A 26-year-old Indian lady was admitted for lower abdominal pain, diarrhoea, vomiting, fever and cough. The initial diagnosis was that of peritonitis secondary to ruptured or perforated viscus with lobar pneumonia. On laparotomy, she was found to have necrotizing or Kikuchi's lymphadenitis of the abdominal lymph nodes. The initial two antinuclear antibody (ANA) results came back negative. She was diagnosed to have systemic lupus erythematosus (SLE) when the third sample for ANA came back positive and the double-stranded DNA (dsDNA) antibody test was homogenously positive. This case illustrates a need to be aware that necrotizing lymphadenitis can precede the onset of systemic lupus erythematosus.
Mitochondria are eukaryotic cytoplasmic organelles responsible for oxidative phosphorylation. The C to A nucleotide transversion in the NADH dehydrogenase subunit 2 (MT-ND2) coding region of mitochondrial DNA has been reported to be associated with plasma lipid levels, adult onset diseases and longevity. We have examined the role of this polymorphism in relation to plasma lipid levels and age in a total of 713 healthy individuals belonging to 3 ethnic groups in Singapore. The frequency of the A allele was significantly higher (p < 0.05) among the Chinese (0.15) in comparison to the Malays (0.05) and Indians (0.02). No significant difference in the frequency of the allele was observed between healthy and coronary artery disease subjects, and between age-stratified subjects. We found that the polymorphism is significantly associated in an ethnic- and gender-specific manner with plasma apoB levels in the Chinese males (p < 0.05). This is the first epidemiological report of the mt5178 C > A polymorphism and its association with plasma lipid levels in Asian populations outside Japan.
Antimicrobial resistance of Shigella sonnei from Malaysia was determined and subtyping was carried by pulsed-field gel electrophoresis (PFGE) to assess the extent of genetic diversity of these strains.
Rainbow trout, Oncorhynchus mykiss, are intensively cultured globally. Understanding their requirement for long-chain polyunsaturated fatty acids (LC-PUFA) and the biochemistry of the enzymes and biosynthetic pathways required for fatty acid synthesis is important and highly relevant in current aquaculture. Most gnathostome vertebrates have two fatty acid desaturase (fads) genes with known functions in LC-PUFA biosynthesis and termed fads1 and fads2. However, teleost fish have exclusively fads2 genes. In rainbow trout, a fads2 cDNA had been previously cloned and found to encode an enzyme with Δ6 desaturase activity. In the present study, a second fads2 cDNA was cloned from the liver of rainbow trout and termed fads2b. The full-length mRNA contained 1578 nucleotides with an open reading frame of 1365 nucleotides that encoded a 454 amino acid protein with a predicted molecular weight of 52.48 kDa. The predicted Fads2b protein had the characteristic traits of the microsomal Fads family, including an N-terminal cytochrome b5 domain containing the heme-binding motif (HPPG), histidine boxes (HDXGH, HFQHH and QIEHH) and three transmembrane regions. The fads2b was expressed predominantly in the brain, liver, intestine and pyloric caeca. Expression of the fasd2b in yeast generated a protein that was found to specifically convert eicosatetraenoic acid (20:4n-3) to eicosapentaenoic acid (20:5n-3), and therefore functioned as a Δ5 desaturase. Therefore, rainbow trout have two fads2 genes that encode proteins with Δ5 and Δ6 desaturase activities, respectively, which enable this species to perform all the desaturation steps required for the biosynthesis of LC-PUFA from C18 precursors.
