Hyperglycaemia initiates endothelial dysfunction causing diabetic macro- and micro-vasculopathy, the main causes of morbidity and mortality in diabetes mellitus. The vasculopathy exhibits gender peculiarities. We therefore explored gender differences in comparing the effects of hyperglycaemia (50 mM) per se with its hyperosmolar (50 mM) effects on vascular tissue responses to insulin. Endothelium-intact or denuded thoracic aortic rings from age-matched male and female Sprague-Dawley rats were incubated for 10 min or 6 h (acute versus chronic exposure) in normal, hyperglycaemic or hyperosmolar Krebs solution. Relaxant responses to insulin (6.9x10(-7)-6.9x10(-5) M) of the phenylephrine-contracted tissues were recorded. Endothelium denudation in both genders inhibited relaxation to insulin in all conditions, more significantly in female than in male tissues, suggesting the female response to insulin is more endothelium-dependent than the male. Acutely and chronically exposed normoglycemic endothelium-intact or -denuded tissues responded similarly to insulin. Chronic hyperglycemic or hyperosmolar exposure did not alter the endothelium-denuded tissue responses to insulin, whereas the responses of the endothelium-intact male and female hyperosmolar, and male hyperglycemic tissues were enhanced. The results show that insulin exerts an endothelium-dependent and independent relaxation with the female tissue responses more endothelium-dependent than the male. The data also suggest that hyperosmolarity per se enhances aortic tissue relaxant responses to insulin whereas hyperglycemia per se inhibits the same and more so in female than male tissues. These effects are endothelium-dependent.
The fact whether Blastocystis hominis can invade has always been in question. Apart from a few sporadic studies such as that done on gnotobiotic guinea pigs which showed surface invasion and mucosal inflammation of the host's intestine caused by B. hominis infection, no real documentation of invasion has been proven. Studies have shown that hyaluronidase is secreted during the penetration into the host's skin and gut by nematode parasites. Hyaluronidase activity in protozoa namely Entamoeba histolytica has also been described previously. This study attempts to determine hyaluronidase in urine samples of B. hominis-infected rats. The presence of hyaluronidase in urine provides an indirect evidence of invasion by B. hominis into colonic epithelium causing the degradation of extracellular matrix proteins namely hyaluronic acid (HA). HA is depolymerized by hyaluronidase which may be used by organisms to invade one another. In this study, the levels of urinary hyaluronidase of Sprague-Dawley rats infected with B. hominis were monitored for 30 days. Hyaluronidase levels in the infected rats were significantly higher on days 28 and 30 compared to the day before inoculation (P < 0.01 and P < 0.05, respectively). During this stage, parasitic burden in infected stools was also at a high level. Proinflammatory cytokines, interleukin-6 and interleukin-8, were also significantly higher (P < 0.05) in the serum of infected rats. The study demonstrates that since no other pathogen was present and that amoeboid forms of the parasites have been shown to exist previously, the elevated levels of hyaluronidase in this preliminary finding suggests that the organism is capable of having invasion or penetration activity in the hosts' intestine.
Ficus deltoidea (Family Moraceae) leaves have been used traditionally by the Malays to treat ailments such as wounds, sores, and rheumatism. The aim of the present study was to determine the anti-inflammatory activity of the aqueous extract of F. deltoidea leaf (FDA) using acute and chronic inflammatory models. FDA, in the doses of 30, 100, and 300 mg/kg, was administered intraperitoneally in rats (n = 6) before the animals were subjected to the carrageenan-induced paw edema test, cotton pellet-induced granuloma test, and formalin test. The first two tests represent acute and chronic models of inflammation, respectively. The first and second phases of the formalin test represent neurogenic pain and inflammatory-mediated pain, respectively; thus, only the second phase was measured in the present study. Results showed that FDA exerted significant (p < .05) anti-inflammatory activity in all assays, with dose-response effects seen in the paw edema and formalin tests. In conclusion, the leaf of F. deltoidea possesses anti-inflammatory activity against acute and chronic inflammatory responses and against pain-associated inflammatory response. These findings justify the traditional uses of F. deltoidea leaves for treatment of inflammatory-mediated ailments.
