Displaying publications 2321 - 2340 of 9219 in total

Abstract:
Sort:
  1. Nematbakhsh S, Pei Pei C, Selamat J, Nordin N, Idris LH, Abdull Razis AF
    Genes (Basel), 2021 03 13;12(3).
    PMID: 33805667 DOI: 10.3390/genes12030414
    In the poultry industry, excessive fat deposition is considered an undesirable factor, affecting feed efficiency, meat production cost, meat quality, and consumer's health. Efforts to reduce fat deposition in economically important animals, such as chicken, can be made through different strategies; including genetic selection, feeding strategies, housing, and environmental strategies, as well as hormone supplementation. Recent investigations at the molecular level have revealed the significant role of the transcriptional and post-transcriptional regulatory networks and their interaction on modulating fat metabolism in chickens. At the transcriptional level, different transcription factors are known to regulate the expression of lipogenic and adipogenic genes through various signaling pathways, affecting chicken fat metabolism. Alternatively, at the post-transcriptional level, the regulatory mechanism of microRNAs (miRNAs) on lipid metabolism and deposition has added a promising dimension to understand the structural and functional regulatory mechanism of lipid metabolism in chicken. Therefore, this review focuses on the progress made in unraveling the molecular function of genes, transcription factors, and more notably significant miRNAs responsible for regulating adipogenesis, lipogenesis, and fat deposition in chicken. Moreover, a better understanding of the molecular regulation of lipid metabolism will give researchers novel insights to use functional molecular markers, such as miRNAs, for selection against excessive fat deposition to improve chicken production efficiency and meat quality.
    Matched MeSH terms: Abdominal Fat/metabolism*; Lipid Metabolism/genetics*
  2. Martin TE, Ton R, Niklison A
    Ecol Lett, 2013 Jun;16(6):738-45.
    PMID: 23473270 DOI: 10.1111/ele.12103
    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.
    Matched MeSH terms: Embryo, Nonmammalian/metabolism; Oxygen/metabolism; Songbirds/metabolism*
  3. Khalatbari-Soltani S, Tabibi H
    Clin Exp Nephrol, 2015 Jun;19(3):331-5.
    PMID: 25446285 DOI: 10.1007/s10157-014-1061-3
    Inflammation is a common complication in hemodialysis (HD) patients with no valid treatment strategy. In addition, carnitine deficiency occurs frequently in HD patients because of intradialytic loss of carnitine, impaired de novo carnitine renal synthesis, and reduced dietary intake. It appears that carnitine deficiency is related to inflammation in HD patients. A few clinical trials have investigated the effect of L-carnitine supplement on inflammatory markers in HD patients. All studies in this field, except one, showed that L-carnitine could significantly reduce C-reactive protein and serum amyloid A, as two systemic inflammation markers, in HD patients. Therefore, considering high prevalence of inflammation and carnitine deficiency in HD patients, L-carnitine therapy is a reasonable approach for reducing systemic inflammation and its complications in these patients.
    Matched MeSH terms: Serum Amyloid A Protein/metabolism; C-Reactive Protein/metabolism; Carnitine/metabolism
  4. Tan NH, Ponnudurai G, Chung MC
    Toxicon, 1997 Jun;35(6):979-84.
    PMID: 9241791
    The proteolytic specificity of rhodostoxin, the major hemorrhagin from Calloselasma rhodostoma (Malayan pit viper) venom was investigated using oxidized B-chain of bovine insulin as substrate. Six peptide bonds were cleaved: Ser9-Hist10, His10-Leu11, Ala14-Leu15, Tyr16-Leu17, Gly20-Glu21 and Phe24-Phe25. Deglycosylated rhodostoxin, however, cleaved primarily at Arg22-Gly23.
    Matched MeSH terms: Crotalid Venoms/metabolism*; Glycoproteins/metabolism*; Metalloendopeptidases/metabolism*
  5. Lau YL, Shamilah H, Fong MY
    Trop Biomed, 2006 Dec;23(2):186-93.