Boid inclusion body disease (BIBD) is a viral disease of boids caused by reptarenavirus. In this study, tissue from naturally infected boid snakes were homogenized and propagated in African Monkey kidney (Vero) and rat embryonic fibroblast (REF) cells. Virus replication was determined by the presence of cytopathic effect, while viral morphology was observed using transmission electron microscopy. Viral RNA was amplified using RT-PCR with primers specific for the L-segment of reptarenavirus; similarly, quantification of viral replication was done using qPCR at 24-144 h postinfection. Viral cytopathology was characterized by cell rounding and detachment in both Vero and REF cells. The viral morphology showed round-to-pleomorphic particles ranging from 105 to 150 nm which had sand-like granules. Sanger sequencing identified four closely associated reptarenavirus species from 15 (37.5 %) of the total samples tested, and these were named as follows: reptarenavirus UPM-MY 01, 02, 03, and 04. These isolates were phylogenetically closely related to the University Helsinki virus (UHV), Boa Arenavirus NL (ROUTV; BAV), and unidentified reptarenavirus L20 (URAV-L20). Comparison of deduced amino acid sequences further confirmed identities to L-protein of UHV, L-polymerase of BAV and RNA-dependent RNA polymerase of URAV-L20. Viral replication in Vero cells increased steadily from 24 to 72 h and peaked at 144 h. This is the first study in South East Asia to isolate and characterize reptarenavirus in boid snakes with BIBD.
Pathophysiological changes in diabetes like hyperglycemia, oxidative stress, insulin resistance and compensatory hyperinsulinemia predispose cells to malignant transformation and damage DNA repair mechanism. This study was designed to explore the potential synergistic toxic effects of anti-diabetic drug (Metformin), and an analgesic drug (Celecoxib) at cellular level. MTT assay run on Vero cell line revealed that the combinations of Metformin and Celecoxib augment the anti-proliferative effects, whereas Single cell gel electrophoresis spotlighted that Metformin produce non-significant DNA damage with the threshold concentration of 400μg/ml in peripheral blood mononuclear cells (lymphocytes and monocytes), while Celecoxib produced significant (P<0.05) DNA damage (class III comets) above the concentration of 75μg/ml, however the DNA damage or DNA tail protrusions by combinations of both drugs were less than what was observed with Celecoxib alone. Metformin or Celecoxib did not appear mutagenic against any mutant strains (TA 100 and TA 98) but their combination exhibited slight mutagenicity at much higher concentration. The results obtained at concentrations higher than the therapeutic level of drugs and reflect that Metformin in combination with Celecoxib synergistically inhibits the cell proliferation in a concentration dependent pattern. Since, this increase in cytotoxicity did not confer an increase in DNA damage; this combination could be adopted to inhibit the growth of malignant cell without producing any genotoxic or mutagenic effects at cellular level.
Ochroconis mirabilis, a recently introduced water-borne dematiaceous fungus, is occasionally isolated from human skin lesions and nails. We identified an isolate of O. mirabilis from a skin scraping with morphological and molecular studies. Its genome was then sequenced and analysed for genetic features related to classification and biological characteristics.
Matched MeSH terms: DNA Transposable Elements; DNA, Intergenic
There are few studies on rhinitis and sick building syndrome (SBS) among students in tropical countries. We studied associations between levels of five fungal DNA sequences, two mycotoxins (sterigmatocystin and verrucarol) and cat allergen (Fel d 1) levels in schools and rhinitis and other weekly SBS symptoms in the students. Fungal DNA was measured by quantitative PCR and cat allergen by ELISA. Pupils (N = 462) from eight randomly selected schools in Johor Bahru, Malaysia participated (96%). Dust samples were collected by cotton swabs and Petri dishes exposed for one week. None of the schools had a mechanical ventilation system, but all classrooms had openable windows that were kept open during lectures and indoor CO2 levels were low (mean 492 ppm; range 380-690 ppm). Weekly nasal symptoms (rhinitis) (18.8%), ocular (11.6%), throat (11.1%), dermal symptoms, headache (20.6%) and tiredness (22.1%) were common. Total fungal DNA in swab samples was associated with rhinitis (p = 0.02), ocular symptoms (p = 0.009) and tiredness (p = 0.001). There were positive associations between Aspergillus versicolor DNA in Petri dish samples, ocular symptoms (p = 0.02) and tiredness (p = 0.001). The level of the mycotoxin verrucarol (produced by Stachybotrys chartarum) in swab samples was positively associated with tiredness (p = 0.04). Streptomyces DNA in swab samples (p = 0.03) and Petri dish samples (p = 0.03) were negatively associated with tiredness. In conclusion, total fungal contamination, measured as total fungal DNA) in the classrooms, Aspergillus versicolor and verrucarol can be risk factors for rhinitis and SBS symptoms among students in the tropical country Malaysia.
