Displaying publications 221 - 240 of 283 in total

Abstract:
Sort:
  1. Shariffah-Muzaimah SA, Idris AS, Madihah AZ, Dzolkhifli O, Kamaruzzaman S, Maizatul-Suriza M
    World J Microbiol Biotechnol, 2017 Dec 18;34(1):15.
    PMID: 29256103 DOI: 10.1007/s11274-017-2396-1
    Ganoderma boninense, the main causal agent of oil palm (Elaeis guineensis) basal stem rot (BSR), severely reduces oil palm yields around the world. To reduce reliance on fungicide applications to control BSR, we are investigating the efficacy of alternative control methods, such as the application of biological control agents. In this study, we used four Streptomyces-like actinomycetes (isolates AGA43, AGA48, AGA347 and AGA506) that had been isolated from the oil palm rhizosphere and screened for antagonism towards G. boninense in a previous study. The aim of this study was to characterize these four isolates and then to assess their ability to suppress BSR in oil palm seedlings when applied individually to the soil in a vermiculite powder formulation. Analysis of partial 16S rRNA gene sequences (512 bp) revealed that the isolates exhibited a very high level of sequence similarity (> 98%) with GenBank reference sequences. Isolates AGA347 and AGA506 showed 99% similarity with Streptomyces hygroscopicus subsp. hygroscopicus and Streptomyces ahygroscopicus, respectively. Isolates AGA43 and AGA48 also belonged to the Streptomyces genus. The most effective formulation, AGA347, reduced BSR in seedlings by 73.1%. Formulations using the known antifungal producer Streptomyces noursei, AGA043, AGA048 or AGA506 reduced BSR by 47.4, 30.1, 54.8 and 44.1%, respectively. This glasshouse trial indicates that these Streptomyces spp. show promise as potential biological control agents against Ganoderma in oil palm. Further investigations are needed to determine the mechanism of antagonism and to increase the shelf life of Streptomyces formulations.
    Matched MeSH terms: Plant Roots/microbiology
  2. Wernsdorfer WH, Ismail S, Chan KL, Congpuong K, Wernsdorfer G
    Wien Klin Wochenschr, 2009 Oct;121 Suppl 3:23-6.
    PMID: 19915812 DOI: 10.1007/s00508-009-1230-7
    The habitats of Eurycoma longifolia Jack, a slender tree, are jungles in Malaysia and Indonesia. It belongs to the family Simaroubaceae and is a source of quassinoids with anabolic, antimalarial and cytostatic activity. In this study, conducted during 2008 in Mae Sot, Thailand, a standardized extract of E. longifolia containing three major quassinoids, eurycomanone (1), 13,21-dihydroeurycomanone (2) and 13alpha(21)-epoxyeurycomanone (3) was evaluated for antiplasmodial activity against Plasmodium falciparum and its activity has been compared with that of artemisinin, using 38 fresh parasite isolates and assessment of inhibition of schizont maturation. The IC(50), IC(90) and IC(99) values for artemisinin were 4.30, 45.48 and 310.97 microg/l, and those for the root extract from E. longifolia 14.72, 139.65 and 874.15 microg/l respectively. The GMCOC for artemisinin was 337.81 mug/l, and for the plant extract it was 807.41 microg/l. The log-concentration probit regressions were parallel. The inhibitory activity of the E. longifolia extract was higher than that expected from the three quassinoids isolated from the plant, suggesting synergism between the quassinoids or the presence of other unidentified compounds.
    Matched MeSH terms: Plant Roots/chemistry*
  3. Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP
    PMID: 25652309 DOI: 10.1186/s12906-015-0528-4
    BACKGROUND: The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved.

    METHODS: In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites.

    RESULTS: The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid.

    CONCLUSION: This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.

