Displaying publications 201 - 220 of 230 in total

Abstract:
Sort:
  1. Mohtar N, Taylor KM, Sheikh K, Somavarapu S
    Eur J Pharm Biopharm, 2017 Apr;113:1-10.
    PMID: 27916704 DOI: 10.1016/j.ejpb.2016.11.036
    This study has investigated complexation of fisetin, a natural flavonoid, with three types of cyclodextrins to improve its solubility. Sulfobutylether-β-cyclodextrin (SBE-β-CD) showed the highest complexation efficiency while maintaining the in vitro antioxidant activity of fisetin. Addition of 20%v/v ethanol in water improved the amount of solubilized fisetin in the complex 5.9-fold compared to the system containing water alone. Spray drying of fisetin-SBE-β-CD complex solution in the presence of ethanol produced a dry powder with improved aerosolization properties when delivered from a dry powder inhaler, indicated by a 2-fold increase in the fine particle fraction (FPF) compared to the powder produced from the complex solution containing water alone. The pitted morphological surface of these particles suggested a more hollow internal structure, indicating a lighter and less dense powder. Incorporation of 20%w/w leucine improved the particle size distribution of the powder and further increased the FPF by 2.3-fold. This formulation also showed an EC50 value equivalent to fisetin alone in the A549 cell line. In conclusion, an inhalable dry powder containing fisetin-SBE-β-CD complex was successfully engineered with an improved aqueous solubility of fisetin. The dry powder may be useful to deliver high amounts of fisetin to the deep lung region for therapeutic purposes.
    Matched MeSH terms: Powders
  2. Bharatham H, Md Zuki Abu Bakar Zakaria, Perimal EK, Loqman Mohamad Yusof, Muhajir Hamid
    Sains Malaysiana, 2014;43:1023-1029.
    Molluscan shells are attracting research interest due to the diverse application properties possessed. As shells are very similar to bones, this study was conducted to analyze the mineral and physiochemical composition of Cockle (Anadara granosa) shell and three other types of molluscan shell, namely Strombus canarium, Oliva sayana and Terebra dislocata as potential biomaterial for bone tissue engineering applications. Approximately 200 g of shells from each species were processed and powdered for the purpose of this study. Carbon was analyzed using the carbon analyzer while minerals and heavy metals through ICP-MS. The phase purity and crystallographic structures of the powders were identified using X-Ray Diffractometer (XRD) while the chemical functionality was determined using the Fourier transform infrared (FTIR) spectrophotometer. The analysis showed that Cockle shells contained higher content of calcium and carbon including varying amount of other minor elements comparatively. However, all four types of shell powders were found to contain below detectable levels of toxic elements. Physiochemical analysis on phase purity and crystallographic structures showed similar characteristics of carbonate group present in all four shell types. A predominantly aragonite form of calcium carbonate was detected in both XRD diffractogram and FTIR spectra for all samples. Our findings demonstrated that different types of molluscan shells have almost similar mineral and physiochemical characteristics and a predominantly aragonite form of calcium carbonate that provides a strong basis for their use as a potential bone tissues engineering material.
    Matched MeSH terms: Powders
  3. Syamila M, Gedi MA, Briars R, Ayed C, Gray DA
    Food Chem, 2019 Jun 30;284:188-197.
    PMID: 30744845 DOI: 10.1016/j.foodchem.2019.01.055
    The aim of this study was to evaluate the interaction between packaging parameters (transmission of light and oxygen) and storage temperatures (4, 20, 40 °C) on nutrient retention of Spinach (Spinacia oleracea) juice, spray-dried in the absence of an added encapsulant. β-Carotene was more susceptible to degradation compared with lutein and α-tocopherol. Under our experimental conditions, it was observed that excluding low fluorescent light intensity and air by vacuum packaging at 20 °C did not seem to improve nutrient retention loss over time (p > 0.05). The rate of β-carotene, lutein and α-tocopherol loss displayed first order reaction kinetic with low activation energy of 0.665, 2.650 and 13.893 kJ/mol for vacuum, and 1.089, 4.923 and 14.142 kJ/mol for non-vacuum, respectively. The reaction kinetics and half-life for β-carotene, lutein and α-tocopherol at 4 °C and non-vacuumed were 2.2 × 10-2, 1.2 × 10-2, and 0.8 × 10-2 day-1, and 32.08, 58.25 and 85.37 day, respectively.
