Displaying publications 201 - 220 of 309 in total

Abstract:
Sort:
  1. Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen N
    Drug Des Devel Ther, 2018;12:657-671.
    PMID: 29636600 DOI: 10.2147/DDDT.S155115
    Background: Brucea javanica (L.) Merr. is a plant from the genus Brucea, which is used in local traditional medicine to treat various diseases. Recent studies revealed an impressive anticancer efficiency of B. javanica extract in different types of cancer cells.

    Purpose: In this study, we have investigated the cytotoxic effects of the B. javanica hexane, ethanolic extracts against colon cancer cells. HT29 colon cells were selected as an in vitro cancer model to evaluate the anticancer activity of B. javanica ethanolic extract (BJEE) and the possible mechanisms of action that induced apoptosis.

    Methods: 3-(4,5-dimethylthiazol-2-yl)-2, 5,-diphenyltetrazolium bromide (MTT), lactate dehydrogenase, acridine orange/propidium iodide, and annexin-V-fluorescein isothiocyanate assays were performed to determine the antiproliferative and apoptosis validation of BJEE on cancer cells. Measurement of reactive oxygen species (ROS) production, caspase activities, nucleus factor-κB activity, and gene expression experiments was done to investigate the potential mechanisms of action in the apoptotic process.

    Results: The results obtained from this study illustrated the significant antiproliferative effect of BJEE on colorectal cancer cells, with a concentration value that inhibits 50% of the cell growth of 25±3.1 µg/mL after 72 h of treatment. MTT assay demonstrated that the BJEE is selectively toxic to cancer cells, and BJEE induced cell apoptosis via activation of caspase-8 along with modulation of apoptosis-related proteins such as Fas, CD40, tumor necrosis factor-related apoptosis-inducing ligands, and tumor necrosis factor receptors, which confirmed the contribution of extrinsic pathway. Meanwhile, increased ROS production in treated cells subsequently activated caspase-9 production, which triggered the intrinsic pathways. In addition, overexpression of cytochrome-c, Bax, and Bad proteins along with suppression of Bcl-2 illustrated that mitochondrial-dependent pathway also contributed to BJEE-induced cell death. Consistent with the findings from this study, BJEE-induced cancer cell death proceeds via extrinsic and intrinsic mitochondrial-dependent and -independent events.