    Matched MeSH terms: Plant Roots/chemistry
  4. Ong CE, Ahmad R, Goh YK, Azizan KA, Baharum SN, Goh KJ
    PLoS One, 2021;16(12):e0262029.
    PMID: 34972183 DOI: 10.1371/journal.pone.0262029
    Various phenolic compounds have been screened against Ganoderma boninense, the fungal pathogen causing basal stem rot in oil palms. In this study, we focused on the effects of salicylic acid (SA) on the growth of three G. boninense isolates with different levels of aggressiveness. In addition, study on untargeted metabolite profiling was conducted to investigate the metabolomic responses of G. boninense towards salicylic acid. The inhibitory effects of salicylic acid were both concentration- (P < 0.001) and isolate-dependent (P < 0.001). Also, growth-promoting effect was observed in one of the isolates at low concentrations of salicylic acid where it could have been utilized by G. boninense as a source of carbon and energy. Besides, adaptation towards salicylic acid treatment was evident in this study for all isolates, particularly at high concentrations. In other words, inhibitory effect of salicylic acid treatment on the fungal growth declined over time. In terms of metabolomics response to salicylic acid treatment, G. boninense produced several metabolites such as coumarin and azatyrosine, which suggests that salicylic acid modulates the developmental switch in G. boninense towards the defense mode for its survival. Furthermore, the liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis showed that the growth of G. boninense on potato dextrose agar involved at least four metabolic pathways: amino acid metabolism, lipid pathway, tryptophan pathway and phenylalanine pathway. Overall, there were 17 metabolites that contributed to treatment separation, each with P<0.005. The release of several antimicrobial metabolites such as eudistomin I may enhance G. boninense's competitiveness against other microorganisms during colonisation. Our findings demonstrated the metabolic versatility of G. boninense towards changes in carbon sources and stress factors. G. boninense was shown to be capable of responding to salicylic acid treatment by switching its developmental stage.
    Matched MeSH terms: Plant Roots/metabolism
  5. Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH
    PLoS One, 2016;11(3):e0152478.
    PMID: 27011317 DOI: 10.1371/journal.pone.0152478
    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1) and 25.5% (304 mg N2 fixed plant-1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with PGPR, namely, B. pumilus S1r1, K. pneumoniae Fr1, B. subtilis UPMB10 and Acinetobacter sp. S3r2 at D65 harvest. This study provides evidence that PGPR inoculation, namely, B. pumilus S1r1 can biologically fix atmospheric N2 and provide an alternative technique, besides plant breeding, to delay N remobilisation in maize plant for higher ear yield (up to 30.9%) with reduced fertiliser-N input.
    Matched MeSH terms: Plant Roots/microbiology
  6. Ling AP, Tan KP, Hussein S
    J Zhejiang Univ Sci B, 2013 Jul;14(7):621-31.
    PMID: 23825148 DOI: 10.1631/jzus.B1200135
    OBJECTIVE: Labisia pumila var. alata, commonly known as 'Kacip Fatimah' or 'Selusuh Fatimah' in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila.

    METHODS: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L.

    RESULTS: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34 ± 19.55)% and (70.40 ± 14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00 ± 7.07)% and (77.78 ± 16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5 ± 5.0) and (30.0 ± 8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00 ± 0.00)%) that was obtained in 1 mg/L zeatin after (11.0 ± 2.8) d of culture.

    CONCLUSIONS: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs.