    Matched MeSH terms: Powders
  4. Anuar MS, Briscoe BJ
    Drug Dev Ind Pharm, 2010 Aug;36(8):972-9.
    PMID: 20515396 DOI: 10.3109/03639041003610807
    It is generally accepted that the tablet elastic relaxation during compaction plays a vital role in undermining the final tablet mechanical integrity. One of the least investigated stages of the compaction process is the ejection stage.
    Matched MeSH terms: Powders
  5. Ali MA, Yusof YA, Chin NL, Ibrahim MN, Muneer S
    J Diet Suppl, 2019;16(1):66-85.
    PMID: 29469600 DOI: 10.1080/19390211.2018.1429517
    Moringa oleifera leaves were selected as a model due to their hundreds of health benefits. On the other hand, the powder of these leaves has exhibited poor flowability, low tensile strength, bitter taste, poor dissolution rate, and lack of information regarding dosage. These are the common hurdles and limitations in the adaptation of herbal-based medications. Therefore, a comprehensive study was planned to introduce herbal-based medicines into mainstream medicines by standardization according to the U.S. Food and Drug Administration (FDA) and international pharmaceutical standards. A Simplex Lattice Design (SLD) of Design Expert 8.0 software was used to formulate different concentrations of superdisintegrant, binder/diluent, and sweeteners. An Instron Universal Testing machine coupled with a 13 mm stainless cylindrical die was used to manufacture tablets by means of direct compression method at 20 kN applied force. Therefore, selection of excipients was made on the basis of their tensile strength, flowability, and taste-masking properties. Optimum formulation was tested on rabbits for toxicity and growth rate. All formulated tablets were evaluated on standard parameters for orally disintegrating tablets described by the Food and Drug Authority (U.S.). The optimum formulation fulfills all standard parameters such as hardness, disintegration time, friability, and dissolution rate. The present formulation showed no toxicity when tested on rabbits. The present study provides a fundamental understanding of the tableting characteristics of natural medicines. The present study provides information that will help to overcome the challenges.
    Matched MeSH terms: Powders
  6. Karwowski MP, Morman SA, Plumlee GS, Law T, Kellogg M, Woolf AD
    Environ Geochem Health, 2017 Oct;39(5):1133-1143.
    PMID: 27704308 DOI: 10.1007/s10653-016-9881-6
    Though most childhood lead exposure in the USA results from ingestion of lead-based paint dust, non-paint sources are increasingly implicated. We present interdisciplinary findings from and policy implications of a case of elevated blood lead (13-18 mcg/dL, reference level <5 mcg/dL) in a 9-month-old infant, linked to a non-commercial Malaysian folk diaper powder. Analyses showed the powder contains 62 % lead by weight (primarily lead oxide) and elevated antimony [1000 parts per million (ppm)], arsenic (55 ppm), bismuth (110 ppm), and thallium (31 ppm). These metals are highly bioaccessible in simulated gastric fluids, but only slightly bioaccessible in simulated lung fluids and simulated urine, suggesting that the primary lead exposure routes were ingestion via hand-mouth transmission and ingestion of inhaled dusts cleared from the respiratory tract. Four weeks after discontinuing use of the powder, the infant's venous blood lead level was 8 mcg/dL. Unregulated, imported folk remedies can be a source of toxicant exposure. Additional research on import policy, product regulation, public health surveillance, and culturally sensitive risk communication is needed to develop efficacious risk reduction strategies in the USA. The more widespread use of contaminated folk remedies in the countries from which they originate is a substantial concern.
    Matched MeSH terms: Powders
  7. Alhajj N, Yahya MFZR, O'Reilly NJ, Cathcart H
    Eur J Pharm Sci, 2024 Jan 01;192:106654.
