem-bark and leaves of the Malaysian Ficus hispida Linn. Their structures were established by spectroscopic analysis. Hispidacine induced a moderate vasorelaxant activity in rat isolated aorta, while hispiloscine showed appreciable antiproliferative activities against MDA-MB-231, MCF-7, A549, HCT-116 and MRC-5 cell lines.
    Matched MeSH terms: Alkaloids/isolation & purification; Alkaloids/chemistry*
  10. Johari SA, Mohtar M, Mohammad SA, Sahdan R, Shaameri Z, Hamzah AS, et al.
    Biomed Res Int, 2015;2015:823829.
    PMID: 25710030 DOI: 10.1155/2015/823829
    28 new pyrrolidine types of compounds as analogues for natural polyhydroxy alkaloids of codonopsinine were evaluated for their anti-MRSA activity using MIC and MBC value determination assay against a panel of S. aureus isolates. One pyrrolidine compound, MFM 501, exhibited good inhibitory activity with MIC value of 15.6 to 31.3 μg/mL against 55 S. aureus isolates (43 MRSA and 12 MSSA isolates). The active compound also displayed MBC values between 250 and 500 μg/mL against 58 S. aureus isolates (45 MRSA and 13 MSSA isolates) implying that MFM 501 has a bacteriostatic rather than bactericidal effect against both MRSA and MSSA isolates. In addition, MFM 501 showed no apparent cytotoxicity activity towards three normal cell lines (WRL-68, Vero, and 3T3) with IC50 values of >625 µg/mL. Selectivity index (SI) of MFM 501 gave a value of >10 suggesting that MFM 501 is significant and suitable for further in vivo investigations. These results suggested that synthetically derived intermediate compounds based on natural products may play an important role in the discovery of new anti-infective agents against MRSA.
    Matched MeSH terms: Alkaloids/administration & dosage*; Alkaloids/chemistry
  11. Ilavenil S, Arasu MV, Lee JC, Kim DH, Roh SG, Park HS, et al.
    Phytomedicine, 2014 Apr 15;21(5):758-65.
    PMID: 24369814 DOI: 10.1016/j.phymed.2013.11.007
    Trigonelline is a natural alkaloid mainly found in Trigonella Foenum Graecum (fenugreek) Fabaceae and other edible plants with a variety of medicinal applications. Therefore, we investigated the molecular mechanism of trigonelline (TG) on the inhibition of adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline suppressed lipid droplet accumulation in a concentration (75 and 100 μM) dependent manner. Treatment of adipocyte with of TG down regulates the peroxisome proliferator-activated receptor (PPARγ) and CCAAT element binding protein (C/EBP-α) mRNA expression, which leads to further down regulation of other gene such as adiponectin, adipogenin, leptin, resistin and adipocyte fatty acid binding protein (aP2) as compared with respective control cells on 5th and 10th day of differentiation. Further, addition of triognelline along with troglitazone to the adipocyte attenuated the troglitazone effects on PPARγ mediated differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline might compete against troglitazone for its binding to the PPARγ. In addition, adipocyte treated with trigonelline and isoproterenol separately. Isoproterenol, a lipolytic agent which inhibits the fatty acid synthase and GLUT-4 transporter expression via cAMP mediated pathway, we found that similar magnitude response of fatty acid synthase and GLUT-4 transporter expression in trigonelline treated adipocyte. These results suggest that the trigonelline inhibits the adipogenesis by its influences on the expression PPARγ, which leads to subsequent down regulation of PPAR-γ mediated pathway during adipogenesis. Our findings provide key approach to the mechanism underlying the anti-adipogenic activity of trigonelline.
    Matched MeSH terms: Alkaloids/pharmacology; Alkaloids/therapeutic use*
  12. Fernandez L, Daruliza K, Sudhakaran S, Jegathambigai R
    Eur Rev Med Pharmacol Sci, 2012 Jul;16 Suppl 3:105-11.
    PMID: 22957424
    The emergence of novel diseases caused by microbial pathogens and the undesirable side effects of certain antibiotics has been a recent dilemma in the medical arena. Consequently, it has stirred the discovery of many naturally occurring agents which could possibly provide important ramifications against various pharmacological targets and to combat various ailments. The main aim of the present study was to determine the antimicrobial activity of the crude methanolic extract of Piper (P.) sarmentosum against methicillin resistant Staphylococcus aureus (MRSA), Escherichia coli, Vibrio cholera and Streptococcus pneumoniae.
    Matched MeSH terms: Alkaloids/isolation & purification; Alkaloids/pharmacology
  13. Nagappan T, Segaran TC, Wahid ME, Ramasamy P, Vairappan CS
    Molecules, 2012 Dec 05;17(12):14449-63.