Vitamin E is found to reverse the effects of nicotine on bone and this study aimed to determine its mechanism. Male Sprague Dawley rats were divided into four groups and treated for 3 months: Group 1 was the control group (RC). Groups 2 (N), 3 (N+TT) and 4 (N+ATF) received nicotine 7 mg/kg throughout the treatment period. In addition, groups 3 and 4 received tocotrienol 60 mg/kg and alpha-tocopherol 60 mg/kg respectively during months 2 and 3. Parameters measured were serum osteoprotegerin (OPG), serum receptor activator of nuclear factor kappa B ligand (RANKL), femoral and lumbar bone calcium content and body weight. Nicotine did not affect OPG or RANKL levels but reduced bone calcium content suggesting the calcium loss is not due to increase osteoclastogenesis. OPG was increased in N+ATF while RANKL was slightly increased in N+TT. Both vitamin E supplements restored bone calcium loss induced by nicotine. Nicotine impaired weight gain in all treatment groups starting week 4 however, N+TT group was comparable to RC from week 6 onwards. Bone protective effects of ATF, but not TT, may be partly due to inhibition of osteoclastogenesis.
Homogenous strain analysis (HSA) was developed to evaluate regional cardiac function using tagged cine magnetic resonance images of heart. Current cardiac applications of HSA are however limited in accurately detecting tag intersections within the myocardial wall, producing consistent triangulation of tag cells throughout the image series and achieving optimal spatial resolution due to the large size of the triangles. To address these issues, this article introduces a harmonic phase (HARP) interference method. In principle, as in the standard HARP analysis, the method uses harmonic phases associated with the two of the four fundamental peaks in the spectrum of a tagged image. However, the phase associated with each peak is wrapped when estimated digitally. This article shows that special combination of wrapped phases results in an image with unique intensity pattern that can be exploited to automatically detect tag intersections and to produce reliable triangulation with regularly organized partitioning of the mesh for HSA. In addition, the method offers new opportunities and freedom for evaluating myocardial function when the power and angle of the complex filtered spectra are mathematically modified prior to computing the phase. For example, the triangular elements can be shifted spatially by changing the angle and/or their sizes can be reduced by changing the power. Interference patterns obtained under a variety of power and angle conditions were presented and specific features observed in the results were explained. Together, the advanced processing capabilities increase the power of HSA by making the analysis less prone to errors from human interactions. It also allows strain measurements at higher spatial resolution and multi-scale, thereby improving the display methods for better interpretation of the analysis results.
Antifertility agents with safety and effectiveness in terms of minimum side effects have always been a subject of debate. Many studies have been conducted on plants to observe the antifertility effect, but majority of them were toxic. Pegaga or Centella asiatica L. is one of the popular herb traditionally consumed raw amongst people in Malaysia. The main objective of the present study was to investigate the effects of Centella asiatica L. extract on rat testis.
We investigated the effects of honey and its methanol and ethyl acetate extracts on inflammation in animal models. Rats' paws were induced with carrageenan in the non-immune inflammatory and nociceptive model, and lipopolysaccharide (LPS) in the immune inflammatory model. Honey and its extracts were able to inhibit edema and pain in inflammatory tissues as well as showing potent inhibitory activities against NO and PGE(2) in both models. The decrease in edema and pain correlates with the inhibition of NO and PGE(2). Phenolic compounds have been implicated in the inhibitory activities. Honey is potentially useful in the treatment of inflammatory conditions.
Piper betel (PB) possesses antimicrobial, antifungal, antioxidant and wound healing properties due to its powerful antioxidant effect. Diabetes mellitus (DM) is a metabolic disorder which is associated with complications like impaired wound healing, nephropathy and neuropathy. The main aim of the study was to study the wound healing properties of PB.