    PMID: 38013123 DOI: 10.1016/j.ejps.2023.106654
    Cystic fibrosis (CF) is an inherited lung disease characterised by the accumulation of thick layers of dried mucus in the lungs which serve as a nidus for chronic infection. Pseudomonas aeruginosa is the predominant cause of chronic lung infection in cystic fibrosis. The dense mucus coupled with biofilm formation hinder antibiotic penetration and prevent them from reaching their target. Mucoactive agents are recommended in the treatment of CF in combination with antibiotics. In spite of the extensive research in developing novel drug combinations for the treatment of lung infection in CF, to our knowledge, there is no study that combines antibiotic, antibiofilm and mucoactive agent in a single inhaled dry powder formulation. In the present study, we investigate the possibility of adding a mucoactive agent to our previously developed ciprofloxacinquercetin (antibiotic-antibiofilm) dry powder for inhalation. Three mucoactive agents, namely mannitol (MAN), N-acetyl-L-cysteine (NAC) and ambroxol hydrochloride (AMB), were investigated for this purpose. The ternary combinations were prepared via spray drying without the addition of excipients. All ternary combinations conserved or improved the antibacterial and biofilm inhibition activities of ciprofloxacin against P. aeruginosa (ATCC 10145). The addition of AMB resulted in an amorphous ternary combination (SD-CQA) with superior physical stability as indicated by DSC and nonambient XRPD. Furthermore, SD-CQA displayed better in vitro aerosolization performance (ED ∼ 71 %; FPF ∼ 49 %) compared to formulations containing MAN and NAC (ED ∼ 64 % and 44 %; FPF ∼ 44 % and 29 %, respectively). In conclusion, a ternary drug combination powder with suitable aerosolization, physical stability and antibacterial/antibiofilm properties was prepared by a single spray drying step.
    Matched MeSH terms: Powders
  8. Gharibshahi L, Saion E, Gharibshahi E, Shaari AH, Matori KA
    PLoS One, 2017;12(10):e0186094.
    PMID: 29045414 DOI: 10.1371/journal.pone.0186094
    Very narrow and pure silver nanoparticles were synthesized by modified thermal treatment method via oxygen and nitrogen flow in succession. The structural and optical properties of the calcined silver nanoparticles at 600°C with diverse Poly(vinylpyrrolidone) concentrations varied from 2% to 4% were studied by means of different techniques. Fourier transform infrared spectroscopy was used to monitor the production of pure Ag nanoparticles at a given Poly(vinylpyrrolidone) concentration. The X-ray powder diffraction spectra are evidence for the transformation of the amorphous sample at 30°C to the cubic crystalline nanostructures at the calcination temperatures for all Poly(vinylpyrrolidone) concentrations. The transmission electron microscopy images showed the creation of spherical silver nanoparticles with the average particle size decreased by increasing Poly(vinylpyrrolidone) concentrations from 4.61 nm at 2% to 2.49 nm at 4% Poly(vinylpyrrolidone). The optical properties were investigated by means of UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing Poly(vinylpyrrolidone) concentrations from 2.83 eV at 2% Poly(vinylpyrrolidone) to 2.94 eV at 4% Poly(vinylpyrrolidone) due to decreasing particle size. This was due to less attraction between conduction electrons and metal ions for smaller particle size corresponding to fewer atoms that made up the metal nanoparticles.
    Matched MeSH terms: Powders
  9. Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M
    Biomed Res Int, 2014;2014:146723.
    PMID: 25110655 DOI: 10.1155/2014/146723
    A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.
    Matched MeSH terms: Powders
  10. Mojiri A, Aziz HA, Zaman NQ, Aziz SQ, Zahed MA
    J Environ Manage, 2014 Jun 15;139:1-14.
