Displaying publications 221 - 240 of 701 in total

Abstract:
Sort:
  1. Shimoda K, Nishimura A, Sunggip C, Ito T, Nishiyama K, Kato Y, et al.
    Sci Rep, 2020 08 18;10(1):13926.
    PMID: 32811872 DOI: 10.1038/s41598-020-70956-5
    Cardiac tissue remodeling caused by hemodynamic overload is a major clinical outcome of heart failure. Uridine-responsive purinergic P2Y6 receptor (P2Y6R) contributes to the progression of cardiovascular remodeling in rodents, but it is not known whether inhibition of P2Y6R prevents or promotes heart failure. We demonstrate that inhibition of P2Y6R promotes pressure overload-induced sudden death and heart failure in mice. In neonatal cardiomyocytes, knockdown of P2Y6R significantly attenuated hypertrophic growth and cell death caused by hypotonic stimulation, indicating the involvement of P2Y6R in mechanical stress-induced myocardial dysfunction. Unexpectedly, compared with wild-type mice, deletion of P2Y6R promoted pressure overload-induced sudden death, as well as cardiac remodeling and dysfunction. Mice with cardiomyocyte-specific overexpression of P2Y6R also exhibited cardiac dysfunction and severe fibrosis. In contrast, P2Y6R deletion had little impact on oxidative stress-mediated cardiac dysfunction induced by doxorubicin treatment. These findings provide overwhelming evidence that systemic inhibition of P2Y6R exacerbates pressure overload-induced heart failure in mice, although P2Y6R in cardiomyocytes contributes to the progression of cardiac fibrosis.
    Matched MeSH terms: Signal Transduction/genetics
  2. Lok B, Adam MAA, Kamal LZM, Chukwudi NA, Sandai R, Sandai D
    Med Mycol, 2021 Feb 04;59(2):115-125.
    PMID: 32944760 DOI: 10.1093/mmy/myaa080
    Candida albicans is a commensal yeast commonly found on the skin and in the body. However, in immunocompromised individuals, the fungi could cause local and systemic infections. The carbon source available plays an important role in the establishment of C. albicans infections. The fungi's ability to assimilate a variety of carbon sources plays a vital role in its colonization, and by extension, its fitness and pathogenicity, as it often inhabits niches that are glucose-limited but rich in alternative carbon sources. A difference in carbon sources affect the growth and mating of C. albicans, which contributes to its pathogenicity as proliferation helps the fungi colonize its environment. The carbon source also affects its metabolism and signaling pathways, which are integral parts of the fungi's fitness and pathogenicity. As a big percentage of the carbon assimilated by C. albicans goes to cell wall biogenesis, the availability of different carbon sources will result in cell walls with variations in rigidity, adhesion, and surface hydrophobicity. In addition to the biofilm formation of the fungi, the carbon source also influences whether the fungi grow in yeast- or mycelial-form. Both forms play different roles in C. albicans's infection process. A better understanding of the role of the carbon sources in C. albicans's pathogenicity would contribute to more effective treatment solutions for fungal infections.
    Matched MeSH terms: Signal Transduction*
  3. Shahcheraghi SH, Aljabali AAA, Al Zoubi MS, Mishra V, Charbe NB, Haggag YA, et al.
    Life Sci, 2021 Aug 01;278:119632.
    PMID: 34019900 DOI: 10.1016/j.lfs.2021.119632
    Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sciences. The disease is not cured by current pharmacological strategies for type 2 diabetes. While several drug combinations are accessible that can efficiently modulate glycemia and mitigate long-term complications, these agents do not reverse pathogenesis, and in practice, they are not established to modify the patient's specific molecular profiling. Therapeutic companies have benefited from human genetics. Genome exploration, which is agnostic to the information that exists, has revealed tens of loci that impact glycemic modulation. The physiological report has begun to examine subtypes of diseases, illustrate heterogeneity and propose biochemical therapeutic pathways.