    PMID: 23519245 DOI: 10.3390/molecules171214449
    The traditional use of Murraya koenigii as Asian folk medicine prompted us to investigate its wound healing ability. Three carbazole alkaloids (mahanine (1), mahanimbicine (2), mahanimbine (3)), essential oil and ethanol extract of Murraya koenigii were investigated for their efficacy in healing subcutaneous wounds. Topical application of the three alkaloids, essential oil and crude extract on 8 mm wounds created on the dorsal skin of rats was monitored for 18 days. Wound contraction rate and epithelialization duration were calculated, while wound granulation and collagen deposition were evaluated via histological method. Wound contraction rates were obvious by day 4 for the group treated with extract (19.25%) and the group treated with mahanimbicine (2) (12.60%), while complete epithelialization was achieved on day 18 for all treatment groups. Wounds treated with mahanimbicine (2) (88.54%) and extract of M. koenigii (91.78%) showed the highest rate of collagen deposition with well-organized collagen bands, formation of fibroblasts, hair follicle buds and with reduced inflammatory cells compared to wounds treated with mahanine (1), mahanimbine (3) and essential oil. The study revealed the potential of mahanimbicine (2) and crude extract of M. koenigii in facilitation and acceleration of wound healing.
    Matched MeSH terms: Alkaloids/pharmacology*; Alkaloids/chemistry
  14. Nge CE, Chong KW, Thomas NF, Lim SH, Low YY, Kam TS
    J Nat Prod, 2016 05 27;79(5):1388-99.
    PMID: 27077800 DOI: 10.1021/acs.jnatprod.6b00129
    Ten new indole alkaloids (1-10) comprising five ibogan, two aspidosperman, one vincamine, and two bisindole alkaloids, in addition to 32 known alkaloids, were isolated from the stem-bark extract of a Malayan Tabernaemontana corymbosa. The structures of these alkaloids were determined based on analysis of the NMR and MS data and, in five instances (1, 3, 5, 6, 8), confirmed by X-ray diffraction analysis. Two of the iboga alkaloids, conodusines B (2) and C (3), and the iboga-containing bisindole tabernamidine B (10) are notable for the presence of an α-substituted acetyl group at C-20 of the iboga carbon skeleton. The iboga alkaloid (+)-conodusine E (5) had MS and NMR data that were identical to those of (-)-ervatamine I, recently isolated from Ervatamia hainanensis. Establishment of the absolute configuration of (+)-conodusine E (5) was based on analysis of the ECD data, correlation with (-)-heyneanine, and X-ray analysis, which showed that (+)-5 belongs to the same enantiomeric series as exemplified by (-)-coronaridine. The configuration at C-20' of the previously reported Tabernaemontana bisindole alkaloid 19'-oxotabernamine (renamed tabernamidine B) required revision based on the present results. Several of the bisindoles showed pronounced in vitro growth inhibitory activity against drug-sensitive and vincristine-resistant KB cells.
    Matched MeSH terms: Indole Alkaloids/isolation & purification*; Indole Alkaloids/chemistry*
  15. Santhanam RK, Ahmad S, Abas F, Safinar Ismail I, Rukayadi Y, Tayyab Akhtar M, et al.
    Molecules, 2016 May 24;21(6).
    PMID: 27231889 DOI: 10.3390/molecules21060652
    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.
    Matched MeSH terms: Alkaloids/administration & dosage*; Alkaloids/chemistry
  16. Thomas A, Rajesh EK, Kumar DS
    Phytother Res, 2016 Mar;30(3):357-66.
    PMID: 26749336 DOI: 10.1002/ptr.5559
    Tinospora crispa is a medicinal plant belonging to the botanical family Menispermiaceae. The plant is widely distributed in Southeast Asia and the northeastern region of India. A related species Tinospora cordifolia is used in Ayurveda for treating a large spectrum of diseases. Traditional healers of Thailand, Malaysia, Guyana, Bangladesh and the southern Indian province of Kerala use this plant in the treatment of diabetes. Many diterpenes, triterpenes, phytosteroids, alkaloids and their glycosides have been isolated from T. crispa. Cell culture and animal studies suggest that the herb stimulates secretion of insulin from β-cells. It also causes dose-dependent and time-dependent enhancement of glucose uptake in muscles. However, in view of the reported hepatotoxicity, this herb may be used with caution. This article reviews the animal studies and human clinical trials carried out using this herb. Areas of future research are also identified.
    Matched MeSH terms: Alkaloids/pharmacology; Alkaloids/therapeutic use
  17. Kam TS, Sim KM, Koyano T, Toyoshima M, Hayashi M, Komiyama K
    J Nat Prod, 1998 Nov;61(11):1332-6.
    PMID: 9834146
    The EtOH extract of the leaves of Holarrhena curtisii yielded five new steroidal alkaloids: 17-epi-holacurtine (3), 17-epi-N-demethylholacurtine (4), holacurtinol (5), 3alpha-amino-14beta-hydroxypregnan-20-one (7), and 15alpha-hydroxyholamine (8), in addition to the known compounds, holacurtine (1), N-demethylholacurtine (2), and holamine (6). All eight compounds showed significant cytotoxic and leishmanicidal activities.
    Matched MeSH terms: Alkaloids/isolation & purification; Alkaloids/pharmacology*
  18. Mani V, Ramasamy K, Ahmad A, Parle M, Shah SA, Majeed AB
    Food Chem Toxicol, 2012 Mar;50(3-4):1036-44.