    PMID: 24662109 DOI: 10.1016/j.jenvman.2014.02.017
    Sequencing batch reactor (SBR) is one of the various methods of biological treatments used for treating wastewater and landfill leachate. This study investigated the treatment of landfill leachate and domestic wastewater by adding a new adsorbent (powdered ZELIAC; PZ) to the SBR technique. ZELIAC consists of zeolite, activated carbon, lime stone, rice husk ash, and Portland cement. The response surface methodology and central composite design were used to elucidate the nature of the response surface in the experimental design and describe the optimum conditions of the independent variables, including aeration rate (L/min), contact time (h), and ratio of leachate to wastewater mixture (%; v/v), as well as their responses (dependent variables). Appropriate conditions of operating variables were also optimized to predict the best value of responses. To perform an adequate analysis of the aerobic process, four dependent parameters, namely, chemical oxygen demand (COD), color, ammonia-nitrogen (NH3-N), and phenols, were measured as responses. The results indicated that the PZ-SBR showed higher performance in removing certain pollutants compared with SBR. Given the optimal conditions of aeration rate (1.74 L/min), leachate to wastewater ratio (20%), and contact time (10.31 h) for the PZ-SBR, the removal efficiencies for color, NH3-N, COD, and phenols were 84.11%, 99.01%, 72.84%, and 61.32%, respectively.
    Matched MeSH terms: Powders
  11. Askari E, Mehrali M, Metselaar IH, Kadri NA, Rahman MM
    J Mech Behav Biomed Mater, 2012 Aug;12:144-50.
    PMID: 22732480 DOI: 10.1016/j.jmbbm.2012.02.029
    This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress.
    Matched MeSH terms: Powders
  12. Shameli K, Ahmad MB, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, et al.
    Int J Mol Sci, 2012;13(6):6639-50.
    PMID: 22837654 DOI: 10.3390/ijms13066639
    The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.
    Matched MeSH terms: Powders
  13. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:202-3.
    PMID: 15468888
    In this study the surface properties of two particulate coral and polyhydroxybutrate (PHB) were studied in order to characterize them prior to use in composite production. Coral powder and PHB particle were evaluated using scanning electron microscopy and confocal laser scanning microscopy, to measure surface porosity and pores size. The results showed that coral powder has multiple pleomorphic micropores cross each others give appearance of micro-interconnectivity. Some pore reached to 18 microm with an average porosity of 70%. PHB revealed multiple different size pores extended to the depth, with an average some times reach 25 microm and porosity 45%. These findings demonstrate that both coral and PHB have excellent pores size and porosity that facilitate bone in growth, vascular invasion and bone development. We believe that incorporation of coral powder into PHB will make an excellent composite scaffold for tissue engineering.
    Matched MeSH terms: Powders
  14. Asadi-Eydivand M, Solati-Hashjin M, Shafiei SS, Mohammadi S, Hafezi M, Abu Osman NA
    PLoS One, 2016;11(3):e0151216.
    PMID: 26999789 DOI: 10.1371/journal.pone.0151216
    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds were observed in this study, the mechanical properties were not significantly improved, requiring further investigations. However, the findings of this study give a better insight into the complex nature of the problem in the fabrication of synthetic bone grafts and scaffolds via post-fabrication treatment of 3DP calcium sulfate prototypes.
    Matched MeSH terms: Powders
  15. Sowtali SN, Ariffin SRM, Nazli NS, Shukri NABM, Khattak MMAK, Ab Rashid IM, et al.
    J Public Health Res, 2021 Apr 14;10(2).
    PMID: 33855421 DOI: 10.4081/jphr.2021.2238
    BACKGROUND: To date, no studies have been published at evaluating the level of knowledge, awareness and practice of dietary, particularly regarding to urolithiasis in patients or the general population. This study aims to provide basic information on the level of knowledge, awareness and dietary practice among general population in Kuantan, Pahang.

    DESIGN AND METHODS: The respondents (n=30) were conveniently recruited within 10 kilometres radius of Kuantan city. The data were obtained using semi-guided administered questionnaires, which consists of four parts: socio-demographic data, lifestyle and clinical history (Part A); attitude and awareness on dietary practice regarding urolithiasis (Part B); food frequency questionnaire on urolithiasis (Part C) and level of knowledge on urolithiasis (Part D).