    Matched MeSH terms: Signal Transduction/drug effects*
  4. Aziz J, Shezali H, Radzi Z, Yahya NA, Abu Kassim NH, Czernuszka J, et al.
    Skin Pharmacol Physiol, 2016;29(4):190-203.
    PMID: 27434176 DOI: 10.1159/000447017
    Collagen and elastin networks make up the majority of the extracellular matrix in many organs, such as the skin. The mechanisms which are involved in the maintenance of homeostatic equilibrium of these networks are numerous, involving the regulation of genetic expression, growth factor secretion, signalling pathways, secondary messaging systems, and ion channel activity. However, many factors are capable of disrupting these pathways, which leads to an imbalance of homeostatic equilibrium. Ultimately, this leads to changes in the physical nature of skin, both functionally and cosmetically. Although various factors have been identified, including carcinogenesis, ultraviolet exposure, and mechanical stretching of skin, it was discovered that many of them affect similar components of regulatory pathways, such as fibroblasts, lysyl oxidase, and fibronectin. Additionally, it was discovered that the various regulatory pathways intersect with each other at various stages instead of working independently of each other. This review paper proposes a model which elucidates how these molecular pathways intersect with one another, and how various internal and external factors can disrupt these pathways, ultimately leading to a disruption in collagen and elastin networks.
    Matched MeSH terms: Signal Transduction/physiology
  5. Soo HC, Chung FF, Lim KH, Yap VA, Bradshaw TD, Hii LW, et al.
    PLoS One, 2017;12(1):e0170551.
    PMID: 28107519 DOI: 10.1371/journal.pone.0170551
    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted.
    Matched MeSH terms: Signal Transduction/drug effects*
  6. Mellone M, Hanley CJ, Thirdborough S, Mellows T, Garcia E, Woo J, et al.
    Aging (Albany NY), 2016 12 15;9(1):114-132.
    PMID: 27992856 DOI: 10.18632/aging.101127
    Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two. Analysis of CAF cultured ex vivo, showed that senescent CAF are predominantly SMA-positive; this was confirmed by immunochemistry in head & neck (HNSCC) and esophageal (EAC) cancers. In vitro, we found that fibroblasts induced to senesce develop molecular, ultrastructural and contractile features typical of myofibroblasts and this is dependent on canonical TGF-β signaling. Similar to TGF-β1-generated myofibroblasts, these cells secrete soluble factors that promote tumor cell motility. However, RNA-sequencing revealed significant transcriptomic differences between the two SMA-positive CAF groups, particularly in genes associated with extracellular matrix (ECM) deposition and organization, which differentially promote tumor cell invasion. Notably, second harmonic generation imaging and bioinformatic analysis of SMA-positive human HNSCC and EAC showed that collagen fiber organization correlates with poor prognosis, indicating that heterogeneity within the SMA-positive CAF population differentially impacts on survival. These results show that non-fibrogenic, SMA-positive myofibroblasts can be directly generated through induction of fibroblast senescence and suggest that senescence and myofibroblast differentiation are closely linked processes.
    Matched MeSH terms: Signal Transduction/physiology
  7. Chellappan DK, Leng KH, Jia LJ, Aziz NABA, Hoong WC, Qian YC, et al.
    Biomed Pharmacother, 2018 Jun;102:1127-1144.
    PMID: 29710531 DOI: 10.1016/j.biopha.2018.03.061
    OBJECTIVE: The study aims to analyze the effectiveness of bevacizumab in addressing the complications associated with gynecological cancers and evaluates effective treatments for various gynecological cancers.

