METHOD: In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used.
RESULTS: The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95.
CONCLUSION: The SL features could be utilized as objective markers to screen the AUD patients and healthy controls.
METHODS: In this study, conducted in Malaysia, we evaluated the seven-gene biomarker panel validated in a North American population using blood samples collected from local patients. The panel employs quantitative RT-PCR (qRT-PCR) to analyze gene expression of the seven biomarkers (ANXA3, CLEC4D, TNFAIP6, LMNB1, PRRG4, VNN1 and IL2RB) that are differentially expressed in CRC patients as compared with controls. Blood samples from 210 patients (99 CRC and 111 controls) were collected, and total blood RNA was isolated and subjected to quantitative RT-PCR and data analysis.
RESULTS: The logistic regression analysis of seven-gene panel has an area under the curve (AUC) of 0.76 (95% confidence interval: 0.70 to 0.82), 77% specificity, 61% sensitivity and 70% accuracy, comparable to the data obtained from the North American investigation of the same biomarker panel.
CONCLUSIONS: Our results independently confirm the results of the study conducted in North America and demonstrate the ability of the seven biomarker panel to discriminate CRC from controls in blood samples drawn from a Malaysian population.
METHODS: In this cross-sectional study, 482 adults (223 men, 259 women) aged ≥18 years old were measured for body mass index (BMI), waist circumference (WC), waist-height ratio (WHtR), waist-hip ratio (WHR), and blood pressure. Receiver operating characteristic (ROC) analysis was used to determine the predictive ability of obesity indices for hypertension in men and women. Gender-specific logistic regression analyses were done to examine the association between obesity, defined by BMI, WC, WHtR and WHR, and hypertension.
RESULTS: Prevalence of hypertension was 25.5%. Overall, WHtR was the best predictor of the presence of hypertension, in both men and women. The optimal WHtR cut-off values for hypertension were 0.45 and 0.52 in men and women, respectively. Obese adults with WHtR ≥0.5 had about two times increased odds of having hypertension compared to non-obese adults.
CONCLUSIONS: WHtR may serve as a simple and inexpensive screening tool to identify individuals with hypertension in this relatively difficult to reach population.
MATERIALS AND METHODS: Contrast enhanced computed tomography (CT) images of 194 multi-racial NSCLC patients (79 EGFR mutants and 115 wildtypes) were collected from three different countries using 5 manufacturers' scanners with a variety of scanning parameters. Ninety-nine cases obtained from the University of Malaya Medical Centre (UMMC) in Malaysia were used for training and validation procedures. Forty-one cases collected from the Kyushu University Hospital (KUH) in Japan and fifty-four cases obtained from The Cancer Imaging Archive (TCIA) in America were used for a test procedure. Radiomic features were obtained from BN maps, which represent topologically invariant heterogeneous characteristics of lung cancer on CT images, by applying histogram- and texture-based feature computations. A BN-based signature was determined using support vector machine (SVM) models with the best combination of features that maximized a robustness index (RI) which defined a higher total area under receiver operating characteristics curves (AUCs) and lower difference of AUCs between the training and the validation. The SVM model was built using the signature and optimized in a five-fold cross validation. The BN-based model was compared to conventional original image (OI)- and wavelet-decomposition (WD)-based models with respect to the RI between the validation and the test.
RESULTS: The BN-based model showed a higher RI of 1.51 compared with the models based on the OI (RI: 1.33) and the WD (RI: 1.29).
CONCLUSION: The proposed model showed higher robustness than the conventional models in the identification of EGFR mutations among NSCLC patients. The results suggested the robustness of the BN-based approach against variations in image scanner/scanning parameters.
METHODS: This is a prospective observational study on patients with SIRS. Plasma creatinine (pCr) and NGAL were measured on ICU admission. Patients were classified according to the occurrence of AKI and sepsis.
RESULTS: Of 225 patients recruited, 129 (57%) had sepsis of whom 67 (52%) also had AKI. 96 patients (43%) had non-infectious SIRS, of whom 20 (21%) also had AKI. NGAL concentrations were higher in AKI patients within both the sepsis and non-infectious SIRS cohorts (both P
METHODS: Using the recently completed genome sequences from P. malariae, P. ovale and P. knowlesi, a set of 33 candidate cell surface and secreted blood-stage antigens was selected and expressed in a recombinant form using a mammalian expression system. These proteins were added to an existing panel of antigens from P. falciparum and P. vivax and the immunoreactivity of IgG, IgM and IgA immunoglobulins from individuals diagnosed with infections to each of the five different Plasmodium species was evaluated by ELISA. Logistic regression modelling was used to quantify the ability of the responses to determine prior exposure to the different Plasmodium species.
RESULTS: Using sera from European travellers with diagnosed Plasmodium infections, antigens showing species-specific immunoreactivity were identified to select a panel of 22 proteins from five Plasmodium species for serological profiling. The immunoreactivity to the antigens in the panel of sera taken from travellers and individuals living in malaria-endemic regions with diagnosed infections showed moderate power to predict infections by each species, including P. ovale, P. malariae and P. knowlesi. Using a larger set of patient samples and logistic regression modelling it was shown that exposure to P. knowlesi could be accurately detected (AUC = 91%) using an antigen panel consisting of the P. knowlesi orthologues of MSP10, P12 and P38.
CONCLUSIONS: Using the recent availability of genome sequences to all human-infective Plasmodium spp. parasites and a method of expressing Plasmodium proteins in a secreted functional form, an antigen panel has been compiled that will be useful to determine exposure to these parasites.
METHODS: A total of 509 patients with MetS were recruited. All were diagnosed by clinicians with ultrasonography-confirmed whether they were patients with NAFLD. Patients were randomly divided into derivation (n=400) and validation (n=109) cohort. To develop the risk score, clinical risk indicators measured at the time of recruitment were built by logistic regression. Regression coefficients were transformed into item scores and added up to a total score. A risk scoring scheme was developed from clinical predictors: BMI ≥25, AST/ALT ≥1, ALT ≥40, type 2 diabetes mellitus and central obesity. The scoring scheme was applied in validation cohort to test the performance.
RESULTS: The scheme explained, by area under the receiver operating characteristic curve (AuROC), 76.8% of being NAFLD with good calibration (Hosmer-Lemeshow χ2 =4.35; P=.629). The positive likelihood ratio of NAFLD in patients with low risk (scores below 3) and high risk (scores 5 and over) were 2.32 (95% CI: 1.90-2.82) and 7.77 (95% CI: 2.47-24.47) respectively. When applied in validation cohort, the score showed good performance with AuROC 76.7%, and illustrated 84%, and 100% certainty in low- and high-risk groups respectively.
CONCLUSIONS: A simple and non-invasive scoring scheme of five predictors provides good prediction indices for NAFLD in MetS patients. This scheme may help clinicians in order to take further appropriate action.