    RESULTS: Majority of the respondents were women (70%), Malay (83.3%), mean age of 33.97 (±9.27), married (63.3%), completed higher education level (60%), working with government sector (33.3%) and have fixed monthly income (53.3%). Some of them had hypertension (n=4), diabetes (n=1), gout (n=1) and intestinal problem (n=1). Majority (80%) claimed having no family history of urolithiasis, consumed alcohol (10%), exercise with average frequency 2-3 times/week (46.7%) and heard about urolithiasis from healthcare worker (46.7%). The respondents' awareness about urolithiasis is considered to be good [81.23 (±9.98)] but having poor knowledge score [2.70 (±1.149)]. Majority preferred wholemeal bread, white rice, chicken meat, mackerel fish, chicken egg, apple, carrot, mustard leave and fresh milk in daily intake. Lesser plain water intake than standard requirement was noticed among respondents. Seasoning powder was commonly used for seasoning.

    CONCLUSIONS: Generally, the general population of Kuantan, Pahang was aware of urolithiasis disease but needed more information on dietary aspect in terms of knowledge and food choice.

    Matched MeSH terms: Powders
  16. Baba Ismail YM, Wimpenny I, Bretcanu O, Dalgarno K, El Haj AJ
    J Biomed Mater Res A, 2017 Jun;105(6):1775-1785.
    PMID: 28198131 DOI: 10.1002/jbm.a.36038
    Ionic substitutions have been proposed as a tool to control the functional behavior of synthetic hydroxyapatite (HA), particularly for Bone Tissue Engineering applications. The effect of simultaneous substitution of different levels of carbonate (CO3) and silicon (Si) ions in the HA lattice was investigated. Furthermore, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on multi-substituted HA (SiCHA) to determine if biomimetic chemical compositions were osteoconductive. Of the four different compositions investigates, SiCHA-1 (0.58 wt % Si) and SiCHA-2 (0.45 wt % Si) showed missing bands for CO3and Si using FTIR analysis, indicating competition for occupation of the phosphate site in the HA lattice; 500°C was considered the most favorable calcination temperature as: (i) the powders produced possessed a similar amount of CO3(2-8 wt %) and Si (<1.0 wt %) as present in native bone; and (ii) there was a minimal loss of CO3and Si from the HA structure to the surroundings during calcination. Higher Si content in SiCHA-1 led to lower cell viability and at most hindered proliferation, but no toxicity effect occurred. While, lower Si content in SiCHA-2 showed the highest ALP/DNA ratio after 21 days culture with hMSCs, indicating that the powder may stimulate osteogenic behavior to a greater extent than other powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1775-1785, 2017.
    Matched MeSH terms: Powders
  17. Pang YL, Abdullah AZ
    Ultrason Sonochem, 2012 May;19(3):642-51.
    PMID: 22000097 DOI: 10.1016/j.ultsonch.2011.09.007
    Sonocatalytic degradation of various organic dyes (Congo Red, Reactive Blue 4, Methyl Orange, Rhodamine B and Methylene Blue) catalyzed by powder and nanotubes TiO(2) was studied. Both catalysts were characterized using transmission electron microscope (TEM), surface analyzer, Raman spectroscope and thermal gravimetric analyzer (TGA). Sonocatalytic activity of powder and nanotubes TiO(2) was elucidated based on the degradation of various organic dyes. The former catalyst was favorable for treatment of anionic dyes, while the latter was more beneficial for cationic dyes. Sonocatalytic activity of TiO(2) nanotubes could be up to four times as compared to TiO(2) powder under an ultrasonic power of 100 W and a frequency of 42 kHz. This was associated with the higher surface area and the electrostatic attraction between dye molecules and TiO(2) nanotubes. Fourier transform-infrared spectrometer (FT-IR) was used to identify changes that occurred on the functional group in Rhodamine B molecules and TiO(2) nanotubes after the reaction. Sonocatalytic degradation of Rhodamine B by TiO(2) nanotubes apparently followed the Langmuir-Hinshelwood adsorption kinetic model with surface reaction rate of 1.75 mg/L min. TiO(2) nanotubes were proven for their high potential to be applied in sonocatalytic degradation of organic dyes.
    Matched MeSH terms: Powders
  18. Abdullah AZ, Ling PY
    J Hazard Mater, 2010 Jan 15;173(1-3):159-67.