    METHODS: The study follows a systematic review approach that has been implemented to analyze the qualitative published data from previous studies. Studies related with the trials of angiogenesis and bevacizumab were selected in the review.

    RESULTS: In general, the management of gynecological cancers include chemotherapy, surgery and radiation therapy. Results suggest bevacizumab as an effective treatment modality for cervical and several other cancers. Overall, bevacizumab showed promising results in improving the overall survival rate of gynecological cancer patients through the combination of bevacizumab with other chemotherapeutic agents.

    CONCLUSION: Bevacizumab possess less documented adverse effects when compared to other chemotherapeutic agents. The manifestation and severity of adverse effects reported varied according to the chemotherapeutic agent(s) that were used with bevacizumab in combination therapy. Overall, bevacizumab effectively improved the survival rate in patients with several gynaecological cancers.

    Matched MeSH terms: Signal Transduction/drug effects
  8. Ng CT, Fong LY, Yong YK, Hakim MN, Ahmad Z
    Cytokine, 2018 11;111:541-550.
    PMID: 29909980 DOI: 10.1016/j.cyto.2018.06.010
    Endothelial barrier dysfunction leads to increased endothelial permeability and is an early step in the development of vascular inflammatory diseases such as atherosclerosis. Interferon-γ (IFN-γ), a proinflammatory cytokine, is known to cause increased endothelial permeability. However, the mechanisms by which IFN-γ disrupts the endothelial barrier have not been clarified. This study aimed to investigate how IFN-γ impairs the endothelial barrier integrity by specifically examining the roles of caldesmon, adherens junctions (AJs) and p38 mitogen-activated protein (MAP) kinase in IFN-γ-induced endothelial barrier dysfunction. IFN-γ exhibited a biphasic effect on caldesmon localization and both the structural organization and protein expression of AJs. In the early phase (4-8 h), IFN-γ induced the formation of peripheral caldesmon bands and discontinuous AJs, while AJ protein expression was unchanged. Interestingly, IFN-γ also stimulated caldesmon phosphorylation, resulting in actin dissociation from caldesmon at 8 h. Conversely, changes seen in the late phase (16-24 h) included cytoplasmic caldesmon dispersal, AJ linearization and junctional area reduction, which were associated with reduced membrane, cytoskeletal and total AJ protein expression. In addition, IFN-γ enhanced myosin binding to caldesmon at 12 h and persisted up to 24 h. Furthermore, inhibition of p38 MAP kinase by SB203580 did not reverse either the early or late phase changes observed. These data suggest that IFN-γ may activate signaling molecules other than p38 MAP kinase. In conclusion, our findings enhance the current understanding of how IFN-γ disrupts endothelial barrier function and reveal potential therapeutic targets, such as caldesmon and AJs, for the treatment of IFN-γ-associated vascular inflammatory diseases.
    Matched MeSH terms: Signal Transduction/physiology
  9. Richardson JS, Sethi G, Lee GS, Malek SN
    BMC Complement Altern Med, 2016 Oct 12;16(1):389.
    PMID: 27729078
    Cancer has been one of the leading causes of mortality in this era. Ruta angustifolia L. Pers has been traditionally used as an abortifacient, antihelmintic, emmenagogue and ophthalmic. In Malaysia and Singapore, the local Chinese community used it for the treatment of cancer.
    Matched MeSH terms: Signal Transduction/drug effects
  10. Teoh SL, Das S
    Curr Drug Targets, 2018;19(2):128-143.
    PMID: 28294046 DOI: 10.2174/1389450118666170309143419
    BACKGROUND: The Notch pathway is an evolutionarily conserved, intercellular signalling system which is present in all multicellular organisms and mammals. The Notch pathway plays an important role in the embryonic development as it controls cell proliferation, cell differentiation and binary cell fate decisions.

    OBJECTIVE: In the present review, we highlight the Notch signalling pathway components i.e. Notch receptors, ligands, effector, and their regulators. We also discuss the tumor biology of the Notch pathway involved in various cancers.

