The molecular composition and distribution of sterols were investigated in the East China Sea to identify the origins of suspended particulate matter (SPM) in offshore waters influenced by Changjiang River Diluted Water (CRDW). Total sterol concentrations ranged from 3200 to 31,900pgL(-1) and 663 to 5690pgL(-1) in the particulate and dissolved phases, respectively. Marine sterols dominated representing 71% and 66% in the particulate and dissolved phases, respectively. Typical sewage markers, such as coprostanol, were usually absent at ~250km offshore. However, sterols from allochthonous terrestrial plants were still detected at these sites. A negative relationship was observed between salinity and concentrations of terrestrial sterols in SPM, suggesting that significant amounts of terrestrial particulate matter traveled long distance offshore in the East China Sea, and the Changjiang River Diluted Water (CRDW) was an effective carrier of land-derived particulate organic matter to the offshore East China Sea.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
This study was undertaken to assess the levels of trace metals (As, Cd, Cu, Pb, and Zn) in two common species of cockles (Anadara granosa and Anadara inaequivalvis) from two coastal areas in Thailand (Pattani Bay) and Malaysia (the Setiu Wetlands). A total of 350 cockles were collected in February and September 2014. Trace metals were determined by Inductively Coupled Plasma Mass Spectrometry. We observed that cockles in both areas had a higher accumulation of metals in September. Notably, the biota-sediment accumulation (BSAF) of Cd was highest in both areas. A strong positive correlation of Cd with the length of the cockles at Pattani Bay (r(2) = 0.597) and the Setiu Wetlands (r(2) = 0.675) was noted. It was suggested that As could be a limiting element (BSAF < 1) of cockles obtained from Pattani Bay. In comparison with the permissible limits set by the Thailand Ministry of Public Health and the Malaysia Food Regulations, mean values of As, Cd, Cu, Pb, and Zn were within acceptable limits, but the maximum values of Cd and Pb exceeded the limits for both areas. Regular monitoring of trace metals in cockles from both areas is suggested for more definitive contamination determination.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Aqueous two-phase system (ATPS) extractive bioconversion provides a technique which integrates bioconversion and purification into a single step process. Extractive bioconversion of gamma-cyclodextrin (γ-CD) from soluble starch with cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) enzyme derived from Bacillus cereus was evaluated using polyethylene glycol (PEG)/potassium phosphate based on ATPS. The optimum condition was attained in the ATPS constituted of 30.0% (w/w) PEG 3000 g/mol and 7.0% (w/w) potassium phosphate. A γ-CD concentration of 1.60 mg/mL with a 19% concentration ratio was recovered after 1 h bioconversion process. The γ-CD was mainly partitioned to the top phase (YT=81.88%), with CGTase partitioning in the salt-rich bottom phase (KCGTase=0.51). Repetitive batch processes of extractive bioconversion were successfully recycled three times, indicating that this is an environmental friendly and a cost saving technique for γ-CD production and purification.
Eco-friendly pretreatment methods for lignocellulosic biomass are being developed as alternatives to chemical based methods. Superheated steam (SHS), hot compressed water (HCW) and wet disk milling (WDM) were used individually and with combination to partially remove hemicellulose and alter the lignin composition of recalcitrant structure of oil palm mesocarp fiber (OPMF). The efficiency of the pretreatment methods was evaluated based on the chemical compositions altered, SEM analysis, power consumption and degree of enzymatic digestibility. Hemicellulose removal (94.8%) was more pronounced under HCW compared to SHS, due to maximal contact of water and production of acetic acid which enhanced further degradation of hemicellulose. Subsequent treatment with WDM resulted in defibrillation of OPMF and expansion of the specific surface area thus increasing the conversion of cellulose to glucose. The highest glucose yield was 98.1% (g/g-substrate) when pretreated with HCW (200 °C, 20 min) and WDM which only consumed 9.6 MJ/kg of OPMF.
In this work, a genetic algorithm is applied for the automatic detection of oil spills. The procedure is implemented using sequences from RADARSAT-2 SAR ScanSAR Narrow single-beam data acquired in the Gulf of Mexico. The study demonstrates that the implementation of crossover allows for the generation of an accurate oil spill pattern. This conclusion is confirmed by the receiver-operating characteristic (ROC) curve. The ROC curve indicates that the existence of oil slick footprints can be identified using the area between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills, and the ScanSAR Narrow single-beam mode serves as an excellent sensor for oil spill detection and survey.
Matched MeSH terms: Water Pollutants, Chemical/chemistry*
A novel approach for the determination of Al(3+) from aqueous samples was developed using an optode membrane produced by physical inclusion of Al(3+) selective reagent, which is morin into a plasticized poly(vinyl chloride). The inclusion of Triton X-100 was found to be valuable and useful for enhancing the sorption of Al(3+) ions from liquid phase into the membrane phase, thus increasing the intensity of optode's absorption. The optode showed a linear increase in the absorbance at λ(max)=425 nm over the concentration range of 1.85×10(-6)-1.1×10(-4) mol L(-1) (0.05-3 μg mL(-1)) of Al(3+) ions in aqueous solution after 5 min. The limit of detection was determined to be 1.04×10(-6) mol L(-1) (0.028 μg mL(-1)). The optode developed in the present work was easily prepared and found to be stable, has good mechanical strength, sensitive and reusable. In addition, the optode was tested for Al(3+) determination in lake water, river water and pharmaceutical samples, which the result was satisfactory.