    PMID: 17322821 MyJurnal
    A truncated form of surface antigen 2 (SAG2) of the protozoan parasite Toxoplasma gondii was cloned and expressed in the methylotrophic yeast Pichia pastoris. This recombinant antigen, designated as recSAG2-N, contained only the N-terminal half of the native SAG2. The recSAG2-N was secreted by the Pichia pastoris into the culture supernatant, and it was harvested by using the trichloroacetic acid precipitation method. Specificity of recSAG2-N was evaluated in western blot assays. Fifty human serum samples, including 32 from confirmed cases of toxoplasmosis, were tested. Results from the assays showed that recSAG2-N reacted with sera from the toxoplasmosis cases only. In vivo experiments showed that serum from mice which received recSAG2-N reacted with the native SAG2 of T. gondii.
    Matched MeSH terms: Antigens, Protozoan/metabolism*; Pichia/metabolism*; Protozoan Proteins/metabolism*
  6. Syafruddin SE, Mohtar MA, Wan Mohamad Nazarie WF, Low TY
    Biomolecules, 2020 09 28;10(10).
    PMID: 32998281 DOI: 10.3390/biom10101378
    The Krüppel-like factors (KLFs) family of proteins control several key biological processes that include proliferation, differentiation, metabolism, apoptosis and inflammation. Dysregulation of KLF functions have been shown to disrupt cellular homeostasis and contribute to disease development. KLF6 is a relevant example; a range of functional and expression assays suggested that the dysregulation of KLF6 contributes to the onset of cancer, inflammation-associated diseases as well as cardiovascular diseases. KLF6 expression is either suppressed or elevated depending on the disease, and this is largely due to alternative splicing events producing KLF6 isoforms with specialised functions. Hence, the aim of this review is to discuss the known aspects of KLF6 biology that covers the gene and protein architecture, gene regulation, post-translational modifications and functions of KLF6 in health and diseases. We put special emphasis on the equivocal roles of its full-length and spliced variants. We also deliberate on the therapeutic strategies of KLF6 and its associated signalling pathways. Finally, we provide compelling basic and clinical questions to enhance the knowledge and research on elucidating the roles of KLF6 in physiological and pathophysiological processes.
    Matched MeSH terms: Cardiovascular Diseases/metabolism; Neoplasms/metabolism; Protein Isoforms/metabolism
  7. Leong PP, Muhammad R, Ibrahim N, Cheong SK, Seow HF
    Med Oncol, 2011 Mar;28(1):51-6.
    PMID: 20069393 DOI: 10.1007/s12032-009-9414-6
    Breast cancer is the most common malignancy among females in Malaysia. Attempts have been made to investigate the association between breast cancer and human leukocyte antigen (HLA) types. However, data from those previous studies are highly variable. The aim of this study is to investigate the association between HLA-A types and clinicopathological factors in breast cancer. The frequencies of HLA-A type in 59 female patients with infiltrating ductal of the breast were determined by polymerase chain reaction method. HLA-A2/A30 and A2/A31 haplotype (5.1%; P = 0.045) as well as HLA-A30 (5.1%, P = 0.045) and A31 (6.8%; P = 0.020) allele were significant higher in the patients than controls (0%). HLA-A24 allele was negatively related to lymph node metastasis (r = -0.316; P = 0.021) whereas, A26 (r = -0.430; P = 0.001) and A36 (r = -0.430; P = 0.001) alleles were negatively correlated to distant metastasis in breast cancer. Negative correlations between HLA-A26/A36 (r = -0.430; P = 0.001), A2/A11 (r = -0.276; P = 0.044), A24/A34 (r = -0.430; P = 0.001) haplotypes and distant metastasis were identified. Interestingly, Her2 expression in breast carcinoma was negatively correlated to A11/24 haplotypes (r = -0.294; P = 0.034) but positively correlated to homozygous HLA-A24 (r = 0.396; P = 0.040). In conclusion, HLA-A2, -A30 and A31 were associated with breast cancer.
    Matched MeSH terms: Breast Neoplasms/metabolism*; HLA-A Antigens/metabolism*; Carcinoma, Ductal, Breast/metabolism*
  8. AlMatar M, Albarri O, Makky EA, Var I, Köksal F
    Curr Drug Targets, 2020;21(13):1326-1343.