The role of renal sympathetic nerves in the pathogenesis of ischemic acute renal failure (ARF) and the immediate changes in the renal excretory functions following renal ischemia were investigated. Two groups of male Sprague Dawley (SD) rats were anesthetized (pentobarbitone sodium, 60 mg kg(-1) i.p.) and subjected to unilateral renal ischemia by clamping the left renal artery for 30 min followed by reperfusion. In group 1, the renal nerves were electrically stimulated and the responses in the renal blood flow (RBF) and renal vascular resistance (RVR) were recorded, while group 2 was used to study the early changes in the renal functions following renal ischemia. In post-ischemic animals, basal RBF and the renal vasoconstrictor reperfusion to renal nerve stimulation (RNS) were significantly lower (all p < 0.05 vs. control). Mean arterial pressure (MAP), basal RVR, urine flow rate (UFR), absolute and fractional excretions of sodium (U(Na)V and FE(Na)), and potassium (U(K)V and FE(K)) were higher in ARF rats (all p < 0.05 vs. control). Post-ischemic animals showed markedly lower glomerular filtration rate (GFR) (p < 0.05 vs. control). No appreciable differences were observed in urinary sodium to potassium ratio (U(Na)/U(K)) during the early reperfusion phase of renal ischemia (p > 0.05 vs. control). The data suggest an immediate involvement of renal sympathetic nerve action in the pathogenesis of ischemic ARF primarily through altered renal hemodynamics. Diuresis, natriuresis, and kaliuresis due to impaired renal tubular functions are typical responses to renal ischemia and of comparable magnitudes.
Leachate samples collected from the Ampar Tenang open dumping site at Dengkil, Malaysia, were analyzed for acute toxicity. Two in vivo toxicity tests, Acute Oral Toxicity (AOT) and Primary Skin Irritation (PSI), were performed using Sprague Dawley rats and New Zealand Albino rabbits, respectively. The leachate samples were also analyzed chemically for nitrate and phosphate, ammonia-nitrogen, Kjeldahl-nitrogen and Chemical Oxygen Demand (COD). Results from both the AOT and PSI tests showed that the leachate did not contribute to acute toxicity. The AOT test yielded a negative result: no effect was observed in at least half of the rat population. The PSI test on rabbits produced effects only at a leachate concentration of 100%. However, the skin irritation was minor, and the test returned a negative result. The four chemical tests showed high levels of nutrient pollution in the leachate. The nitrate and phosphate concentrations were 2.1 mg/L and 23.6 mg/L, respectively. Further, the ammonia-nitrogen concentration was 1,000 mg NH(3)-N/L the Kjeldahl-nitrogen level was 446 mg NH(3)-N/L, and the Chemical Oxygen Demand was 1,300 mg/L. The in vivo toxicity and chemical analyses showed that the leachate is polluted but not acutely toxic to organisms.
Aqueous extract of Ficus deltoidea var. agustifolia was examined for the subchronic toxicity effects in rats. Groups of 10 rats were given the extract daily by oral gavage for 90 days at 0 (control), 100 and 300mg/kg/body weight, respectively. Blood samples were collected upon sacrificed and analysed for haemogram and biochemistry. The results showed there were no significant changes of the blood parameters in all treated groups compared to the control.
AIM OF THE STUDY: Orthosiphon stamineus (Labiatae) is a traditional folk medicine widely used in Southeast Asia for the treatment of several kidney disorders, gout and as a diuretic. This study was conducted to examine the diuretic and hypouricemic effects of Orthosiphon stamineus leaf extracts.