    Matched MeSH terms: Plant Roots/drug effects
  7. Kwan YM, Meon S, Ho CL, Wong MY
    J Plant Physiol, 2015 Feb 01;174:131-6.
    PMID: 25462975 DOI: 10.1016/j.jplph.2014.10.003
    Nitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family. The gene expression of EgNOA1 and NO production in oil palm root tissues treated with Ganoderma boninense, the causal agent of basal stem rot (BSR) disease were profiled to investigate the involvement of EgNOA1 during fungal infection and association with NO biosynthesis. Real-time PCR (qPCR) analysis revealed that the transcript abundance of EgNOA1 in root tissues was increased by G. boninense treatment. NO burst in Ganoderma-treated root tissue was detected using Griess reagent, in advance of the up-regulation of the EgNOA1 transcript. This indicates that NO production was independent of EgNOA1. However, the induced expression of EgNOA1 in Ganoderma-treated root tissues implies that it might be involved in plant defense responses against pathogen infection.
    Matched MeSH terms: Plant Roots/genetics
  8. Kamaladini H, Nor Akmar Abdullah S, Aziz MA, Ismail IB, Haddadi F
    J Plant Physiol, 2013 Feb 15;170(3):346-54.
    PMID: 23290536 DOI: 10.1016/j.jplph.2012.10.017
    Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T(0)). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T(1)) produced the highest GUS activity when treated with 150 μM Cu(2+) compared to the control (without Cu(2+)). However, Zn(2+) and Fe(2+) treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T(1) seedlings of tomato when subjected to Cu(2+) ions.
    Matched MeSH terms: Plant Roots/enzymology
  9. Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL
    J Plant Physiol, 2012 Oct 15;169(15):1565-70.
    PMID: 22854183 DOI: 10.1016/j.jplph.2012.07.006
    Glucanases are enzymes that hydrolyze a variety β-d-glucosidic linkages. Plant β-1,3-glucanases are able to degrade fungal cell walls; and promote the release of cell-wall derived fungal elicitors. In this study, three full-length cDNA sequences encoding oil palm (Elaeis guineensis) glucanases were analyzed. Sequence analyses of the cDNA sequences suggested that EgGlc1-1 is a putative β-d-glucan exohydolase belonging to glycosyl hydrolase (GH) family 3 while EgGlc5-1 and EgGlc5-2 are putative glucan endo-1,3-β-glucosidases belonging to GH family 17. The transcript abundance of these genes in the roots and leaves of oil palm seedlings treated with Ganoderma boninense and Trichoderma harzianum was profiled to investigate the involvement of these glucanases in oil palm during fungal infection. The gene expression of EgGlc1-1 in the root of oil palm seedlings was increased by T. harzianum but suppressed by G. boninense; while the gene expression of both EgGlc5-1 and EgGlc5-2 in the roots of oil palm seedlings was suppressed by G. boninense or/and T. harzianum.
    Matched MeSH terms: Plant Roots/genetics
  10. Al-Zubairi AS, Abdul AB, Syam MM
    Toxicol In Vitro, 2010 Apr;24(3):707-12.
    PMID: 20123012 DOI: 10.1016/j.tiv.2010.01.011
    The chromosomal aberrations (CA) assay and micronucleus (MN) test were employed to investigate the effect in vitro of zerumbone (ZER) on human chromosomes. ZER is a sesquiterpene compound isolated from the rhizomes of wild ginger, Zingiber zerumbet Smith. The rhizomes of the plant are employed as a traditional medicine for some ailments and as condiments. ZER has been shown to have anti-cancer and apoptosis-inducing properties against various human tumour cells. It has also been shown to be active in vivo against a number of induced malignancies. Studies on ZER genotoxicity in cultured human peripheral blood lymphocytes (PBL) have not been reported so far. Therefore, the present study was undertaken to investigate the ability of ZER to induce chromosomal aberrations and micronuclei formation in human lymphocytes in vitro. Human blood samples were obtained from four healthy, non-smoking males aged 25-35years. Cultures were exposed to the drug for 48h at four final concentrations: 10, 20, 40 and 80 microM. Mitomycin C (MMC) was used as a positive control. The results of chromosomal aberrations assay showed that ZER was not clastogenic, when compared to untreated control, meanwhile MN test results showed a dose-dependent increase in MN formation. The overall clastogenic effect of ZER on human PBL was statistically not significant. In conclusion, ZER is a cytotoxic but not a clastogenic substance in human PBL.
    Matched MeSH terms: Plant Roots/chemistry
  11. Bhat R, Karim AA
    Fitoterapia, 2010 Oct;81(7):669-79.
    PMID: 20434529 DOI: 10.1016/j.fitote.2010.04.006
    Eurycoma longifolia Jack is an herbal medicinal plant of South-East Asian origin, popularly recognized as 'Tongkat Ali.' The plant parts have been traditionally used for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities, which have also been proved scientifically. The plant parts are rich in various bioactive compounds (like eurycomaoside, eurycolactone, eurycomalactone, eurycomanone, and pasakbumin-B) among which the alkaloids and quassinoids form a major portion. Even though toxicity and safety evaluation studies have been pursued, still a major gap exists in providing scientific base for commercial utilization and clearance of the Tongkat Ali products with regard to consumer's safety. The present review aims at reviewing the research works undertaken till date, on this plant in order to provide sufficient baseline information for future works and for commercial exploitation.
    Matched MeSH terms: Plant Roots
  12. Latha LY, Darah I, Jain K, Sasidharan S
    Pharm Biol, 2010 Jan;48(1):101-4.
    PMID: 20645763 DOI: 10.3109/13880200903046203
    The methanol extract of Vernonia cinerea Less (Asteraceae), which exhibited antimicrobial activity, was tested for toxicity. In an acute toxicity study using mice, the median lethal dose (LD(50)) of the extract was greater than 2000 mg/kg, and we found no pathological changes in macroscopic examination by necropsy of mice treated with extract. As well as the oral acute toxicity study, the brine shrimp lethality test was also done. Brine shrimp test LC(50) values were 3.87 mg/mL (6 h) and 2.72 mg/mL (24 h), exhibiting no significant toxicity result. In conclusion, the methanol extract of V. cinerea did not produce toxic effects in mice and brine shrimp.