    PMID: 32564749 DOI: 10.2174/1389450121666200621193018
    Iron, which is described as the most basic component found in nature, is hard to be assimilated by microorganisms. It has become increasingly complicated to obtain iron from nature as iron (II) in the presence of oxygen oxidized to press (III) oxide and hydroxide, becoming unsolvable at neutral pH. Microorganisms appeared to produce organic molecules known as siderophores in order to overcome this condition. Siderophore's essential function is to connect with iron (II) and make it dissolvable and enable cell absorption. These siderophores, apart from iron particles, have the ability to chelate various other metal particles that have collocated away to focus the use of siderophores on wound care items. There is a severe clash between the host and the bacterial pathogens during infection. By producing siderophores, small ferric iron-binding molecules, microorganisms obtain iron. In response, host immune cells produce lipocalin 2 to prevent bacterial reuptake of siderophores loaded with iron. Some bacteria are thought to produce lipocalin 2-resistant siderophores to counter this risk. The aim of this article is to discuss the recently described roles and applications of bacterial siderophore.
    Matched MeSH terms: Bacteria/metabolism*; Iron/metabolism; Lipocalin-2/metabolism
  9. Ting NC, Sherbina K, Khoo JS, Kamaruddin K, Chan PL, Chan KL, et al.
    Sci Rep, 2020 10 01;10(1):16296.
    PMID: 33004875 DOI: 10.1038/s41598-020-73170-5
    Evaluation of transcriptome data in combination with QTL information has been applied in many crops to study the expression of genes responsible for specific phenotypes. In oil palm, the mesocarp oil extracted from E. oleifera × E. guineensis interspecific hybrids is known to have lower palmitic acid (C16:0) content compared to pure African palms. The present study demonstrates the effectiveness of transcriptome data in revealing the expression profiles of genes in the fatty acid (FA) and triacylglycerol (TAG) biosynthesis processes in interspecific hybrids. The transcriptome assembly yielded 43,920 putative genes of which a large proportion were homologous to known genes in the public databases. Most of the genes encoding key enzymes involved in the FA and TAG synthesis pathways were identified. Of these, 27, including two candidate genes located within the QTL associated with C16:0 content, showed differential expression between developmental stages, populations and/or palms with contrasting C16:0 content. Further evaluation using quantitative real-time PCR revealed that differentially expressed patterns are generally consistent with those observed in the transcriptome data. Our results also suggest that different isoforms are likely to be responsible for some of the variation observed in FA composition of interspecific hybrids.
    Matched MeSH terms: Fatty Acids/metabolism*; Triglycerides/metabolism*; Arecaceae/metabolism
  10. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    J Biomed Mater Res A, 2017 02;105(2):398-407.
    PMID: 27684563 DOI: 10.1002/jbm.a.35919
    The osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. The study aimed to determine the physicochemical properties and biocompatibility of a newly formulated OPG-chitosan gel. The OPG-chitosan gel was formulated using human OPG protein and water-soluble chitosan. The physicochemical properties were determined using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Gel morphology was determined using scanning electron microscopy (SEM) and then it was subjected to a protein release assay and biodegradability test. An in vitro cytotoxicity test on normal human periodontal ligament (NHPL) fibroblasts and normal human (NH) osteoblasts was carried out using the AlamarBlue assay. In vivo evaluation in a rabbit model involved creating critical-sized defects in calvarial bone, filling with the OPG-chitosan gel and sacrificing at 12 weeks. In vitro results demonstrated that the 25 kDa OPG-chitosan gel had the highest rate of protein release and achieved 90% degradation in 28 days. At 12 weeks, the defects filled with 25 kDa OPG-chitosan gel showed significant (p 
    Matched MeSH terms: Fibroblasts/metabolism; Osteoblasts/metabolism*; Periodontal Ligament/metabolism
  11. Zakaria R, Wan Yaacob WM, Othman Z, Long I, Ahmad AH, Al-Rahbi B
    Physiol Res, 2017 09 22;66(4):553-565.