    PMID: 22142688 DOI: 10.1016/j.fct.2011.11.037
    Dementia is a syndrome of gradual onset and continuous decline of higher cognitive functioning. It is a common disorder in older persons and has become more prevalent today. The fresh leaves of Murraya koenigii are often added to various dishes in Asian countries due to the delicious taste and flavor that they impart. These leaves have also been proven to have health benefits. In the present study, the effect of total alkaloidal extract from M. koenigii leaves (MKA) on cognitive functions and brain cholinesterase activity in mice were determined. In vitro β-secretase 1 (BACE1) inhibitory activity was also evaluated. The total alkaloidal extract was administered orally in three doses (10, 20 and 30 mg/kg) for 15 days to different groups of young and aged mice. Elevated plus maze and passive avoidance apparatus served as the exteroceptive behavioral models for testing memory. Diazepam-, scopolamine-, and ageing-induced amnesia served as the interoceptive behavioral models. MKA (20 and 30 mg/kg, p.o.) showed significant improvement in memory scores of young and aged mice. Furthermore, the same doses of MKA reversed the amnesia induced by scopolamine (0.4 mg/kg, i.p.) and diazepam (1 mg/kg, i.p.). Interestingly, the brain cholinesterase activity was also reduced significantly by total alkaloidal extract of M. koenigii leaves. The IC50 value of MKA against BACE1 was 1.7 μg/mL. In conclusion, this study indicates MKA to be a useful remedy in the management of Alzheimer's disease and dementia.
    Matched MeSH terms: Alkaloids/pharmacology; Alkaloids/therapeutic use*
  19. Shamsi S, Tran H, Tan RS, Tan ZJ, Lim LY
    Drug Metab. Dispos., 2017 01;45(1):49-55.
    PMID: 27821437
    Inhibition of cytochrome P450 (P450) enzymes (CYP) has been shown to lower the metabolism of drugs that are P450 substrates and to consequently alter their pharmacokinetic profiles. Curcumin (CUR), piperine (PIP), and capsaicin (CAP) are spice components (SC) that inhibit the activities of a range of P450 enzymes, but the selection of which SC to be prioritized for further development as an adjuvant will depend on the ranking order of the inhibitory potential of the SCs on specific P450 isozymes. We used common human recombinant enzyme platforms to provide a comparative evaluation of the inhibitory activities of CUR, PIP, and CAP on the principal drug-metabolizing P450 enzymes. SC-mediated inhibition of CYP3A4 was found to rank in the order of CAP (IC501.84 ± 0.71 µM) ∼ PIP (2.12 ± 0.45 µM) > CUR (11.93 ± 3.49 µM), while CYP2C9 inhibition was in the order of CAP (11.95 ± 4.24 µM) ∼ CUR (14.58 ± 4.57 µM) > PIP (89.62 ± 9.17 µM). CAP and PIP were significantly more potent inhibitors of CYP1A2 (IC502.14 ± 0.22 µM and 14.19 ± 4.15 µM, respectively) than CUR (IC50> 100 µM), while all three SCs exhibited weak activity toward CYP2D6 (IC5095.42 ± 12.09 µM for CUR, 99.99 ± 5.88 µM for CAP, and 110.40 ± 3.23 µM for PIP). Of the three SCs, CAP thus has the strongest potential for further development into an inhibitor of multiple CYPs for use in the clinic. Data from this study are also useful for managing potential drug-SC interactions.
    Matched MeSH terms: Alkaloids/pharmacology*; Alkaloids/chemistry
  20. Japarin RA, Yusoff NH, Hassan Z, Müller CP, Harun N
    Behav Brain Res, 2021 02 05;399:113021.
    PMID: 33227244 DOI: 10.1016/j.bbr.2020.113021
    Kratom is a medicinal plant that exhibits promising results as an opiate substitute. However, there is little information regarding the abuse profile of its main psychoactive constituent, mitragynine (MG), particularly in relapse to drug abuse. Using the place conditioning procedure as a model of relapse, this study aims to evaluate the ability of MG to induce conditioned place preference (CPP) reinstatement in rats. To evaluate the cross-reinstatement effects, MG and morphine were injected to rats that previously extinguished a morphine- or MG-induced CPP. Following a CPP acquisition induced by either MG (10 and 30 mg/kg, i.p.) or morphine (10 mg/kg, i.p.), rats were subjected to repeated CPP extinction sessions. A low dose priming injection of MG or morphine produced a reinstatement of the previously extinguished CPP. In the second experiment of this study, a priming injection of morphine (1, 3 and 10 mg/kg, i.p.) dose-dependently reinstated an MG-induced CPP. Likewise, a priming injection of MG (3, 10 and 30 mg/kg, i.p.) was able to dose-dependently reinstate a morphine-induced CPP. The present study demonstrates a cross-reinstatement effect between MG and morphine, thereby suggesting a similar interaction in their rewarding motivational properties. The findings from this study also suggesting that a priming exposure to kratom and an opioid may cause relapse for a previously abused drug.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids/administration & dosage; Secologanin Tryptamine Alkaloids/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links