    RESULTS: Interestingly, the Notch signalling pathway is dysregulated in many cancers. Notch may serve as oncogene or tumor suppressor and plays an important role in cancers of the liver, pancreas, endometrium of uterus, ovary, prostate, bladder and colon. The activation of Notch pathway plays a vital role in the progression of some cancer. In addition, Notch pathway activation was also shown to drive chemoresistance in cancer, as well. Chemotherapeutically, combined NOTCH1 inhibitor synergistically attenuated chemotherapy-enriched cancer stem cell population both in vitro and in vivo. This may prove to be beneficial in the treatment of cancer.

    CONCLUSION: The Notch inhibitors possess anti-proliferative effects on cancer, thereby serving as a new treatment for cancer.

    Matched MeSH terms: Signal Transduction/drug effects*
  11. Zaulkffali AS, Md Razip NN, Syed Alwi SS, Abd Jalil A, Abd Mutalib MS, Gopalsamy B, et al.
    Nutrients, 2019 Oct 19;11(10).
    PMID: 31635074 DOI: 10.3390/nu11102525
    This study investigated the effects of vitamins D and E on an insulin-resistant model and hypothesized that this treatment would reverse the effects of Alzheimer's disease (AD) and improves insulin signalling. An insulin-resistant model was induced in SK-N-SH neuronal cells with a treatment of 250 nM insulin and re-challenged with 100 nM at two different incubation time (16 h and 24 h). The effects of vitamin D (10 and 20 ng/mL), vitamin E in the form of tocotrienol-rich fraction (TRF) (200 ng/mL) and the combination of vitamins D and E on insulin signalling markers (IR, PI3K, GLUT3, GLUT4, and p-AKT), glucose uptake and AD markers (GSK3β and TAU) were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The results demonstrated an improvement of the insulin signalling pathway upon treatment with vitamin D alone, with significant increases in IR, PI3K, GLUT3, GLUT4 expression levels, as well as AKT phosphorylation and glucose uptake, while GSK3β and TAU expression levels was decreased significantly. On the contrary, vitamin E alone, increased p-AKT, reduced the ROS as well as GSK3β and TAU but had no effect on the insulin signalling expression levels. The combination of vitamins D and E only showed significant increase in GLUT4, p-AKT, reduced ROS as well as GSK3β and TAU. Thus, the universal role of vitamin D, E alone and in combinations could be the potential nutritional agents in restoring the sensitivity of neuronal cells towards insulin and delaying the pathophysiological progression of AD.
    Matched MeSH terms: Signal Transduction/drug effects*
  12. Ma B, Khazali A, Shao H, Jiang Y, Wells A
    Cell Commun Signal, 2019 12 12;17(1):164.
    PMID: 31831069 DOI: 10.1186/s12964-019-0489-1
    BACKGROUND: Carcinoma cells shift between epithelial and mesenchymal phenotypes during cancer progression, as defined by surface presentation of the cell-cell cohesion molecule E-cadherin, affecting dissemination, progression and therapy responsiveness. Concomitant with the loss of E-cadherin during the mesenchymal transition, the predominant receptor isoform for ELR-negative CXC ligands shifts from CXCR3-B to CXCR3-A which turns this classical G-protein coupled receptor from an inhibitor to an activator of cell migration, thus promoting tumor cell invasiveness. We proposed that CXCR3 was not just a coordinately changed receptor but actually a regulator of the cell phenotype.

    METHODS: Immunoblotting, immunofluorescence, quantitative real-time PCR and flow cytometry assays investigated the expression of E-cadherin and CXCR3 isoforms. Intrasplenic inoculation of human prostate cancer (PCa) cells with spontaneous metastasis to the liver analyzed E-cadherin and CXCR3-B expression during cancer progression in vivo.

    RESULTS: We found reciprocal regulation of E-cadherin and CXCR3 isoforms. E-cadherin surface expression promoted CXCR3-B presentation on the cell membrane, and to a lesser extent increased its mRNA and total protein levels. In turn, forced expression of CXCR3-A reduced E-cadherin expression level, whereas CXCR3-B increased E-cadherin in PCa. Meanwhile, a positive correlation of E-cadherin and CXCR3-B expression was found both in experimental PCa liver micro-metastases and patients' tissue.