    Conclusion: From the evidence obtained from this study, it is concluded that the BJEE is a promising natural extract to combat colorectal cancer cells (HT29 cells) via induction of apoptosis through activation of extrinsic and intrinsic pathways.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  2. Iman V, Mohan S, Abdelwahab SI, Karimian H, Nordin N, Fadaeinasab M, et al.
    Drug Des Devel Ther, 2017;11:103-121.
    PMID: 28096658 DOI: 10.2147/DDDT.S115135
    Therapy that directly targets apoptosis and/or inflammation could be highly effective for the treatment of cancer. Murraya koenigii is an edible herb that has been traditionally used for cancer treatment as well as inflammation. Here, we describe that girinimbine, a carbazole alkaloid isolated from M. koenigii, induced apoptosis and inhibited inflammation in vitro as well as in vivo. Induction of apoptosis in human colon cancer cells (HT-29) by girinimbine revealed decreased cell viability in HT-29, whereas there was no cytotoxic effect on normal colon cells. Changes in mitochondrial membrane potential, nuclear condensation, cell permeability, and cytochrome c translocation in girinimbine-treated HT-29 cells demonstrated involvement of mitochondria in apoptosis. Early-phase apoptosis was shown in both acridine orange/propidium iodide and annexin V results. Girinimbine treatment also resulted in an induction of G0/G1 phase arrest which was further corroborated with the upregulation of two cyclin-dependent kinase proteins, p21 and p27. Girinimbine treatment activated apoptosis through the intrinsic pathway by activation of caspases 3 and 9 as well as cleaved caspases 3 and 9 which ended by triggering the execution pathway. Moreover, apoptosis was confirmed by downregulation of Bcl-2 and upregulation of Bax in girinimbine-treated cells. In addition, the key tumor suppressor protein, p53, was seen to be considerably upregulated upon girinimbine treatment. Induction of apoptosis by girinimbine was also evidenced in vivo in zebrafish embryos, with results demonstrating significant distribution of apoptotic cells in embryos after a 24-hour treatment period. Meanwhile, anti-inflammatory action was evidenced by the significant dose-dependent girinimbine inhibition of nitric oxide production in lipopolysaccharide/interferon-gamma-induced cells along with significant inhibition of nuclear factor-kappa B translocation from the cytoplasm to nucleus in stimulated RAW 264.7 cells. Girinimbine was also shown to have considerable antioxidant activity whereby 20 μg/mL of girinimbine was equivalent to 82.17±1.88 μM of Trolox. In mice with carrageenan-induced peritonitis, oral pretreatment with girinimbine helped limit total leukocyte migration (mainly of neutrophils), and reduced pro-inflammatory cytokine levels (interleukin-1beta and tumor necrosis factor-alpha) in the peritoneal fluid. These findings strongly suggest that girinimbine could act as a chemopreventive and/or chemotherapeutic agent by inducing apoptosis while suppressing inflammation. There is a potential for girinimbine to be further investigated for its applicability in treating early stages of cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  3. Karimian H, Arya A, Fadaeinasab M, Razavi M, Hajrezaei M, Karim Khan A, et al.
    Drug Des Devel Ther, 2017;11:337-350.
    PMID: 28203057 DOI: 10.2147/DDDT.S121518
    BACKGROUND: The aim of this study was to evaluate the anticancer potential of Kelussia odoratissima. Several in vitro and in vivo biological assays were applied to explore the direct effect of an extract and bioactive compound of this plant against breast cancer cells and its possible mechanism of action.

    MATERIALS AND METHODS: K. odoratissima methanol extract (KME) was prepared, and MTT assay was used to evaluate the cytotoxicity. To identify the cytotoxic compound, a bioassay-guided investigation was performed on methanol extract. 8-Hydroxy-ar-turmerone was isolated as a bioactive compound. In vivo study was performed in the breast cancer rat model. LA7 cell line was used to induce the breast tumor. Histopathological and expression changes of PCNA, Bcl-2, Bax, p27 and p21 and caspase-3 were examined. The induction of apoptosis was tested using Annexin V-fluorescein isothiocyanate (FITC) assay. To confirm the intrinsic pathway of apoptosis, caspase-7 and caspase-9 assays were utilized. In addition, cell cycle arrest was evaluated.

    RESULTS: Our results demonstrated that K. odoratissima has an obvious effect on the arrest of proliferation of cancer cells. It induced apoptosis, transduced the cell death signals, decreased the threshold of mitochondrial membrane potential (MMP), upregulated Bax and downregulated Bcl-2.

    CONCLUSION: This study demonstrated that K. odoratissima exhibits antitumor activity against breast cancer cells via cell death and cell cycle arrest.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  4. Aziz AN, Ismail NH, Halim SNA, Looi CY, Anouar EH, Langat MK, et al.
    Phytochemistry, 2018 Dec;156:193-200.
    PMID: 30316148 DOI: 10.1016/j.phytochem.2018.10.002
    A phytochemical investigation of the stem barks of the Malaysian Croton oblongus Burm.f. (Syn. Croton laevifolius Blume) (Euphorbiaceae) yielded seven previously undescribed ent-neo-clerodane diterpenoids, laevifins A - G and the known crovatin (3). Structures were established by a combination of spectroscopic methods including HRESIMS, NMR spectroscopy and X-ray crystallography. The absolute configuration of crovatin and laevifins A-G was established by comparison of experimental ECD and theoretical TDDFT ECD calculated spectra. This is the first report on the occurrence of the sesquiterpenoid cryptomeridiol in a Croton species. In vitro cytotoxicity assays on laevifins A, B and G showed moderate activities against the MCF-7 cancer cell line (IC50 102, 115 and 106 μM, respectively) while β-amyrin and acetyl aleuritolic acid showed good anti-inflammatory activity on the LPS-induced NF-κB translocation inhibition in RAW 264.7 cells assay with IC50 values of 23.5 and 35.4 μg/mL, respectively.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  5. Hussain S, Ullah F, Ayaz M, Ali Shah SA, Ali Shah AU, Shah SM, et al.
    Drug Des Devel Ther, 2019;13:4195-4205.
    PMID: 31849451 DOI: 10.2147/DDDT.S228971
    Background: Cancer is one of the chronic health conditions worldwide. Various therapeutically active compounds from medicinal plants were the current focus of this research in order to uncover a treatment regimen for cancer. Anchusa arvensis (A. anchusa) (L.) M.Bieb. contains many biologically active compounds.