MATERIALS AND METHODS: The diuretic effect of different methanol extracts was examined by treating different groups of Sprague-Dawley rats with single (2g/kg) oral doses of methanol and methanol:water (1:1) extracts. Hydrochlorothiazide (10mg/kg) was used as positive control in acute study. Methanol and methanol water (1:1) extracts at 0.5 g/kg were administered for a period of 7 consecutive days. Cumulative urine volume and electrolytes (Na+ and K+) concentrations at different time intervals were measured. On the other hand, hypouricemic activity of methanol:water extract (1:1) was experimented using different oral single doses (0.25, 0.5, 1 and 2g/kg). Allopurinol was used as positive control. Uric acid concentration in serum was analyzed by using RP-HPLC at 280 nm.
RESULTS: Sodium and potassium excretion increased significantly (p<0.05 and <0.01) in the first 8h of treatment with a single dose (2g/kg) of the extracts in a pattern comparable to that of the known diuretic hydrochlorothiazide. Meanwhile, repeated administration of 0.5 g/kg methanol:water (1:1) extract showed a significant increase in urine volume (from day 3 to day 7) (p<0.01) and electrolytes excretion (Na+ and K+) from day 2 to day 7 (p<0.05 and <0.01). On the other hand, 0.5, 1 and 2g/kg of methanol:water (1:1) extract and the standard allopurinol reduced the serum urate level in hyperuricemic rats at hour 6.
CONCLUSION: These results provided an evidence of the high tendency of methanol:water (1:1) extract of Orthosiphon stamineus towards diuretic and hypouricemic effects in rats.
Spinal cord, sciatic nerve, olfactory ensheathing cell and bone marrow derived mesenchymal stem cells were evaluated as an alternative source for tissue engineering of nerve conduit. All cell sources were cultured in alpha-MEM medium. Olfactory Ensheathing Cell (OEC) showed the best result with higher growth kinetic compared to the others. Spinal cord and sciatic nerve were positive for GFAP, OEC were positive for GFAP, S100b and anti-cytokeratin 18 but negative for anti-Human Fibroblast.
The mechanisms involving insulin and anti-hypertensive drugs regulation for in vivo cerebral glucose metabolism are not well-understood. This might be due to lack of direct means of measuring cerebral glucose. It is known that the continuous delivery of glucose to the brain is critical for its normal metabolic function. In this study, we report the effect of insulin and anti-hypertensive drugs on glucose level in the striatum of rats. The rats were divided into two groups, i.e. hyperglycemia (14.8+/-0.3mM plasma glucose) and diabetic (10.8+/-0.2mM plasma glucose). A custom-built glucose microsensor was implanted at coordinates A/P 1.0 from bregma, M/L +2.5 and D/V -5.0 (from dura) in the striatum. The amperometric response obtained at +0.23 V vs. Ag|AgCl corresponded to the glucose level in striatum. By varying the concentrations of protaminc zinc insulin infused into the rats, striatum glucose level was found to remain constant throughout, i.e. 9.8+/-0.1 and 4.7+/-0.1mM for hyperglycemic rats and for diabetic rats, respectively. However, infusion of valsartan and felodipine has lowered the striatum glucose level significantly. These findings agreed with the hypothesis that suggested striatum glucose uptake do not depend on insulin but is clearly dependant on anti-hypertensive drugs administration.
Khat (Catha edulis) is an evergreen tree/shrub that is thought to affect sexual motivation or libido. Its positive effect on sexual desire is more frequently observed in females than in males and occurs when khat is chewed. Thus, khat's effects on sexual behavior may depend on the release mode of its active constituent.
The present study was carried out to determine the antinociceptive, anti-inflammatory and antipyretic activities of the aqueous extract of Bauhinia purpurea leaves using animal models.