Matched MeSH terms: Water Pollutants, Chemical/analysis
Spent Pleurotus sajor-caju compost mixed with livestock excreta, i.e. cow dung or goat manure, was contaminated with landfill leachate and vermiremediated in 75 days. Results showed an extreme decrease of heavy metals, i.e. Cd, Cr and Pb up to 99.81% removal as effect of vermiconversion process employing epigeic earthworms i.e. Lumbricus rubellus. In addition, there were increments of Cu and Zn from 15.01% to 85.63%, which was expected as non-accumulative in L. rubellus and secreted out as contained in vermicompost. This phenomenon is due to dual effects of heavy metal excretion period and mineralisation. Nonetheless, the increments were 50-fold below the limit set by EU and USA compost limits and the Malaysian Recommended Site Screening Levels for Contaminated Land (SSLs). Moreover, the vermicompost C:N ratio range is 20.65-22.93 and it can be an advantageous tool to revitalise insalubrious soil by acting as soil stabiliser or conditioner.
Matched MeSH terms: Water Pollutants, Chemical/metabolism*
The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass.
Matched MeSH terms: Water Pollutants, Chemical/toxicity
The pyrolysis of karanj fruit hulls (KFH) and karanj fruit hull hydrothermal carbonization (KFH-HTC) hydrochar was thermogravimetrically investigated under a nitrogen environment at 5 °C/min, 10 °C/min, and 20 °C/min. The pyrolysis decomposition of KFH biomass was faster than that of KFH-HTC hydrochar because of the high volatility and fixed carbon of KFH biomass. Weight loss percentage was also affected by the heating rates. The kinetic data were evaluated with the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods. The activation energy values obtained with these two methods were 61.06 and 68.53 kJ/mol for KFH biomass and 130.49 and 135.87 kJ/mol for KFH-HTC hydrochar, respectively. The analysis of kinetic process mechanisms was verified with the Coats-Redfern method. KFH-HTC hydrochar may play a potential role in transforming biomass to energy-rich feedstock for thermochemical applications because of its high heating value, high fixed carbon, and low ash and sulfur contents.
Steam explosion of oil palm frond has been carried out under different temperatures between 180 and 210°C for 4 min (severity of 2.96-3.84) after impregnation of the frond chips with water or KOH solution. The effects of impregnation and steam explosion conditions of oil palm fronds on the water soluble fraction and insoluble fraction were investigated. The maximum yield of hemicelluloses in water soluble fractions recovered was 23.49% and 25.33% for water and KOH impregnation, treated with steam explosion at temperature of 210°C (severity of 3.84) with a fractionation efficiency of 77.30% and 83.32%, respectively. Under this condition, the water insoluble fractions contained celluloses at 60.83% and 64.80% for water and KOH impregnation, respectively. The steam explosion temperature of 210°C for 4 min (logR(o) 3.84) was found to be the best condition in the extraction of hemicelluloses from OPF for both types of impregnation.
Indian jujuba seed powder (IJSP) has been investigated as a low-cost and an eco-friendly biosorbent, prepared for the removal of Acid Blue 25 (AB25) from aqueous solution. The prepared biomaterial was characterized by using FTIR and scanning electron microscopic studies. The effect of operation variables, such as IJSP dosage, contact time, concentration, pH, and temperature on the removal of AB25 was investigated, using batch biosorption technique. Removal efficiency increased with increase of IJSP dosage but decreased with increase of temperature. The equilibrium data were analyzed by the Langmuir and the Freundlich isotherm models. The data fitted well with the Langmuir model with a maximum biosorption capacity of 54.95 mg g(-1). The pseudo-second-order kinetics was the best for the biosorption of AB25 by IJSP, with good correlation. Thermodynamic parameters such as standard free energy change (ΔG(0)), standard enthalpy changes (ΔH(0)), and standard entropy changes (ΔS(0)) were analyzed. The removal of AB25 from aqueous solution by IJSP was a spontaneous and exothermic adsorption process. The results suggest that IJSP is a potential low-cost and an eco-friendly biosorbent for the AB25 removal from synthetic AB25 wastewater.
Matched MeSH terms: Water Pollutants, Chemical/chemistry*
The biosynthesis of medium-chain-length poly-3-hydroxyalkanoates by Pseudomonas putida Bet001 cultivated on mixed carbon sources was investigated. The mixed carbon sources consisted of heptanoic acid (HA) and oleic acid (OA). A relatively low PHA content at 1.2% (w/w) and 11.4% (w/w) was obtained when HA or OA was used as the sole carbon source. When these fatty acids were supplied as a mixture, PHA content increased threefold. Interestingly, the mixture-derived PHA composed of both odd and even monomer units, namely. 3-hydroxyheptanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate and no unsaturated monomer was detected. It is hypothesized that the even-numbered monomers were derived primarily from OA, whereas the odd-numbered monomer was derived from HA. This also points out to an efficient and yet distinct fatty acids metabolism that fed the PHA biosynthesis machinery of this particular microorganism. PHA obtained was elastomeric because melting temperature (Tm ) and crystallinity were absent. It showed good thermal stability with degradation temperature (Td ) ranging from 275.96 to 283.05 °C.