    Matched MeSH terms: Plant Roots
  13. Ee GC, Kua AS, Lim CK, Jong V, Lee HL
    Nat Prod Res, 2006 May 10;20(5):485-91.
    PMID: 16644547
    In the authors' continuing search for new natural products, their recent studies on the roots of Calophyllum inophyllum (Guttiferae) have yielded a new prenylated pyranoxanthone, Inophyllin A together with the common triterpenes friedelin and stigmasterol. Structural elucidations of these compounds were achieved through (1)H, (13)C, DEPT, COSY, HSQC and HMBC experiments. The molecular mass was determined using MS techniques. The authors report here the isolation of and structural elucidation for Inophyllin A as well as its toxicity test result. The discovery of this new natural product from the unexploited Malaysian forest will certainly contribute to the search for potential natural larvicides.
    Matched MeSH terms: Plant Roots
  14. Zhang L, Cenci A, Rouard M, Zhang D, Wang Y, Tang W, et al.
    Sci Rep, 2019 06 03;9(1):8199.
    PMID: 31160634 DOI: 10.1038/s41598-019-44637-x
    Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cubense, especially by tropical race 4 (Foc TR4), is threatening the global banana industry. Musa acuminata Pahang, a wild diploid banana that displays strong resistance to Foc TR4, holds great potential to understand the underlying resistance mechanisms. Microscopic examination reports that, in a wounding inoculation system, the Foc TR4 infection processes in roots of Pahang (resistant) and a triploid cultivar Brazilian (susceptible) were similar by 7 days post inoculation (dpi), but significant differences were observed in corms of both genotypes at 14 dpi. We compare transcriptomic responses in the corms of Pahang and Brazilian, and show that Pahang exhibited constitutive defense responses before Foc TR4 infection and inducible defense responses prior to Brazilian at the initial Foc TR4 infection stage. Most key enzymatic genes in the phenylalanine metabolism pathway were up-regulated in Brazilian, suggesting that lignin and phytotoxin may be triggered during later stages of Foc TR4 infection. This study unravels a few potential resistance candidate genes whose expression patterns were assessed by RT-qPCR assay and improves our understanding the defense mechanisms of Pahang response to Foc TR4.
    Matched MeSH terms: Plant Roots
  15. Saw, Y. Y., Rajendran, D., Alicia, L. M. L., Chan, Y. L., Chow, Z. S., Roslan, A. Z., et al.
    MyJurnal
    Introduction: Crude herbs can be defined as raw plants materials (e.g. leaves, flowers, roots, etc.) which are not being/minimally processed or dried. Globally, particularly in Malaysia, the use of crude herbs has been increasing. The reasons were as an ailment of diseases underlying conditions and for general wellbeing. In this study, our aim was to investigate factors influences crude herbs use among older patients with chronic diseases. Methods: A cross-sectional survey was conducted using purposive sampling among patients attended government health clinic
    at Klinik Kesihatan Kampar, Perak. Self-designed questionnaires were used to collect data and data was analysed using SPSS software (ver. 23). Results: A total of 441 participants were enrolled in this study, the response rate was 71.35%. Demographic characteristics of patients who consume crude herbs were; female (57.25%), Malays (45.06%), age between 50-59 years old (31.96%), secondary education level (49.1%), and earned income less than RM3000 (93.27%). Female gender was found associated with the use of crude herbs (p < 0.05). Other socio-demographic characteristics, such as age, race, education level, and salary range found not associated with crude herbs (p > 0.05). The common reasons given by patients to use crude herbs were; family influence, effectiveness in reducing sugar, and accessible and cheaper compared to commercialised herbal drugs. The prevalence of crude herbs use,
    particularly among ageing patients is alarming. The physicians need to take into account on crude herbs used when prescribing medications. The use of crude herbs can be beneficial but yet can be detrimental if it is consumed while on prescribed medications. Conclusion: The findings of this study indicate that the survey area needs to broaden to other parts of Malaysia, particularly rural is warranted.
    Matched MeSH terms: Plant Roots
  16. Mohd Amnan MA, Pua TL, Lau SE, Tan BC, Yamaguchi H, Hitachi K, et al.
    PeerJ, 2021;9:e10879.
    PMID: 33614294 DOI: 10.7717/peerj.10879
    Drought is one of the severe environmental stresses threatening agriculture around the globe. Nitric oxide plays diverse roles in plant growth and defensive responses. Despite a few studies supporting the role of nitric oxide in plants under drought responses, little is known about its pivotal molecular amendment in the regulation of stress signaling. In this study, a label-free nano-liquid chromatography-mass spectrometry approach was used to determine the effects of sodium nitroprusside (SNP) on polyethylene glycol (PEG)-induced osmotic stress in banana roots. Plant treatment with SNP improved plant growth and reduced the percentage of yellow leaves. A total of 30 and 90 proteins were differentially identified in PEG+SNP against PEG and PEG+SNP against the control, respectively. The majority of proteins differing between them were related to carbohydrate and energy metabolisms. Antioxidant enzyme activities, such as superoxide dismutase and ascorbate peroxidase, decreased in SNP-treated banana roots compared to PEG-treated banana. These results suggest that the nitric oxide-induced osmotic stress tolerance could be associated with improved carbohydrate and energy metabolism capability in higher plants.
    Matched MeSH terms: Plant Roots
  17. Aladdin NA, Husain K, Jalil J, Sabandar CW, Jamal JA
    BMC Complement Med Ther, 2020 Oct 27;20(1):324.
    PMID: 33109178 DOI: 10.1186/s12906-020-03119-8
    BACKGROUND: In traditional Malay medicine, Marantodes pumilum (Blume) Kuntze (family Primulaceae) is commonly used by women to treat parturition, flatulence, dysentery, dysmenorrhea, gonorrhea, and bone diseases. Preliminary screening of some Primulaceae species showed that they possess xanthine oxidase inhibitory activity. Thus, this study aimed to investigate the xanthine oxidase inhibitory activity of three varieties of M. pumilum and their phytochemical compounds.