    PMID: 28406691
    Alzheimer's disease (AD) is a primary cause of dementia in the middle-aged and elderly worldwide. Animal models for AD are widely used to study the disease mechanisms as well as to test potential therapeutic agents for disease modification. Among the non-genetically manipulated neuroinflammation models for AD, lipopolysaccharide (LPS)-induced animal model is commonly used. This review paper aims to discuss the possible factors that influence rats' response following LPS injection. Factors such as dose of LPS, route of administration, nature and duration of exposure as well as age and gender of animal used should be taken into account when designing a study using LPS-induced memory impairment as model for AD.
    Matched MeSH terms: Alzheimer Disease/metabolism*; Memory Disorders/metabolism*; Inflammation Mediators/metabolism
  12. Idris NSU, Low KH, Koki IB, Kamaruddin AF, Md Salleh K, Zain SM
    Environ Monit Assess, 2017 May;189(5):220.
    PMID: 28425070 DOI: 10.1007/s10661-017-5939-x
    The spatial distributions of Na, Mg, K, Ca, Cr, Fe, Ni, Cu, Zn, As, Se and Pb in Hemibagrus sp. from Selangor River and a reference site were determined with inductively coupled plasma-mass spectrometer, in comparison to the levels in their surrounding water body and sediments. The results demonstrated significant differences in elemental accumulation pattern in different fish tissues originated from both sites. The variations observed were mainly subjected to their metabolic activities, and also the influence of the surrounding medium. In general, the liver tends to accumulate higher concentration of metals followed by the gills, and muscle tissues. The data also indicate associations between the concentrations of metal contaminants measured in the fish and the levels observed at the sites. The concentrations of hazardous metals As, Se and Pb in all the studied tissues reflect the influence of anthropogenic inputs. This suggests the potential utility of widely available Hemibagrus sp. as a valuable bioindicator of metal pollution in environmental monitoring and assessment.
    Matched MeSH terms: Catfishes/metabolism*; Gills/metabolism; Muscles/metabolism
  13. Yavari S, Malakahmad A, Sapari NB, Yavari S
    Water Sci Technol, 2017 Apr;75(7-8):1684-1692.
    PMID: 28402310 DOI: 10.2166/wst.2017.043
    Phytoremediation is an environmentally friendly and sustainable alternative for treatment of nitrogen-enriched wastewaters. In this study, Ta-khian (Hopea odorata) and Lagos mahogany (Khaya ivorensis), two tropical timber plants, were investigated for their performances in treatment of urea manufacturing factory effluent with high nitrogen (N) content. Plant seedlings received four concentrations of N (190, 240, 290 and 340 mg/L N) in laboratory-scale constructed wetlands every 4 days for a duration of 8 weeks. The solution volumes supplied to each container, amount of N recovered by plants and plant growth characteristics were measured throughout the experiment. Results showed that Ta-khian plants were highly effective at reducing N concentration and volume of water. A maximum of 63.05% N recovery was obtained by Ta-khian plants grown in 290 mg/L N, which was assimilated in the chlorophyll molecule structure and shoot biomass. Significant positive correlations have been shown between N recovery percentages and plant growth parameters. Ta-Khian plants can be applied as suitable phytoremediators for mitigating N pollution in water sources.
    Matched MeSH terms: Nitrogen/metabolism; Meliaceae/metabolism*; Dipterocarpaceae/metabolism*
  14. Chen YM, Chen LH, Li MP, Li HF, Higuchi A, Kumar SS, et al.
    Sci Rep, 2017 03 23;7:45146.
    PMID: 28332572 DOI: 10.1038/srep45146
    Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.
    Matched MeSH terms: Oligopeptides/metabolism*; Pluripotent Stem Cells/metabolism*; Embryonic Stem Cells/metabolism
  15. Siddiqui NA, Billa N, Roberts CJ
    J Biomater Sci Polym Ed, 2017 Jun;28(8):781-793.