    Methods: In the current study, new ester 3-hydroxyoctyl -5- trans-docosenoate (compound-1) was isolated from the chloroform soluble fraction of A. anchusa using column chromatography. Using MTT assay, the anticancer effect of the compound was determined in human hepatocellular carcinoma cells (HepG-2) compared with normal epithelial cell line (Vero). DPPH and ABTS radical scavenging assays were performed to assess the antioxidant potential. The Molecular Operating Environment (MOE-2016) tool was used against tyrosine kinase.

    Results: The structure of the compound was elucidated based on IR, EI, and NMR spectroscopy technique. It exhibited a considerable cytotoxic effect against HepG-2 cell lines with IC50 value of 6.50 ± 0.70 µg/mL in comparison to positive control (doxorubicin) which showed IC50 value of 1.3±0.21 µg/mL. The compound did not show a cytotoxic effect against normal epithelial cell line (Vero). The compound also exhibited significant DPHH scavenging ability with IC50 value of 12 ± 0.80 µg/mL, whereas ascorbic acid, used as positive control, demonstrated activity with IC50 = 05 ± 0.15 µg/mL. Similarly, it showed ABTS radical scavenging ability (IC50 = 130 ± 0.20 µg/mL) compared with the value obtained for ascorbic acid (06 ± 0.85 µg/mL). In docking studies using MOE-2016 tool, it was observed that compound-1 was highly bound to tyrosine kinase by having two hydrogen bonds at the hinge region. This good bonding network by the compound might be one of the reasons for showing significant activity against this enzyme.