Testosterone thiosemicarbazone, L and its nickel (II) complex 1 were synthesized and characterized by using FTIR, CHN, (1)H NMR, and X-ray crystallography. X-ray diffraction study confirmed the formation of L from condensation of testosterone and thiosemicarbazide. Mononuclear complex 1 is coordinated to two Schiff base ligands via two imine nitrogens and two tautomeric thiol sulfurs. The cytotoxicity of both compounds was investigated via MTT assay with cisplatin as positive reference standard. L is more potent towards androgen-dependent LNCaP (prostate) and HCT 116 (colon). On the other hand, complex 1, which is in a distorted square planar environment with L acting as a bidentate NS-donor ligand, is capable of inhibiting the growth of all the cancer cell lines tested, including PC-3 (prostate). It is noteworthy that both compounds are less toxic towards human colon cell CCD-18Co. The intrinsic DNA binding constant (Kb) of both compounds were evaluated via UV-Vis spectrophotometry. Both compounds showed Kb values which are comparable to the reported Kb value of typical classical intercalator such as ethidium bromide. The binding constant of the complex is almost double compared with ligand L. Both compounds were unable to inhibit the action topoisomerase I, which is the common target in cancer treatment (especially colon cancer). This suggest a topoisomerase I independent-cell death mechanism.
Matched MeSH terms: DNA; DNA Topoisomerases, Type I
Antibiotic resistance genes and antibiotics are frequently used to maintain plasmid vectors in bacterial hosts such as Escherichia coli. Due to the risk of spread of antibiotic resistance, the regulatory authorities discourage the use of antibiotic resistance genes/antibiotics for the maintenance of plasmid vectors in certain biotechnology applications. Overexpression of E. coli endogenous fabI gene and subsequent selection on Triclosan has been proposed as a practical alternative to traditional antibiotic selection systems. Unfortunately, overexpression of fabI cannot be used to select medium-copy number plasmids, typically used for the expression of heterologous proteins in E. coli. Here we report that Vibrio cholera FabV, a functional homologue of E. coli FabI, can be used as a suitable marker for the selection and maintenance of both high and medium-copy number plasmid vectors in E. coli.
The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatment. Here, we compared the prevalence of the CYP2D6*10, *4, and 14* alleles in an Iranian population of different ethnicities with those of other populations. Allele and genotype frequency distributions of CYP2D6*10 variants and predicted phenotypes including extensive metabolizers, intermediate metabolizers, and poor metabolizers were analysed in blood samples of 300 unrelated healthy individuals in an Iranian population using polymerase chain reaction (PCR)-restriction fragment length polymorphism, PCR-single-strand conformation polymorphism, and direct genomic DNA sequencing. The CYP2D6*4 (G1846A) and *14 (G1758A) allelic frequencies were not detected in different ethnicities, demonstrating the absence of a significant contribution of these alleles in Iranian populations. However, the T/T, C/T, and C/C genotype frequencies of the CYP2D6*10 allele were significantly different (P<0.01) in all Iranian ethnic groups. Additionally, the frequency of the homozygous T/T variant of the CYP2D6*10 allele was significantly high in the Lure (P<0.017) and low in the Kurd (P<0.002) ethnicities. The frequency of the T/T variant of the CYP2D6*10 allele in central Iran was the highest (P<0.001), while the south of Iran had the lowest frequency (P<0.001). The frequency of the C/T variant of the CYP2D6*10 allele was significantly a bit high (P<0.001) in females compare to males, while the frequencies of the T/T variant in females is similar to males, which are 24.4% and 24.3%, respectively. In contrast to absence of the CYP2D6*4 (G1846A) and *14 (G1758A) alleles in Iranian populations of different ethnicities, the prediction of the CYP2D6*10 allele is required in drug research and routine treatment, where the information would be helpful for clinicians to optimize therapy or identify persons at risk of adverse drug reactions before clinical trials. Approximately 39.3% of subjects (24.3% homozygous T/T CYP2D6*10 as poor metabolizers and 15% heterozygous C/T CYP2D6*10 as intermediate metabolizers) had this allele; therefore, the harmful effects of drugs are relatively common among Iranians.