The research was carried out at 3 study sites with varying groundwater arsenic (As) levels in the Kandal Province of Cambodia. Kampong Kong Commune was chosen as a highly contaminated site (300-500μg/L), Svay Romiet Commune was chosen as a moderately contaminated site (50-300μg/L) and Anlong Romiet Commune was chosen as a control site. Neurobehavioral tests on the 3 exposure groups were conducted using a modified WHO neurobehavioral core test battery. Seven neurobehavioral tests including digit symbol, digit span, Santa Ana manual dexterity, Benton visual retention, pursuit aiming, trail making and simple reaction time were applied. Children's hair samples were also collected to investigate the influence of hair As levels on the neurobehavioral test scores. The results from the inductively coupled plasma-mass spectrometry (ICP-MS) analyses of hair samples showed that hair As levels at the 3 study sites were significantly different (p<0.001), whereby hair samples from the highly contaminated site (n=157) had a median hair As level of 0.93μg/g, while the moderately contaminated site (n=151) had a median hair As level of 0.22μg/g, and the control site (n=214) had a median hair As level of 0.08μg/g. There were significant differences among the 3 study sites for all the neurobehavioral tests scores, except for digit span (backward) test. Multiple linear regression clearly shows a positive significant influence of hair As levels on all the neurobehavioral test scores, except for digit span (backward) test, after controlling for hair lead (Pb), manganese (Mn) and cadmium (Cd). Children with high hair As levels experienced 1.57-4.67 times greater risk of having lower neurobehavioral test scores compared to those with low hair As levels, after adjusting for hair Pb, Mn and Cd levels and BMI status. In conclusion, arsenic-exposed school children from the Kandal Province of Cambodia with a median hair As level of 0.93µg/g among those from the highly contaminated study site, showed clear evidence of neurobehavioral effects.
Matched MeSH terms: Water Pollutants, Chemical/metabolism*
A cross-sectional study was carried out to determine the arsenic (As) and cadmium (Cd) concentrations in blood, urine, and drinking water as well as the health implications on 100 residents in an urban and a rural community. Results showed the blood As, urinary Cd, DNA damage, and water As and Cs were significantly (P < 0.001) higher in the rural community. Findings showed significant (P < 0.005) correlations between blood As and DNA damage with household income, years of residence, and total glasses of daily water consumption among the rural residents. The urinary NAG concentrations, years of residence, milk powder intake (glass/week), and seafood intake (per week) were significantly correlated (P < 0.005) with urinary Cd concentrations among respondents. In addition, urinary Cd level significantly influenced the urinary NAG concentrations (P < 0.001). The rural respondents experienced significantly higher lymphocyte DNA damage and blood As influenced by their years of residence and water consumption. The Cd in drinking water also resulted in the rural respondents having significantly higher urinary NAG which had a significant relationship with urinary Cd.
This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion.
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.
A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.
Mycelium-bound lipase (MBL), from a locally isolated Geotrichum candidum strain, was produced and characterized as a natural immobilized lipase. A time course study of its lipolytic activity in 1 L liquid broth revealed the maximum MBL activity at 4 h for mycelium cells harvested after 54 h. The yield and specific activity of MBL were 3.87 g/L dry weight and 508.33 U/g protein, respectively, while less than 0.2 U/mL lipase activity was detected in the culture supernatant. Prolonged incubation caused release of the bound lipase into the growth medium. The growth pattern of G. candidum, and production and properties of MBL were not affected by the scale. The stability of mycelia harboring lipase (MBL), harvested and lyophilized after 54 h, studied at 4 °C depicted a loss of 4.3% and 30% in MBL activity after 1 and 8 months, while the activity of free lipase was totally lost after 14 days of storage. The MBL from G. candidum displayed high substrate selectivity for unsaturated fatty acids containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.
The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.
Matched MeSH terms: Water Pollutants, Chemical/chemistry*
The morphological expressions and histopathological analysis of the gonads of a tropical marine neogastropod species (Thais sp.) from East Malaysia revealed new evidence of mechanical sterility in the imposex affected females. The gradual development of imposex was classified into five stages (Stage 0 to Stage 4) with three types of sterility conditions; Type A caused prohibition of copulation and capsule formation; Type B prohibits the releasing process of eggs; and gonads in Type C are infertile. Further analysis is needed to confirm, if the gonad malformation in imposex affected snails is generated specifically by tributyltin (TBT) or by other possible factors. The levels of imposex incidence (stages and percentages) were greater in a marina and decreased with increasing distance from the marina. Organotin tissue burden across the sexes showed that dibutyltin (DBT) as well as TBT might be the elements inducing imposex in Thais sp. from Miri in East Malaysia.
Matched MeSH terms: Water Pollutants, Chemical/toxicity*