    Conclusion: Our findings led to the isolation of a new compound from A. anchusa which has significant cytotoxic activity against HepG-2 cell lines with marked antioxidant potential.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  6. Mooi LY, Wahab NA, Lajis NH, Ali AM
    Chem Biodivers, 2010 May;7(5):1267-75.
    PMID: 20491082 DOI: 10.1002/cbdv.200900193
    Bioassay-guided fractionation of a MeOH extract of tubers of Coleus tuberosus afforded the active anti-tumor-promoting compounds identified as the triterpenoid 2alpha,3beta-dihydroxyolean-12-en-28-oic acid (maslinic acid; CT2) and a phytosterol mixture (CT1). CT1 consists of stigmasterol (32%), beta-sitosterol (40.3%), and campesterol (27.7%) as determined by capillary gas chromatography. CT1 and CT2 showed very strong anti-tumor-promoting activities at IC(50) 0.7 microg/ml and 0.1 microg/ml, respectively, in a convenient, short-term in vitro assay, i.e., the inhibition of Epstein-Barr virus (EBV) activation induced by phorbol 12-myristate 13-acetate (PMA) and sodium butyrate. We report for the first time the anti-tumor-promoting activity of 2alpha,3beta-dihydroxyolean-12-en-28-oic acid and show that a mixture of stigmasterol, beta-sitosterol, and campesterol is more potent than the individual components in inhibiting tumor-promoting activity.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/chemistry*
  7. Poh Yen K, Stanslas J, Zhang T, Li H, Wang X, Kok Meng C, et al.
    Bioorg Med Chem, 2021 11 01;49:116442.
    PMID: 34600241 DOI: 10.1016/j.bmc.2021.116442
    Acquired paclitaxel (PTX) chemoresistance in triple-negative breast cancer (TNBC) can be inferred from the overexpression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) proteins and the activation of the TLR4/MyD88 cascading signalling pathway. Finding a new inhibitor that can attenuate the activation of this pathway is a novel strategy for reducing PTX chemoresistance. In this study, a series of small molecule compounds were synthesised and tested in combination with PTX against TNBC cells. The trimethoxy-substituted compound significantly decreased MyD88 overexpression and improved PTX activity in MDA-MB-231TLR4+ cells but not in HCCTLR4- cells. On the contrary, the trifluoromethyl-substituted compound with PTX synergistically improved the growth inhibition in both TNBC subtypes. The fluorescence titrations indicated that both compounds could bind with MD2 with good and comparable binding affinities. This was further supported by docking analysis, in which both compounds fit perfectly well and form some critical binding interactions with MD2, an essential lipid-binding accessory to TLR4 involved in activating the TLR-4/MyD88-dependent pathway.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemical synthesis; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  8. Al-Khdhairawi AAQ, Krishnan P, Mai CW, Chung FF, Leong CO, Yong KT, et al.
    J Nat Prod, 2017 10 27;80(10):2734-2740.
    PMID: 28926237 DOI: 10.1021/acs.jnatprod.7b00500
    Tengerensine (1), isolated as a racemate and constituted from a pair of bis-benzopyrroloisoquinoline enantiomers, and tengechlorenine (2), purified as a scalemic mixture and constituted from a pair of chlorinated phenanthroindolizidine enantiomers, were isolated from the leaves of Ficus fistulosa var. tengerensis, along with three other known alkaloids. The structures of 1 and 2 were determined by spectroscopic data interpretation and X-ray diffraction analysis. The enantiomers of 1 were separated by chiral-phase HPLC, and the absolute configurations of (+)-1 and (-)-1 were established via experimental and calculated ECD data. Compound 1 is notable in being a rare unsymmetrical cyclobutane adduct and is the first example of a dimeric benzopyrroloisoquinoline alkaloid, while compound 2 represents the first naturally occurring halogenated phenanthroindolizidine alkaloid. Compound (+)-1 displayed a selective in vitro cytotoxic effect against MDA-MB-468 cells (IC50 7.4 μM), while compound 2 showed pronounced in vitro cytotoxic activity against all three breast cancer cell lines tested (MDA-MB-468, MDA-MB-231, and MCF7; IC50 values of 0.038-0.91 μM).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  9. Mohamed GA, Al-Abd AM, El-Halawany AM, Abdallah HM, Ibrahim SRM
    J Ethnopharmacol, 2017 Feb 23;198:302-312.
    PMID: 28108382 DOI: 10.1016/j.jep.2017.01.030
    ETHNOPHARMACOLOGICAL RELEVANCE: Cancer has proceeded to surpass one of the most chronic illnesses to be the major cause of mortality in both the developing and developed world. Garcinia mangostana L. (mangosteen, family Guttiferae) known as the queen of fruits, is one of the most popular tropical fruits. It is cultivated in Southeast Asian countries: Malaysia, Indonesia, Sri Lanka, Burma, Thailand, and Philippines. Traditionally, numerous parts of G. mangostana have been utilized to treat various ailments such as abdominal pain, haemorrhoids, food allergies, arthritis, leucorrhoea, gonorrhea, diarrhea, dysentery, wound infection, suppuration, and chronic ulcer.

    AIM OF STUDY: Although anticancer activity has been reported for the plant, the goal of the study was designed to isolate and characterize the active metabolites from G. mangostana and measure their cytotoxic properties. In this research, the mechanism of antiproliferative/cytotoxic effects of the tested compounds was investigated.

