Displaying publications 2541 - 2560 of 3312 in total

Abstract:
Sort:
  1. Omar MS, Damanhuri NS, Kumolosasi E
    Turk J Gastroenterol, 2017 Jan;28(1):53-59.
    PMID: 27991853 DOI: 10.5152/tjg.2016.0409
    BACKGROUND/AIMS: Helicobacter pylori is a carcinogenic bacterium that could induce P-glycoprotein expression in the human gastrointestinal tract. Bacterial adherence to the gastrointestinal cell lines could be influenced by the level of P-glycoprotein. This study aimed to determine the influence of proton pump inhibitors that exhibit an inhibitory effect on P-glycoprotein in gastrointestinal carcinoma cell lines, namely Caco-2 and LS174T, in relation to H. pylori adherence.

    MATERIALS AND METHODS: Caco-2 and LS174T cells lines treated with omeprazole and esomeprazole were used in this study to assess the bacterial attachment of H. pylori within certain incubation periods.

    RESULTS: The presence of proton pump inhibitors increased the H. pylori adherence in a time-dependent manner in both Caco-2 and LS174T cell lines. The double inhibition of P-glycoprotein using proton pump inhibitor and P-glycoprotein inhibitor caused low P-glycoprotein expression in the cell lines, resulting in higher H. pylori adherence compared to the control cell lines.

    CONCLUSION: Proton pump inhibitors may alter P-glycoprotein expression in the gastrointestinal tract, and subsequently H. pylori adherence on the cell lines, and may contribute to resistance to drug therapy.