    CONCLUSIONS: CXCR3-B and E-cadherin positively correlated in vitro and in vivo in PCa cells and liver metastases, whereas CXCR3-A negatively regulated E-cadherin expression. These results suggest that CXCR3 isoforms may play important roles in cancer progression and dissemination via diametrically regulating tumor's phenotype.

    Matched MeSH terms: Signal Transduction/genetics
  13. Wu H, Sun Y, Wong WL, Cui J, Li J, You X, et al.
    Eur J Med Chem, 2020 Mar 01;189:112042.
    PMID: 31958737 DOI: 10.1016/j.ejmech.2020.112042
    Transforming growth factor-β (TGF-β) plays an important role in regulating epithelial to mesenchymal transition (EMT) and the TGF-β signaling pathway is a potential target for therapeutic intervention in the development of many diseases, such as fibrosis and cancer. Most currently available inhibitors of TGF-β signaling function as TGF-β receptor I (TβR-I) kinase inhibitors, however, such kinase inhibitors often lack specificity. In the present study, we targeted the extracellular protein binding domain of the TGF-β receptor II (TβR-II) to interfere with the protein-protein interactions (PPIs) between TGF-β and its receptors. One compound, CJJ300, inhibited TGF-β signaling by disrupting the formation of the TGF-β-TβR-I-TβR-II signaling complex. Treatment of A549 cells with CJJ300 resulted in the inhibition of downstream signaling events such as the phosphorylation of key factors along the TGF-β pathway and the induction of EMT markers. Concomitant with these effects, CJJ300 significantly inhibited cell migration. The present study describes for the first time a designed molecule that can regulate TGF-β-induced signaling and EMT by interfering with the PPIs required for the formation of the TGF-β signaling complex. Therefore, CJJ300 can be an important lead compound with which to study TGF-β signaling and to design more potent TGF-β signaling antagonists.
    Matched MeSH terms: Signal Transduction/drug effects
  14. Zhang W, Jiang B, Zeng M, Duan Y, Wu Z, Wu Y, et al.
    J Virol, 2020 04 16;94(9).
    PMID: 32075929 DOI: 10.1128/JVI.01850-19
    Duck Tembusu virus (DTMUV), which is similar to other mosquito-borne flaviviruses that replicate well in most mammalian cells, is an emerging pathogenic flavivirus that has caused epidemics in egg-laying and breeding waterfowl. Immune organ defects and neurological dysfunction are the main clinical symptoms of DTMUV infection. Preinfection with DTMUV makes the virus impervious to later interferon (IFN) treatment, revealing that DTMUV has evolved some strategies to defend against host IFN-dependent antiviral responses. Immune inhibition was further confirmed by screening for DTMUV-encoded proteins, which suggested that NS2A significantly inhibited IFN-β and IFN-stimulated response element (ISRE) promoter activity in a dose-dependent manner and facilitated reinfection with duck plague virus (DPV). DTMUV NS2A was able to inhibit duck retinoic acid-inducible gene-I (RIG-I)-, and melanoma differentiation-associated gene 5 (MDA5)-, mitochondrial-localized adaptor molecules (MAVS)-, stimulator of interferon genes (STING)-, and TANK-binding kinase 1 (TBK1)-induced IFN-β transcription, but not duck TBK1- and interferon regulatory factor 7 (IRF7)-mediated effective phases of IFN response. Furthermore, we found that NS2A competed with duTBK1 in binding to duck STING (duSTING), impaired duSTING-duSTING binding, and reduced duTBK1 phosphorylation, leading to the subsequent inhibition of IFN production. Importantly, we first identified that the W164A, Y167A, and S361A mutations in duSTING significantly impaired the NS2A-duSTING interaction, which is important for NS2A-induced IFN-β inhibition. Hence, our data demonstrated that DTMUV NS2A disrupts duSTING-dependent antiviral cellular defenses by binding with duSTING, which provides a novel mechanism by which DTMUV subverts host innate immune responses. The potential interaction sites between NS2A and duSTING may be the targets of future novel antiviral therapies and vaccine development.IMPORTANCE Flavivirus infections are transmitted through mosquitos or ticks and lead to significant morbidity and mortality worldwide with a spectrum of manifestations. Infection with an emerging flavivirus, DTMUV, manifests with clinical symptoms that include lesions of the immune organs and neurological dysfunction, leading to heavy egg drop and causing serious harm to the duck industry in China, Thailand, Malaysia, and other Southeast Asian countries. Mosquito cells, bird cells, and mammalian cell lines are all susceptible to DTMUV infection. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and may pose a threat to mammalian health. However, the pathogenesis of DTMUV is largely unclear. Our results show that NS2A strongly blocks the STING-induced signal transduction cascade by binding with STING, which subsequently blocks STING-STING binding and TBK1 phosphorylation. More importantly, the W164, Y167, or S361 residues in duSTING were identified as important interaction sites between STING and NS2A that are vital for NS2A-induced IFN production and effective phases of IFN response. Uncovering the mechanism by which DTMUV NS2A inhibits IFN in the cells of its natural hosts, ducks, will help us understand the role of NS2A in DTMUV pathogenicity.
    Matched MeSH terms: Signal Transduction/immunology
  15. Zakaria ZA, Abdul Rahim MH, Mohd Sani MH, Omar MH, Ching SM, Abdul Kadir A, et al.
    BMC Complement Altern Med, 2019 Apr 02;19(1):79.
    PMID: 30940120 DOI: 10.1186/s12906-019-2486-8
    BACKGROUND: Methanol extract (MECN) of Clinacanthus nutans Lindau leaves (family Acanthaceae) demonstrated peripherally and centrally mediated antinociceptive activity via the modulation of opioid/NO-mediated, but cGMP-independent pathway. In the present study, MECN was sequentially partitioned to obtain petroleum ether extract of C. nutans (PECN), which was subjected to antinociceptive study with aims of establishing its antinociceptive potential and determining the role of opioid receptors and L-arginine/nitric oxide/cyclic-guanosine monophosphate (L-arg/NO/cGMP) pathway in the observed antinociceptive activity.