    MATERIALS AND METHODS: The CHCl3 fraction of the air-dried fruit hulls was repeatedly chromatographed on SiO2, RP18, Diaion HP-20, and polyamide columns to furnish fourteen compounds. The structures of these metabolites were proven by UV, IR, 1D, and 2D NMR measurements and HRESIMS. Additionally, the cytotoxic potential of all compounds was assessed against MCF-7, HCT-116, and HepG2 cell lines using SRB-U assay. Antiproliferative and cell cycle interference effects of potentially potent compounds were tested using DNA content flow cytometry. The mechanism of cell death induction was also studied using annexin-V/PI differential staining coupled with flow cytometry.

    RESULTS: The CHCl3 soluble fraction afforded two new xanthones: mangostanaxanthones V (1) and VI (2), along with twelve known compounds: mangostanaxanthone IV (3), β-mangostin (4), garcinone E (5), α-mangostin (6), nor-mangostin (7), garcimangosone D (8), aromadendrin-8-C-β-D-glucopyranoside (9), 1,2,4,5-tetrahydroxybenzene (10), 2,4,3`-trihydroxybenzophenone-6-O-β-glucopyranoside (11), maclurin-6-O-β-D-glucopyranoside (rhodanthenone) (12), epicatechin (13), and 2,4,6,3`,5`-pentahydroxybenzophenone (14). Only compound 5 showed considerable antiproliferative/cytotoxic effects with IC50's ranging from 15.8 to 16.7µM. Compounds 3, 4, and 6 showed moderate to weak cytotoxic effects (IC50's ranged from 45.7 to 116.4µM). Using DNA content flow cytometry, it was found that only 5 induced significant cell cycle arrest at G0/G1-phase which is indicative of its antiproliferative properties. Additionally, by using annexin V-FITC/PI differential staining, 5 induced cells killing effect via the induction of apoptosis and necrosis in both HepG2 and HCT116 cells. Compound 3 produce necrosis and apoptosis only in HCT116 cells. On contrary, 6 induced apoptosis and necrosis in HepG2 cells and moderate necrosis in HCT116 cells.