    Matched MeSH terms: Caco-2 Cells
  2. Lani R, Hassandarvish P, Shu MH, Phoon WH, Chu JJ, Higgs S, et al.
    Antiviral Res, 2016 Sep;133:50-61.
    PMID: 27460167 DOI: 10.1016/j.antiviral.2016.07.009
    This study focuses on the antiviral activity of selected flavonoids against the Chikungunya virus (CHIKV), a mosquito-transmitted virus that can cause incapacitating arthritis in infected individuals. Based on the results of screening on Vero cells, the tested compounds were evaluated further with various assays, including cytotoxicity assay, virus yield assay by quantitative reverse transcription polymerase chain reaction (qRT-PCR), virus RNA replication assay with a CHIKV replicon cell line, Western blotting, and quantitative immunofluorescence assay. Baicalein, fisetin, and quercetagetin displayed potent inhibition of CHIKV infection, with 50% inhibitory concentrations [IC50] of 1.891 μg/ml (6.997 μM), 8.444 μg/ml (29.5 μM), and 13.85 μg/ml (43.52 μM), respectively, and with minimal cytotoxicity. The time-of-addition studies and various antiviral assays demonstrated that baicalein and quercetagetin mainly inhibited CHIKV binding to the Vero cells and displayed potent activity against extracellular CHIKV particles. The qRT-PCR, immunofluorescence assay, and Western blot analyses indicated that each of these flavonoids affects CHIKV RNA production and viral protein expression. These data provide the first evidence of the intracellular anti-CHIKV activity of baicalein, fisetin, and quercetagetin.
    Matched MeSH terms: Vero Cells
  3. Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, et al.
    Parasitol Res, 2017 Feb;116(2):495-502.
    PMID: 27815736 DOI: 10.1007/s00436-016-5310-0
    A main challenge in parasitology is the development of reliable tools to prevent or treat mosquito-borne diseases. We investigated the toxicity of magnetic nanoparticles (MNP) produced by Magnetospirillum gryphiswaldense (strain MSR-1) on chloroquine-resistant (CQ-r) and sensitive (CQ-s) Plasmodium falciparum, dengue virus (DEN-2), and two of their main vectors, Anopheles stephensi and Aedes aegypti, respectively. MNP were studied by Fourier-transform infrared spectroscopy and transmission electron microscopy. They were toxic to larvae and pupae of An. stephensi, LC50 ranged from 2.563 ppm (1st instar larva) to 6.430 ppm (pupa), and Ae. aegypti, LC50 ranged from 3.231 ppm (1st instar larva) to 7.545 ppm (pupa). MNP IC50 on P. falciparum were 83.32 μg ml(-1) (CQ-s) and 87.47 μg ml(-1) (CQ-r). However, the in vivo efficacy of MNP on Plasmodium berghei was low if compared to CQ-based treatments. Moderate cytotoxicity was detected on Vero cells post-treatment with MNP doses lower than 4 μg ml(-1). MNP evaluated at 2-8 μg ml(-1) inhibited DEN-2 replication inhibiting the expression of the envelope (E) protein. In conclusion, our findings represent the first report about the use of MNP in medical and veterinary entomology, proposing them as suitable materials to develop reliable tools to combat mosquito-borne diseases.
    Matched MeSH terms: Vero Cells
  4. Arshad T, Khan KM, Rasool N, Salar U, Hussain S, Asghar H, et al.
    Bioorg Chem, 2017 06;72:21-31.
    PMID: 28346872 DOI: 10.1016/j.bioorg.2017.03.007
    On the basis of previous report on promising α-glucosidase inhibitory activity of 5-bromo-2-aryl benzimidazole derivatives, these derivatives were further screened for urease inhibitory and cytotoxicity activity in order to get more potent and non-cytotoxic potential dual inhibitor for the patients suffering from diabetes as well as peptic ulcer. In this study, all compounds showed varying degree of potency in the range of (IC50=8.15±0.03-354.67±0.19μM) as compared to standard thiourea (IC50=21.25±0.15μM). It is worth mentioning that derivatives 7 (IC50=12.07±0.05μM), 8 (IC50=10.57±0.12μM), 11 (IC50=13.76±0.02μM), 14 (IC50=15.70±0.12μM) and 22 (IC50=8.15±0.03μM) were found to be more potent inhibitors than standard. All compounds were also evaluated for cytotoxicity towards 3T3 mouse fibroblast cell line and found to be completely non-toxic. Previously benzimidazole 1-25 were also showed α-glucosidase inhibitory potential. In silico studies were performed on the lead molecules i.e.2, 7, 8, 11, 14, and 22, in order to rationalize the binding interaction of compounds with the active site of urease enzyme.
    Matched MeSH terms: 3T3 Cells
  5. Phyu WK, Ong KC, Kong CK, Alizan AK, Ramanujam TM, Wong KT
    Sci Rep, 2017 03 21;7:45069.
    PMID: 28322333 DOI: 10.1038/srep45069
    Hand-foot-and-mouth disease is a self-limiting paediatric infectious disease commonly caused by Enterovirus A71 (Genus: Enterovirus, Family: Picornaviridae). Typical lesions in and around the hands, feet, oral cavity and other places may rarely be complicated by acute flaccid paralysis and acute encephalomyelitis. Although virus is readily cultured from skin vesicles and oral secretions, the cellular target/s of Enterovirus A71 in human skin and oral mucosa are unknown. In Enterovirus A71-infected human skin and oral mucosa organotypic cultures derived from the prepuce and lip biopsies, focal viral antigens and viral RNA were localized to cytoplasm of epidermal and mucosal squamous cells as early as 2 days post-infection. Viral antigens/RNA were associated with cytoplasmic vacuolation and cellular necrosis. Infected primary prepuce epidermal keratinocyte cultures showed cytopathic effects with concomitant detection of viral antigens from 2 days post-infection. Supernatant and/or tissue homogenates from prepuce skin organotypic cultures and primary prepuce keratinocyte cultures showed viral titres consistent with active viral replication. Our data strongly support Enterovirus A71 squamous epitheliotropism in the human epidermis and oral mucosa, and suggest that these organs are important primary and/or secondary viral replication sites that contribute significantly to oral and cutaneous viral shedding resulting in person-to-person transmission, and viraemia, which could lead to neuroinvasion.