The effects of nicotine administration on bone-resorbing cytokines, cotinine, and bone histomorphometric parameters were studied in 21 Sprague-Dawley male rats. Rats aged 3 months and weighing 250-300 g were divided into three groups. Group 1 was the baseline control (BC), which was killed without treatment. The other two groups were the control group (C) and the nicotine-treated group (N). The N group was treated with nicotine 7 mg/kg body weight and the C group was treated with normal saline only. Treatment was given by intraperitoneal injection for 6 days/week for 4 months. The rats were injected intraperitoneally with calcein 20 mg/kg body weight at day 9 and day 2 before they were killed. ELISA test kits were used to measure the serum interleukin-1 (IL-1), interleukin-6 (IL-6), and cotinine (a metabolite of nicotine) levels at the beginning of the study and upon completion of the study. Histomorphometric analysis was done on the metaphyseal region of the trabecular bone of the left femur by using an image analyzer. Biochemical analysis revealed that nicotine treatment for 4 months significantly increased the serum IL-1, IL-6, and cotinine levels as compared to pretreatment levels. In addition, the serum cotinine level was significantly higher in the N group than in the C group after 4 months treatment. Histomorphometric analysis showed that nicotine significantly decreased the trabecular bone volume (BV/TV), trabecular thickness (Tb.Th), double-labeled surface (dLS/BS), mineralizing surface (MS/BS), mineral appositional rate (MAR), and bone formation rate (BFR/BS), while causing an increase in the single-labeled surface (sLS/BS), osteoclast surface (Oc.S/BS), and eroded surface (ES/BS) as compared to the BC and C groups. In conclusion, treatment with nicotine 7 mg/kg for 4 months was detrimental to bone by causing an increase in the bone resorbing cytokines and cotinine levels. Nicotine also exerted negative effects on the dynamic trabecular histomorphometric parameters.
A new implantable electrocatalytic glucose sensor for subcutaneous glucose monitoring has been fabricated by immobilizing glucose oxidase on a chemically modified carbon fiber. The sensor was inserted subcutaneously on a male spraguely rat without any incision after dipping the microsensor in the rat's serum for 3 days. The so called "stained" microsensor, operated in the amperometric mode with an applied potential of +0.23 V versus Ag|AgCl, was able to directly measure the glucose concentration upon infusion of glucose. The results obtained were encouraging, with the response time was less than 2s and the apparent Michaelis-Menten value at 5.1+/-0.5mM. The "stained" microsensor shows good stability and reproducibility with constant response spanned over 25 days. Most common interferences in glucose analysis were minimized by the outerlayer Nafion. Hematology examinations showed minimal material-tissue interaction. Use of such mechanical devices will allow a more refined understanding towards glucose control in diabetic patients as the implanted microsensor was not effected by biocompatibility failures.
Although microwave irradiation has been used in the histopathology laboratory for several years, there has been minimal published experimental data on its effects on the technical and staining quality of histological sections. Furthermore, it has not been clear whether the advantages gained in reduction of fixation and staining duration has been at the expense of increasing architectural distortion to the tissues. We report here our experience with computerised morphometric analysis to investigate glomerular artifacts caused by microwave-stimulated fixation of renal tissues. 39 rat and 33 human autopsy kidney samples were subjected to (1) fixation in neutral buffered formaldehyde (control), (2) microwave-stimulated fixation followed by neutral buffered formaldehyde, and (3) neutral buffered formaldehyde followed by microwave irradiation. In addition, the effect of post-fixation in 70% ethanol was also investigated. Microwave irradiation was delivered through a dedicated laboratory microwave oven at 80% power and at 55 degrees C for 3 minutes. The different fixation methods were compared with regards to shrinkage (distortion) to glomerular structures (glomeruli and Bowman's spaces) on H and E sections, as determined by morphometric image analysis using a temporary assembled-system consisting of a trinocular microscope, a digital video camera and personal computer. A FlashPoint VGA 3.3 film-grabber card was used to capture images for morphometric analysis by using a Scion Image program. Morphometric analysis of glomerular structures showed that microwaves caused more shrinkage to the area bounded by the Bowman's capsule than the glomerulus proper, but post-fixation with ethanol reduced this shrinkage. These findings have implications on the logistics of tissue preparation of renal biopsies in clinical practice.