    METHODS: The antinociceptive potential of orally administered PECN (100, 250, 500 mg/kg) was studied using the abdominal constriction-, hot plate- and formalin-induced paw licking-test in mice (n = 6). The effect of PECN on locomotor activity was also evaluated using the rota rod assay. The role of opioid receptors was determined by pre-challenging 500 mg/kg PECN (p.o.) with antagonist of opioid receptor subtypes, namely β-funaltrexamine (β-FNA; 10 mg/kg; a μ-opioid antagonist), naltrindole (NALT; 1 mg/kg; a δ-opioid antagonist) or nor-binaltorphimine (nor-BNI; 1 mg/kg; a κ-opioid antagonist) followed by subjection to the abdominal constriction test. In addition, the role of L-arg/NO/cGMP pathway was determined by prechallenging 500 mg/kg PECN (p.o.) with L-arg (20 mg/kg; a NO precursor), 1H-[1, 2, 4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 2 mg/kg; a specific soluble guanylyl cyclase inhibitor), or the combinations thereof (L-arg + ODQ) for 5 mins before subjection to the abdominal constriction test. PECN was also subjected to phytoconstituents analyses.

    RESULTS: PECN significantly (p  0.05) affect the locomotor activity of treated mice. The antinociceptive activity of PECN was significantly (p  0.05) affected by ODQ. HPLC analysis revealed the presence of at least cinnamic acid in PECN.