    Matched MeSH terms: Vero Cells
  6. Ang Pei-Shen, Rajesh Ramasamy, Noor Hamidah Hussin, Cheong Soon-Keng, Seow Heng-Fong, Maha Abdullah
    MyJurnal
    Introduction: The phenotype and genotype of cancer cells portray hallmarks of cancer which may
    have clinical value. Cancer cell lines are ideal models to study and confirm these characteristics. We
    previously established two subtracted cDNA libraries with differentially expressed genes from an
    acute myeloid leukaemia patient with poor prognosis (PP) and good prognosis (GP). Objective: To
    compare gene expression of the leukaemia associated genes with selected biological characteristics
    in leukaemia cell lines and normal controls. Methodology: Expression of 28 PP genes associated
    with early fetal/embryonic development, HOX-related genes, hematopoiesis and aerobic glycolysis/
    hypoxia genes and 36 GP genes involved in oxidative phosphorylation, protein synthesis, chromatin
    remodelling and cell motility were examined in B-lymphoid (BV173, Reh and RS4;11) and myeloid
    (HL-60, K562) leukaemia cell lines after 72h in culture as well as peripheral blood mononuclear cells
    from healthy controls (N=5) using semi-quantitative polymerase chain reaction (PCR) method. Cell
    cycle profiles were analysed on flow cytometry while MTT cytotoxicity assay was used to determine
    drug resistance to epirubicin. Results: Genes expressed significantly higher in B-lymphoid leukaemia
    cell lines compared to healthy controls were mostly of the GP library i.e. oxidative phosphorylation
    (3/10), protein synthesis (4/11), chromatin remodelling (3/3) and actin cytoskeleton genes (1/5). Only
    two genes with significant difference were from the PP library. Cancer associated genes, HSPA9 and
    PSPH (GP library) and BCAP31 (PP library) were significantly higher in the B-lymphoid leukemia cell
    lines. No significant difference was observed between myeloid cell lines and healthy controls. This
    may also be due heterogeneity of cell lines studied. PBMC from healthy controls were not in cell cycle.
    G2/M profiles and growth curves showed B-lymphoid cells just reaching plateau after 72 hour culture
    while myeloid cells were declining. IC50 values from cytotoxicity assay revealed myeloid cell lines had
    an average 13-fold higher drug resistance to epirubicin compared to B-lymphoid cell lines. Only CCL1,
    was expressed at least two-fold higher in myeloid compared to B-lymphoid cell lines. In contrast,
    MTRNR2, EEF1A1, PTMA, HLA-DR, C6orf115, PBX3, ENPP4, SELL, and IL3Ra were expressed
    more than 2-fold higher in B-lymphoid compared to myeloid cell lines studied here. Conclusion: Thus,
    B-lymphoid leukaemia cell lines here exhibited active, proliferating characteristics closer to GP genes.
    Higher expression of several genes in B-lymphoid compared to myeloid leukaemia cell lines may be
    useful markers to study biological differences including drug resistance between lineages.
    Matched MeSH terms: HL-60 Cells
  7. Salmons B, Lim PY, Djurup R, Cardosa J
    Vaccine, 2018 10 29;36(45):6623-6630.
    PMID: 30293762 DOI: 10.1016/j.vaccine.2018.09.062
    A candidate hand, foot, and mouth disease vaccine comprising of human enterovirus A71 (EV-A71) virus-like particles (VLPs) was tested in rabbits to evaluate the potential local and systemic effects of this vaccine. The rabbits received more than double the full human dose and one additional dose according to the n + 1 recommended scheme. The three doses were given mixed with Alhydrogel adjuvant as intramuscular (IM) injections. Vaccinations were well-tolerated, with no indication of overt toxicity in any parameter observed. An EV-A71 specific immune response in the form of antibodies that specifically reacted with the virus capsid proteins VP1 and VP0, the complete VLP, and EV-A71 viruses of different subgenotypes to that of the vaccine could be demonstrated. A boosting effect in the form of higher EV-A71 specific antibody titers was observed after the subsequent doses, and these enhanced titers were shown to be statistically significant in one-way ANOVA analyses. Fortnightly intramuscular administration of EV-A71 VLP vaccine did not result in any test article-related changes in immunotoxicity as defined by increased serum IL-6, and in general IL-6 concentrations remained below the lower limit of quantitation for the majority of animals throughout the study. Although increased indicators of inflammation at the injection site were observed in animals sacrificed immediately after the last vaccination, these largely reversed at the end of the recovery phase. No findings suggestive of systemic or delayed toxicity were recorded in this independently conducted study. In conclusion, repeated IM administration of the EV-A71 VLP vaccine were locally and systemically well-tolerated in rabbits and immunogenic, supporting the clinical development of the vaccine.
    Matched MeSH terms: Vero Cells
  8. Fong MY, Cheong FW, Lau YL
    Parasit Vectors, 2018 Sep 26;11(1):527.
    PMID: 30257710 DOI: 10.1186/s13071-018-3118-8
    BACKGROUND: The merozoite of the zoonotic Plasmodium knowlesi invades human erythrocytes via the binding of its Duffy binding protein (PkDBPαII) to the Duffy antigen on the eythrocytes. The Duffy antigen has two immunologically distinct forms, Fya and Fyb. In this study, the erythrocyte-binding assay was used to quantitatively determine and compare the binding level of PkDBPαII to Fya+/b+ and Fya+/b- human erythrocytes.