    CONCLUSION: Fourteen compounds were isolated from chloroform fraction of G. mangostana fruit hulls. Cytotoxic properties exhibited by the isolated xanthones from G. mangostana reinforce the avail of it as a natural cytotoxic agent against various cancers. These evidences could provide relevant bases for the scientific rationale of using G. mangostana in anti-cancer treatment.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/administration & dosage; Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*
  10. Oskoueian E, Abdullah N, Ahmad S
    Molecules, 2012 Sep 10;17(9):10816-30.
    PMID: 22964499 DOI: 10.3390/molecules170910816
    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC₅₀ of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA) as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC₅₀ concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun). These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  11. Ghasemzadeh A, Jaafar HZ, Rahmat A
    PMID: 26223685 DOI: 10.1186/s12906-015-0718-0
    Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*; Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/chemistry
  12. Mohd Yusof YA
    Adv Exp Med Biol, 2016;929:177-207.
    PMID: 27771925
    Since antiquity, ginger or Zingiber officinale, has been used by humans for medicinal purposes and as spice condiments to enhance flavor in cooking. Ginger contains many phenolic compounds such as gingerol, shogaol and paradol that exhibit antioxidant, anti-tumor and anti-inflammatory properties. The role of ginger and its constituents in ameliorating diseases has been the focus of study in the past two decades by many researchers who provide strong scientific evidence of its health benefit. This review discusses research findings and works devoted to gingerols, the major pungent constituent of ginger, in modulating and targeting signaling pathways with subsequent changes that ameliorate, reverse or prevent chronic diseases in human studies and animal models. The physical, chemical and biological properties of gingerols are also described. The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases which will benefit the common population, clinicians, patients, researchers, students and industrialists.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/therapeutic use*; Antineoplastic Agents, Phytogenic/chemistry
  13. Hashim NM, Rahmani M, Ee GC, Sukari MA, Yahayu M, Oktima W, et al.
    J Biomed Biotechnol, 2012;2012:130627.
    PMID: 21960741 DOI: 10.1155/2012/130627
    An investigation of the chemical constituents in Artocarpus obtusus species led to the isolation of three new xanthones, pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2), and pyranocycloartobiloxanthone B (3). The compounds were subjected to antiproliferative assay against human promyelocytic leukemia (HL60), human chronic myeloid leukemia (K562), and human estrogen receptor (ER+) positive breast cancer (MCF7) cell lines. Pyranocycloartobiloxanthone A (1) consistently showed strong cytotoxic activity against the three cell lines compared to the other two with IC(50) values of 0.5, 2.0 and 5.0 μg/mL, respectively. Compound (1) was also observed to exert antiproliferative activity and apoptotic promoter towards HL60 and MCF7 cell lines at respective IC(50) values. The compound (1) was not toxic towards normal cell lines human nontumorigenic breast cell line (MCF10A) and human peripheral blood mononuclear cells (PBMCs) with IC(50) values of more than 30 μg/mL.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  14. Lay MM, Karsani SA, Malek SN
    Int J Mol Sci, 2014 Jan 02;15(1):468-83.
    PMID: 24451128 DOI: 10.3390/ijms15010468
    1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone (DMHE) was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry) and NMR (nuclear magnetic resonance) analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational) cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide) staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  15. Tang SW, Sukari MA, Neoh BK, Yeap YS, Abdul AB, Kifli N, et al.
    Biomed Res Int, 2014;2014:417674.
    PMID: 25057485 DOI: 10.1155/2014/417674
    Phytochemical investigation on rhizomes of Kaempferia angustifolia has afforded a new abietene diterpene, kaempfolienol (1) along with crotepoxide (2), boesenboxide (3), 2'-hydroxy-4,4',6'-trimethoxychalcone (4), zeylenol (5), 6-methylzeylenol (6), (24S)-24-methyl-5α-lanosta-9(11), 25-dien-3β-ol (7), sucrose, β-sitosterol, and its glycoside (8). The structures of the compounds were elucidated on the basis of spectroscopic methods (IR, MS, and NMR). Isolation of 6-methylzeylenol (6), (24S)-24-methyl-5α-lanosta-9(11), 25-dien-3β-ol (7), and β-sitosterol-3-O-β-D-glucopyranoside (8) from this plant species has never been reported previously. The spectroscopic data of (7) is firstly described in this paper. Cytotoxic screening indicated that most of the pure compounds tested showed significant activity with (4) showing the most potent activity against HL-60 (human promyelocytic leukemia) and MCF-7 (human breast cancer) cell lines. However, all extracts and most of the pure compounds tested were found to be inactive against HT-29 (human colon cancer) and HeLa (human cervical cancer) cell lines. Similarly, none of the extracts or compounds showed activity in the antimicrobial testing.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry*
  16. Fouz N, Amid A, Hashim YZ
    Asian Pac J Cancer Prev, 2014 Jan;14(11):6709-14.
    PMID: 24377593
    BACKGROUND: Breast cancer is a leading cause of death in women. The available chemotherapy drugs have been associated with many side effects. Bromelain has novel medicinal qualities including anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Commercially available bromelain is obtained through tedious methods; therefore, recombinant bromelain may provide a cheaper and simpler choice with similar quality.

    MATERIALS AND METHODS: This study aimed to assess the effects of commercial and recombinant bromelain on the cytokinetic behavior of MCF-7 breast cancer cells and their potential as therapeutic alternatives in cancer treatment. Cytotoxic activities of commercial and recombinant bromelain were determined using (sulforhodamine) SRB assay. Next, cell viability assays were conducted to determine effects of commercial and recombinant bromelain on MCF-7 cell cytokinetic behavior. Finally, the established growth kinetic data were used to modify a model that predicts the effects of commercial and recombinant bromelain on MCF-7 cells.