    CONCLUSION: PECN exerted antinocicpetive activity at peripheral and central levels possibly via the activation of non-selective opioid receptors and modulation of the NO-mediated/cGMP-independent pathway partly via the synergistic action of phenolic compounds.

    Matched MeSH terms: Signal Transduction/drug effects
  16. Wong RR, Abd-Aziz N, Affendi S, Poh CL
    J Biomed Sci, 2020 Jan 03;27(1):4.
    PMID: 31898495 DOI: 10.1186/s12929-019-0614-x
    Dengue virus (DENV) is the etiological agent of dengue fever. Severe dengue could be fatal and there is currently no effective antiviral agent or vaccine. The only licensed vaccine, Dengvaxia, has low efficacy against serotypes 1 and 2. Cellular miRNAs are post-transcriptional regulators that could play a role in direct regulation of viral genes. Host miRNA expressions could either promote or repress viral replications. Induction of some cellular miRNAs could help the virus to evade the host immune response by suppressing the IFN-α/β signaling pathway while others could upregulate IFN-α/β production and inhibit the viral infection. Understanding miRNA expressions and functions during dengue infections would provide insights into the development of miRNA-based therapeutics which could be strategized to act either as miRNA antagonists or miRNA mimics. The known mechanisms of how miRNAs impact DENV replication are diverse. They could suppress DENV multiplication by directly binding to the viral genome, resulting in translational repression. Other miRNA actions include modulation of host factors. In addition, miRNAs that could modulate immunopathogenesis are discussed. Major hurdles lie in the development of chemical modifications and delivery systems for in vivo delivery. Nevertheless, advancement in miRNA formulations and delivery systems hold great promise for the therapeutic potential of miRNA-based therapy, as supported by Miravirsen for treatment of Hepatitis C infection which has successfully completed phase II clinical trial.
    Matched MeSH terms: Signal Transduction/genetics
  17. Wong KK, Hussain FA
    PLoS One, 2020;15(6):e0233884.
    PMID: 32484822 DOI: 10.1371/journal.pone.0233884
    Ion channels form an important class of drug targets in malignancies. Transient receptor potential cation channel subfamily M member 4 (TRPM4) plays oncological roles in various solid tumors. Herein, we examined TRPM4 protein expression profile by immunohistochemistry (IHC) in breast cancer cases compared with normal breast ducts, its association with clinico-demographical parameters, and its potential function in breast cancers by Gene Set Enrichment Analysis (GSEA). Data-mining demonstrated that TRPM4 transcript levels were significantly higher in The Cancer Genome Atlas series of breast cancer cases (n = 1,085) compared with normal breast tissues (n = 112) (p = 1.03 x 10-11). Our IHC findings in tissue microarrays showed that TRPM4 protein was overexpressed in breast cancers (n = 83/99 TRPM4+; 83.8%) compared with normal breast ducts (n = 5/10 TRPM4+; 50%) (p = 0.022). Higher TRPM4 expression (median frequency cut-off) was significantly associated with higher lymph node status (N1-N2 vs N0; p = 0.024) and higher stage (IIb-IIIb vs I-IIa; p = 0.005). GSEA evaluation in three independent gene expression profiling (GEP) datasets of breast cancer cases (GSE54002, n = 417; GSE20685, n = 327; GSE23720, n = 197) demonstrated significant association of TRPM4 transcript expression with estrogen response and epithelial-mesenchymal transition (EMT) gene sets (p<0.01 and false discovery rate<0.05). These gene sets were not enriched in GEP datasets of normal breast epithelium cases (GSE10797, n = 5; GSE9574, n = 15; GSE20437, n = 18). In conclusion, TRPM4 protein expression is upregulated in breast cancers associated with worse clinico-demographical parameters, and TRPM4 potentially regulates estrogen receptor signaling and EMT progression in breast cancer.
    Matched MeSH terms: Signal Transduction/genetics
  18. Abdo Qaid EY, Zulkipli NN, Zakaria R, Ahmad AH, Othman Z, Muthuraju S, et al.
    Int J Neurosci, 2021 May;131(5):482-488.