The morphotaxonomy of Rhipicephalus microplus complex has been challenged in the last few years and prompted many biologists to adopt a DNA-based method for distinguishing the members of this group. In the present study, we used a mitochondrial DNA analysis to characterise the genetic assemblages, population structure and dispersal pattern of R. microplus from Southeast Asia, the region where the species originated.
Vibrio cholerae is a Gram-negative bacterium that causes cholera, a diarrheal disease. Cholera is widespread in poor, under-developed or disaster-hit countries that have poor water sanitation. Hence, a rapid detection method for V. cholerae in the field under these resource-limited settings is required. In this paper, we describe the development of an electrochemical genosensor assay using lyophilized gold nanoparticles/latex microsphere (AuNPs-PSA) reporter label. The reporter label mixture was prepared by lyophilization of AuNPs-PSA-avidin conjugate with different types of stabilizers. The best stabilizer was 5% sorbitol, which was able to preserve the dried conjugate for up to 30 days. Three methods of DNA hybridization were compared and the one-step sandwich hybridization method was chosen as it was fastest and highly specific. The performance of the assay using the lyophilized reagents was comparable to the wet form for detection of 1aM to 1fM of linear target DNA. The assay was highly specific for V. cholerae, with a detection limit of 1fM of PCR products. The ability of the sensor is to detect LAMP products as low as 50ngµl(-1). The novel lyophilized AuNPs-PSA-avidin reporter label with electrochemical genosensor detection could facilitate the rapid on-site detection of V. cholerae.
We report the first case of an immunocompromised adult patient presenting with cervicofacial lymphadenitis due to Mycobacterium haemophilum, confirmed using hsp65 gene sequencing and line-probe assays. In resource-limited settings, especially in developing countries, appropriate culture methods and rapid molecular diagnostic tools such as hsp65 gene sequencing for identification of this organism may not be readily available. This may cause M. haemophilum infections to go unrecognised or lead to delays in diagnosis. Lack of heightened awareness about the potential for this mycobacterial species to cause infections may also contribute to possible underestimation of M. haemophilum cases in the developing world.
Enterovirus 71 (EV71) is a major aetiological agent of hand, foot and mouth disease (HFMD). In recent years, several outbreaks in East Asia were associated with neurological complications and numerous deaths. An outbreak in Singapore in October 2000 afflicted thousands of children, resulting in four fatal cases from three of whom EV71 was isolated. The genomes of two representative EV71 strains isolated from a fatal case and a surviving patient were completely sequenced, and their nucleotide and amino acid sequences compared with known EV71 strains. The two outbreak strains were classified under genogroup B, together with those previously isolated in Singapore, Malaysia and Japan. Comparative sequence analysis of the two Singapore strains revealed 99% nucleotide similarity, while their deduced amino acid sequences were almost identical except for residue 1506 in the 3A non-structural region. Given that the outbreak involved closely related genetic variants of EV71, the broad spectrum of disease severity may be attributed to critical factors such as varying viral inoculation doses or differing host immune responses following infection, but is less likely to be due to the emergence of EV71 strains with heightened virulence.
The DNA of three biological variants, G1, Ic and G2, which originated from the same greenhouse isolate of rice tungro bacilliform virus (RTBV) at the International Rice Research Institute (IRRI), was cloned and sequenced. Comparison of the sequences revealed small differences in genome sizes. The variants were between 95 and 99% identical at the nucleotide and amino acid levels. Alignment of the three genome sequences with those of three published RTBV sequences (Phi-1, Phi-2 and Phi-3) revealed numerous nucleotide substitutions and some insertions and deletions. The published RTBV sequences originated from the same greenhouse isolate at IRRI 20, 11 and 9 years ago. All open reading frames (ORFs) and known functional domains were conserved across the six variants. The cysteine-rich region of ORF3 showed the greatest variation. When the six DNA sequences from IRRI were compared with that of an isolate from Malaysia (Serdang), similar changes were observed in the cysteine-rich region in addition to other nucleotide substitutions and deletions across the genome. The aligned nucleotide sequences of the IRRI variants and Serdang were used to analyse phylogenetic relationships by the bootstrapped parsimony, distance and maximum-likelihood methods. The isolates clustered in three groups: Serdang alone; Ic and G1; and Phi-1, Phi-2, Phi-3 and G2. The distribution of phylogenetically informative residues in the IRRI sequences shared with the Serdang sequence and the differing tree topologies for segments of the genome suggested that recombination, as well as substitutions and insertions or deletions, has played a role in the evolution of RTBV variants. The significance and implications of these evolutionary forces are discussed in comparison with badnaviruses and caulimoviruses.