    PMID: 28278045 DOI: 10.1080/09205063.2017.1301774
    The principal challenge for the use of boronic acids (BA) as glucose sensors is their lack of specificity for glucose. We examined the selectivity of and insulin release from two boronic acids- (2-formyl-3-thienylboronic acid (FTBA) and 4-formylphenylboronic acid (FPBA)) conjugated chitosan scaffolds to glucose and fructose. Adsorption of glucose to BA: chitosan conjugates was dose-dependent up to 1:1 at 35 and 42% for FPBA and FTBA respectively but the FTBA conjugates adsorbed more glucose and fructose at respective FPBA ratios. The affinity of both BA conjugates to glucose decreased with increase in BA ratio. On the other hand, the affinity of both BA conjugates for fructose decreased from ratio 1:1 to 2:1 then rose again at 3:1. Insulin release from FPBA nanoparticles (FPBAINP) and FTBA nanoparticles (FTBAINP) were both concentration-dependent within glyceamically relevant values (1-3 mg/ml glucose and 0.002 mg/ml fructose). Furthermore, the total amounts of insulin released from FPBAINP in both the media were higher than from FTBAINP. Both FPBAINP and FTBAINP have the potential for development as a glucose-selective insulin delivery system in physiological settings.
    Matched MeSH terms: Drug Carriers/metabolism*; Fructose/metabolism; Glucose/metabolism*
  16. Kabir MZ, Tee WV, Mohamad SB, Alias Z, Tayyab S
    Spectrochim Acta A Mol Biomol Spectrosc, 2017 Jun 15;181:254-263.
    PMID: 28376387 DOI: 10.1016/j.saa.2017.03.059
    Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04×104M-1), obtained at 298K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.
    Matched MeSH terms: Antineoplastic Agents/metabolism*; Indoles/metabolism*; Pyrroles/metabolism*
  17. Paravamsivam P, Heng CK, Malek SN, Sabaratnam V, M RR, Kuppusamy UR
    Int J Med Mushrooms, 2016;18(9):821-831.
    PMID: 27910773
    The edible mushroom Pleurotus giganteus was tested for its effect on adipocyte differentiation and glucose uptake activity in 3T3-L1 cells. The basidiocarps of P. giganteus were soaked in methanol to obtain a crude methanol extract and then fractionated to obtain an ethyl acetate extract. In this study, cell proliferation was measured using an MTT assay, lipid accumulation using an Oil Red O assay, and glucose uptake using a fluorescence glucose uptake assay. Gene expression was measured via real-time polymerase chain reaction analysis with TaqMan primer. Ethyl acetate extract significantly enhanced adipogenic differentiation and glucose uptake in 3T3-L1 adipocytes via the expression of sterol regulatory element-binding protein, peroxisome proliferator-activated receptor γ, and phos-phatidylinositol 3-kinase/Akt. Glucose uptake was facilitated by the highly expressed glucose transporters Glut1 and Glut4. Taken together, these results suggest that P. giganteus ethyl acetate extract has an insulin-sensitizing effect on adipocytes and has potential as an adjuvant for the management of type 2 diabetes.
    Matched MeSH terms: Glucose/metabolism*; PPAR gamma/metabolism*; Glucose Transport Proteins, Facilitative/metabolism*
  18. Perumal R, Bhattathiry EP
    Med J Malaya, 1970 Mar;24(3):208-11.
    PMID: 4246803
    Matched MeSH terms: Acetates/metabolism*; Brain/metabolism; Glucose/metabolism*
  19. Mohammad Iqbal, Hartomo Soewardi, Azmi Hassan, Che Hassan Che Haron
    MyJurnal
    This paper presents the use of factorial experiments and response surface methodology to determine the best workstation design configuration of an existing electronic industry. The aim is to find the value of physical dimensions that gives the best performance for the workstation. Four performance measures are selected; the cycle time, the metabolic energy expenditure, worker’s posture during the task and lifting limitations. The methodology used in this study consists of two parts. The first part is based on factorial experiments and handles discrete search over combinations of factor-levels for improving the initial solution. In the second part, the solution that was obtained earlier is further refined by changing the continuous factors by using response surface methodology. The result of this optimization study shows that the optimum value of physical dimensions gives a significant improvement for the performance measures of the workstation.
    Matched MeSH terms: Energy Metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links