    PMID: 32202188 DOI: 10.1080/00207454.2020.1746308
    Hypoxia has been associated with cognitive impairment. Many studies have investigated the role of mTOR signalling pathway in cognitive functions but its role in hypoxia-induced cognitive impairment remains controversial. This review aimed to elucidate the role of mTOR in the mechanisms of cognitive impairment that may pave the way towards the mechanistic understanding and therapeutic intervention of hypoxia-induced cognitive impairment. mTORC1 is normally regulated during mild or acute hypoxic exposure giving rise to neuroprotection, whereas it is overactivated during severe or chronic hypoxia giving rise to neuronal cells death. Thus, it is worth exploring the possibility of maintaining normal mTORC1 activity and thereby preventing cognitive impairment during severe or chronic hypoxia.
    Matched MeSH terms: Signal Transduction/physiology*
  19. Samuel VP, Dahiya R, Singh Y, Gupta G, Sah SK, Gubbiyappa SK, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(2):133-141.
    PMID: 31679276 DOI: 10.1615/JEnvironPatholToxicolOncol.2019029388
    The current study is a review of the literature on patients with diabetes who are diagnosed with colorectal cancer (CRC), encompassing recent research on CRC and the molecular level changes occurring in these patients on the basis of varying environmental as well as non-environmental factors. It has been noted that nearly 50% of all patients undergo the systemic treatment module; however, most of them exhibit drug resistance. In addition, targeted gene therapy has also been used in treatment but has been found to be effective only in patients with a specified molecular profile (or else this might lead to an increased risk of developing resistant mutations). This has led to increasing interest among researchers in finding innovative treatment options. Metformin, a biguanide, has been widely used in treating diabetes. The drug has been reportedly used in cases of hypothesis-generating retrospective population studies of diabetic patients showing reduced incidence of cancer. Metformin helps in reduction of excess insulin levels that possess various effects on cell signaling and metabolism. Nonetheless, there is need for an in-depth study on its molecular mechanism to fill any existing research gaps.
    Matched MeSH terms: Signal Transduction/drug effects
  20. Tan HH, Thomas NF, Inayat-Hussain SH, Chan KM
    Sci Rep, 2021 02 26;11(1):4773.
    PMID: 33637843 DOI: 10.1038/s41598-021-83163-7
    Cytoprotection involving the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is an important preventive strategy for normal cells against carcinogenesis. In our previous study, the chemopreventive potential of (E)-N-(2-(3, 5-Dimethoxystyryl) phenyl) furan-2-carboxamide (BK3C231) has been elucidated through its cytoprotective effects against DNA and mitochondrial damages in the human colon fibroblast CCD-18Co cell model. Therefore this study aimed to investigate the molecular mechanisms underlying BK3C231-induced cytoprotection and the involvement of the Nrf2/ARE pathway. The cells were pretreated with BK3C231 before exposure to carcinogen 4-nitroquinoline N-oxide (4NQO). BK3C231 increased the protein expression and activity of cytoprotective enzymes namely NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST) and heme oxygenase-1 (HO-1), as well as restoring the expression of glutamate-cysteine ligase catalytic subunit (GCLC) back to the basal level. Furthermore, dissociation of Nrf2 from its inhibitory protein, Keap1, and ARE promoter activity were upregulated in cells pretreated with BK3C231. Taken together, our findings suggest that BK3C231 exerts cytoprotection by activating the Nrf2 signaling pathway which leads to ARE-mediated upregulation of cytoprotective proteins. This study provides new mechanistic insights into BK3C231 chemopreventive activities and highlights the importance of stilbene derivatives upon development as a potential chemopreventive agent.
    Matched MeSH terms: Signal Transduction/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links