RESULTS: Compared with the neat semolina film, mechanical strength (TS) of the nanocomposite films increased significantly (increase in 21-65%) and water vapor barrier (WVP) and O2 gas barrier (OP) properties decreased significantly (decrease in 43-50% and 60-65%, respectively) depending on the blending ratio of ZnO and kaolin nanoclay. The nanocomposite films also exhibited strong antimicrobial activity against bacteria (E. coli and S. aureus), yeast (C. albicans), and mold (A. niger). The nanocomposite packaging films were effectively prevented the growth of microorganisms (coliforms, total microbial, and fungi) of the cheese during storage at low-temperature and showed microbial growth of less than 2.5 log CFU/g after 72 days of storage compared to the control group, and the quality of the packaged cheese was still acceptable.
CONCLUSION: The semolina-based nanocomposite films, especially Sem/Z3 K2 film, were effective for packaging of low moisture mozzarella cheese to maintain the physicochemical properties (pH, moisture, and fat content) and quality (color, taste, texture, and overall acceptability) of the cheese as well as preventing microbial growth (coliforms, total microbial, and fungi). © 2018 Society of Chemical Industry.
PRACTICAL APPLICATION: The results of this study provide a better understanding on the stability of bioactive compounds and antioxidant activities in oil-in-water nanoemulsions that stabilized by similar ternary emulsifiers during storage at different temperatures. In addition, this study could be used as a predictive model to estimate the shelf life of bioactive compounds encapsulated in the form of nanoemulsions.
RESULTS: Our results demonstrate genetic control for FCR in tilapia, with a heritability estimate of 0.32 ± 0.11. Response to selection estimates showed FCR could be efficiently improved by selective breeding. Due to low genetic correlations, selection for growth traits would not improve FCR. However, weight loss at fasting has a high genetic correlation with FCR (0.80 ± 0.25) and a moderate heritability (0.23), and could be an easy to measure and efficient criterion to improve FCR by selective breeding in tilapia.
CONCLUSION: At this age, FCR is genetically determined in Nile tilapia. A selective breeding program could be possible and could help enabling the development of a more sustainable aquaculture production.