    RESULTS: Commercial and recombinant bromelain exerted strong effects towards decreasing the cell viability of MCF-7 cells with IC50 values of 5.13 μg/mL and 6.25 μg/mL, respectively, compared to taxol with an IC50 value of 0.063 μg/mL. The present results indicate that commercial and recombinant bromelain both have anti-proliferative activity, reduced the number of cell generations from 3.92 to 2.81 for commercial bromelain and to 2.86 for recombinant bromelain, while with taxol reduction was to 3.12. Microscopic observation of bromelain-treated MCF-7 cells demonstrated detachment. Inhibition activity was verified with growth rates decreased dynamically from 0.009 h-1 to 0.0059 h-1 for commercial bromelain and to 0.0063 h-1 for recombinant bromelain.

    CONCLUSIONS: Commercial and recombinant bromelain both affect cytokinetics of MCF-7 cells by decreasing cell viability, demonstrating similar strength to taxol.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  17. Salim LZ, Mohan S, Othman R, Abdelwahab SI, Kamalidehghan B, Sheikh BY, et al.
    Molecules, 2013 Sep 12;18(9):11219-40.
    PMID: 24036512 DOI: 10.3390/molecules180911219
    There has been a growing interest in naturally occurring compounds from traditional medicine with anti-cancer potential. Nigella sativa (black seed) is one of the most widely studied plants. This annual herb grows in countries bordering the Mediterranean Sea and India. Thymoquinone (TQ) is an active ingredient isolated from Nigella sativa. The anti-cancer effect of TQ, via the induction of apoptosis resulting from mitochondrial dysfunction, was assessed in an acute lymphocyte leukemic cell line (CEMss) with an IC50 of 1.5 µg/mL. A significant increase in chromatin condensation in the cell nucleus was observed using fluorescence analysis. The apoptosis was then confirmed by Annexin V and an increased number of cellular DNA breaks in treated cells were observed as a DNA ladder. Treatment of CEMss cells with TQ encouraged apoptosis with cell death-transducing signals by a down-regulation of Bcl-2 and up-regulation of Bax. Moreover, the significant generation of cellular ROS, HSP70 and activation of caspases 3 and 8 were also observed in the treated cells. The mitochondrial apoptosis was clearly associated with the S phase cell cycle arrest. In conclusion, the results from the current study indicated that TQ could be a promising agent for the treatment of leukemia.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  18. Tang YQ, Jaganath IB, Sekaran SD
    PLoS One, 2010;5(9):e12644.
    PMID: 20838625 DOI: 10.1371/journal.pone.0012644
    Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  19. Yeap SK, Alitheen NB, Ali AM, Omar AR, Raha AR, Suraini AA, et al.
    J Ethnopharmacol, 2007 Dec 3;114(3):406-11.
    PMID: 17884317
    The study of bioactivity of natural product is one of the major researches for drug discovery. The aim of this finding was to study the proliferation effect of Rhaphidophora korthalsii methanol extract on human PBMC and subsequently the cytotoxic effect of activated PBMC toward HepG2 human hepatocellular carcinoma. In this present study, MTT assay, cell cycle study and Annexin 5 binding assay were used to study the immunomodulatory and cytotoxic effects. In vitro cytotoxic screening of Rhaphidophora korthalsii methanol extract showed that the extract was non-toxic against hepatocellular carcinoma (HepG2). In contrast, the extract was able to stimulate the proliferation of human PBMC at 48 h and 72 h in MTT assay and cell cycle progress study. The application of immunomodulator in tumor research was studied by using MTT microcytotoxicity assay and flow cytometric Annexin V. Results indicated that pre-treated PBMC with Rhaphidophora korthalsii methanol extract induced the highest cytotoxicity (44.87+/-6.06% for MTT microcytotoxicity assay and 51.51+/-3.85% for Annexin V) toward HepG2. This finding demonstrates that Rhaphidophora korthalsii methanol extract are potent to stimulate the cytotoxic effect of immune cells toward HepG2.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  20. Vijayarathna S, Jothy SL, Chen Y, Kanwar JR, Sasidharan S
    Asian Pac J Cancer Prev, 2015;16(14):6175-6.
    PMID: 26320517
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links