    PMID: 19740600 DOI: 10.1016/j.jhazmat.2009.08.060
    The ambient sonocatalytic degradation of congo red, methyl orange, and methylene blue by titanium dioxide (TiO(2)) catalyst at initial concentrations between 10 and 50mg/L, catalyst loadings between 1.0 and 3.0mg/L and hydrogen peroxide (H(2)O(2)) concentrations up to 600 mg/L is reported. A 20 kHz ultrasonic processor at 50 W was used to accelerate the reaction. The catalysts were exposed to heat treatments between 400 and 1000 degrees C for up to 4h to induce phase change. Sonocatalysts with small amount of rutile phase showed better sonocatalytic activity but excessive rutile phase should be avoided. TiO(2) heated to 800 degrees C for 2h showed the highest sonocatalytic activity and the degradation of dyes was influenced by their chemical structures, chemical phases and characteristics of the catalysts. Congo red exhibited the highest degradation rate, attributed to multiple labile azo bonds to cause highest reactivity with the free radicals generated. An initial concentration of 10mg/L, 1.5 g/L of catalyst loading and 450 ppm of H(2)O(2) gave the best congo red removal efficiency of above 80% in 180 min. Rate coefficients for the sonocatalytic process was successfully established and the reused catalyst showed an activity drop by merely 10%.
    Matched MeSH terms: Powders
  19. Wan Ngah WS, Hanafiah MA
    J Environ Sci (China), 2008;20(10):1168-76.
    PMID: 19143339
    The efficiency of sodium hydroxide treated rubber (Hevea brasiliensis) leaves powder (NHBL) for removing copper ions from aqueous solutions has been investigated. The effects of physicochemical parameters on biosorption capacities such as stirring speed, pH, biosorbent dose, initial concentrations of copper, and ionic strength were studied. The biosorption capacities of NHBL increased with increase in pH, stirring speed and copper concentration but decreased with increase in biosorbent dose and ionic strength. The isotherm study indicated that NHBL fitted well with Langmuir model compared to Freundlich and Dubinin-Radushkevich models. The maximum biosorption capacity determined from Langmuir isotherm was 14.97 mg/g at 27 degrees C. The kinetic study revealed that pseudosecond order model fitted well the kinetic data, while Boyd kinetic model indicated that film diffusion was the main rate determining step in biosorption process. Based on surface area analysis, NHBL has low surface area and categorized as macroporous. Fourier transform infrared (FT-IR) analyses revealed that hydroxyl, carboxyl, and amino are the main functional groups involved in the binding of copper ions. Complexation was one of the main mechanisms for the removal of copper ions as indicated by FT-IR spectra. Ion exchange was another possible mechanism since the ratio of adsorbed cations (Cu2+ and H+) to the released cations (Na+, Ca2+, and Mg2+) from NHBL was almost unity. Copper ions bound on NHBL were able to be desorbed at > 99% using 0.05 mol/L HCl, 0.01 mol/L HNO3, and 0.01 mol/L EDTA solutions.
    Matched MeSH terms: Powders
  20. Robert SD, Ismail AA, Rosli WI
    Eur J Nutr, 2016 Oct;55(7):2275-80.
    PMID: 26358163 DOI: 10.1007/s00394-015-1037-4
    PURPOSE: This study aimed to determine whether fenugreek seed powder could reduce the glycemic response and glycemic index (GI) when added to buns and flatbreads.

    METHODS: In a randomised, controlled crossover trial, ten healthy human subjects (five men, five women) were given 50 g glucose (reference food, twice); buns (0 and 10 % fenugreek seed powder); and flatbreads (0 and 10 % fenugreek seed powder) on six different occasions. Finger prick capillary blood samples were collected at 0, 15, 30, 45, 60, 90 and 120 min after the start of the meal. The palatability of the test meals was scored using Likert scales.

    RESULTS: The incremental areas under the glucose curve value of buns and flatbreads with 10 % fenugreek (138 ± 17 mmol × min/L; 121 ± 16 mmol × min/L) were significantly lower than those of 0 % fenugreek bun and flatbreads (227 ± 15 mmol × min/L; 174 ± 14 mmol × min/L, P = <0.01). Adding 10 % fenugreek seed powder reduced the GI of buns from 82 ± 5 to 51 ± 7 (P 

    Matched MeSH terms: Powders
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links