    METHOD: Dichloromethane, methanol, and water extracts of the leaves and roots of M. pumilum var. alata, M. pumilum var. pumila, and M. pumilum var. lanceolata were tested using an in vitro xanthine oxidase inhibitory assay. Bioassay-guided fractionation and isolation were carried out on the most active extract using chromatographic techniques. The structures of the isolated compounds were determined using spectroscopic techniques.

    RESULTS: The most active dichloromethane extract of M. pumilum var. pumila leaves (IC50 = 161.6 μg/mL) yielded one new compound, 3,7-dihydroxy-5-methoxy-4,8-dimethyl-isocoumarin (1), and five known compounds, viz. ardisiaquinone A (2), maesanin (3), stigmasterol (4), tetracosane (5), and margaric acid (6). The new compound was found to be the most active xanthine oxidase inhibitor with an IC50 value of 0.66 ± 0.01 μg/mL, which was not significantly different (p > 0.05) from that of the positive control, allopurinol (IC50 = 0.24 ± 0.00 μg/mL).

    CONCLUSION: This study suggests that the new compound 3,7-dihydroxy-5-methoxy-4,8-dimethyl-isocoumarin (1), which was isolated from the dichloromethane extract of M. pumilum var. pumila leaves, could be a potential xanthine oxidase inhibitor.