Matched MeSH terms: DNA, Bacterial; Sequence Analysis, DNA
Phylogenetic analyses of the envelope (E) gene sequence of five recently isolated dengue virus type 4 (DENV-4) suggested the emergence of a distinct geographical and temporal DENV-4 subgenotype IIA in Malaysia. Four of the isolates had direct ancestral lineage with DENV-4 Indonesia 1973 and showed evidence of intra-serotypic recombination with the other recently isolated DENV-4, MY01-22713. The E gene of isolate MY01-22713 had strong evidence of an earlier recombination involving DENV-4 genotype II Indonesia 1976 and genotype I Malaysia 1969. These results suggest that intra-serotypic recombination amongst DENV-4 from independent ancestral lineages may have contributed to the emergence of DENV-4 subgenotype IIA in Malaysia.
Matched MeSH terms: DNA, Viral; Sequence Analysis, DNA
This study was conducted to determine the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in Malaysian hospitals. A total of 264 MRSA isolates from eight hospitals were subjected to typing by pulsed-field gel electrophoresis (PFGE) of SmaI restricted DNA. Antibiotic disk susceptibility testing was also carried out to determine their resistance patterns. Thirty-one PFGE pattern types were identified. Three major pattern types A, ZC and K were found with type A the predominant profile in c. 80% of strains and present in all hospitals. Unlike type A, other DNA pattern types were unique to the hospitals in which they were isolated. PFGE type A also consisted of strains that were multiply antibiotic resistant. The presence of a single predominant PFGE type in Malaysian hospitals is an important finding which suggests that inter-hospital spread of MRSA had occurred frequently and regularly.
In vitro generated cloned full length dengue 2 virus untranslated regions (UTRs) were used in RNA gel mobility shift assays to examine cellular factors binding to the virus genomes. Cellular factors in lysates of Vero (monkey) and C6/36 (mosquito) cells bound specifically and non-specifically to the dengue 2 virus 3' UTR. Non-specific interaction with the 5' UTR, resulting in formation of at least 4 band shift complexes was noted with lysate of the C6/36 cells only. Pre-treating the cell lysates with proteinase K affected binding of cellular factors to the dengue 2 virus UTRs, suggesting that the cellular factors were proteins. These findings suggest that cellular proteins could interact with specific sites on the dengue virus genomes.
Tropical iridovirus infection causes severe epizootic resulting in mass mortalities and large economic losses in freshwater ornamental fishes cultured in Southeast Asian countries, in wild fish seedlings captured in South China Sea, and in marine fishes farmed in Japan, Singapore, and Thailand. All of tropical iridovirus-infected fishes histopathologically showed the systemic formation of inclusion body-bearing cells and necrosis of virus-infected splenocytes and hematopoietic cells. We designed primer sets for the ATPase gene and the major capsid protein (MCP) gene and sequenced the PCR products derived from 5 iridovirus isolates from sea bass in South China Sea, red sea bream in Japan, brown-spotted grouper with a grouper sleepy disease in Thailand, dwarf gourami from Malaysia and African lampeye from Sumatra Island, Indonesia. The ATPase gene and the MCP gene of these 5 viral isolates were highly homologous (> 95.8%, > 94.9% identity, respectively) and the deduced amino acid sequences of the ATPase and the MCP were also highly identical (> 98.1%, > 97.2% identity, respectively). Based on the high homology, these 5 isolates of tropical iridovirus from various fishes in geographically different regions were determined to have a single origin and to be native to Southeast Asian regions. However, these sequences were far different from those of members of the genera Ranavirus, Lymphocystivirus and Iridovirus in the Family Iridoviridae. We propose a new genus "Tropivirus" for tropical iridovirus in the Family Iridoviridae.