    Matched MeSH terms: Plant Roots
  18. Ang HH, Ngai TH, Tan TH
    Phytomedicine, 2003;10(6-7):590-3.
    PMID: 13678248 DOI: 10.1078/094471103322331881
    The effects of Eurycoma longifolia Jack were studied on the sexual qualities of middle aged male rats after dosing them with 0.5 g/kg of various fractions of E. longifolia whilst the control group received 3 ml/kg of normal saline daily for 12 weeks. Results showed than E. longifolia Jack enhanced the sexual qualities of the middle aged male rats by decreasing their hesitation time as compared to controls with various fractions of E. longifolia Jack produced 865-916 (91-96), 860-914 (92-98), 850-904 (93-99), 854-890 (95-99), 844-880 (94-98), 840-875 (94-98), 830-870 (94-98), 825-860 (94-98), 820-850 (96-99), 800-840 (93-98), 750-795 (94-99) and 650-754 sec (82-95%) in contrast to controls which produced 950 (100), 934 (100), 910 (100), 900 (100), 895 (100), 890 (100), 885 (100), 880 (100), 855 (100), 860 (100), 800 (100) and 790 sec (100%) throughout the investigation period. Besides these, there was a transient increase in the % of the male rats responding to the right choice after chronic administration of 0.5 g/kg E. longifolia Jack, with more than 50% of the male rats scored right choice after 2 weeks post-treatment and the effect was more prominent at the dose of the observation period. However, there was no sexual enhancement of the middle aged male rats which consumed normal saline since only 45-55% of the male rats responded to right choice throughout the investigation period. Hence, this study shows that E. longifolia Jack enhanced the sexual qualities of the middle aged male rats, further supports the folkuse of E. longifolia Jack as an aphrodisiac.
    Matched MeSH terms: Plant Roots
  19. Ang HH, Lee KL, Kiyoshi M
    J Basic Clin Physiol Pharmacol, 2004;15(3-4):303-9.
    PMID: 15803965 DOI: 10.1515/jbcpp.2004.15.3-4.303
    Eurycoma longifolia Jack commonly known as Tongkat Ali in Malaysia, has been used in Malaysia to increase male virility and sexual prowess. The objective of this study is to evaluate sexual arousal in sexually sluggish old male rats, 24 months old and retired breeders, receiving 200, 400, or 800 mg/kg of various fractions of E. longifolia Jack, twice daily, for 10 days. Control rats received 3 ml/kg of normal saline. The aphrodisiac effect was monitored by the act of yawning and stretching because yawning, either alone or associated with stretching, is considered an ancestral vestige surviving throughout evolution that promotes sexual arousal. The results showed that 800 mg/kg of E. longifolia Jack increased yawning by 50% and stretching by 16.7% in sexually sluggish old male rats, by 676-719% and 31-336%, respectively, in sexually active male rats, and by 22-44% and 75-100%, respectively, in middle aged, 9 months old and retired breeders. We conclude that the results of this study support the folk use of this plant as an aphrodisiac.
    Matched MeSH terms: Plant Roots
  20. Ang HH, Cheang HS
    Jpn. J. Pharmacol., 1999 Apr;79(4):497-500.
    PMID: 10361892 DOI: 10.1254/jjp.79.497
    The anxiolytic effect of Eurycoma longifolia Jack in mice was examined. Fractions of E. longifolia Jack extract produced a significant increase in the number of squares crossed (controls= 118.2 +/- 10.2 squares), but significantly decreased both the immobility (controls = 39.4+/- 4.0 sec) and fecal pellets (controls= 12.3 +/-2.1 fecal pellets) when compared with control mice in the open-field test; they significantly increased the number of entries (controls=6.7+/-0.5 entries) and time spent (controls=42.9+/-0.1 sec) in the open arms, but decreased both the number of entries (controls= 13.2+/-0.7 entries) and time spent (controls= 193.4+/-0.7 sec) when compared with the control mice in the closed arms of the elevated plus-maze test. Furthermore, fractions of E. longifolia Jack extract decreased the fighting episodes significantly (controls= 18.0+/-0.4 fighting episodes) when compared with control mice. In addition, these results were found to be consistent with anxiolytic effect produced by diazepam. Hence, this study supports the medicinal use of this plant for anxiety therapy.
    Matched MeSH terms: Plant Roots
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links