    RESULTS: In the erythrocyte-binding assay, binding level was determined by scoring the number of rosettes that were formed by erythrocytes surrounding transfected mammalian COS-7 cells which expressed PkDBPαII. The assay result revealed a significant difference in the binding level. The number of rosettes scored for Fya+/b+ was 1.64-fold higher than that of Fya+/b- (155.50 ± 34.32 and 94.75 ± 23.16 rosettes, respectively; t(6) = -2.935, P = 0.026).

    CONCLUSIONS: The erythrocyte-binding assay provided a simple approach to quantitatively determine the binding level of PkDBPαII to the erythrocyte Duffy antigen. Using this assay, PkDBPαII was found to display higher binding to Fya+/b+ erythrocytes than to Fya+/b- erythrocytes.

    Matched MeSH terms: COS Cells
  9. Megat Nabil Mohsin S, Hussein MZ, Sarijo SH, Fakurazi S, Arulselvan P, Taufiq-Yap YH
    Int J Nanomedicine, 2018;13:6359-6374.
    PMID: 30349255 DOI: 10.2147/IJN.S171390
    Introduction: The potential of layered double hydroxide (LDH) as a host of multiple ultraviolet-ray absorbers was investigated by simultaneous intercalation of benzophenone 4 (B4) and Eusolex® 232 (EUS) in Zn/Al LDH.

    Methods: The nanocomposites were prepared via coprecipitation method at various molar ratios of B4 and EUS.

    Results: At equal molar ratios, the obtained nanocomposite showed an intercalation selectivity that is preferential to EUS. However, the selectivity ratio of intercalated anions was shown to be capable of being altered by adjusting the molar ratio of intended guests during synthesis. Dual-guest nanocomposite synthesized with B4:EUS molar ratio 3:1 (ZEB [3:1]) showed an intercalation selectivity ratio of B4:EUS =53:47. Properties of ZEB (3:1) were monitored using powder X-ray diffractometer to show a basal spacing of 21.8 Å. Direct-injection mass spectra, Fourier transform infrared spectra, and ultraviolet-visible spectra confirmed the dual intercalation of both anions into the interlayer regions of dual-guest nanocomposite. The cytotoxicity study of dual-guest nanocomposite ZEB (3:1) on human dermal fibroblast cells showed no significant toxicity until 25 μg/mL.

    Conclusion: Overall, the findings demonstrate successful customization of ultraviolet-ray absorbers composition in LDH host.

    Matched MeSH terms: Cells, Cultured
  10. Thent ZC, Froemming GRA, Ismail ABM, Fuad SBSA, Muid S
    Life Sci, 2018 Oct 01;210:214-223.
    PMID: 30145154 DOI: 10.1016/j.lfs.2018.08.057
    AIMS: Phytoestrogens and xenoestrogens act as agonists/antagonists in bone formation and differentiation. Strong bones are depending of the ability of osteoblasts to form new tissue and to mineralize the newly formed tissue. Dysfunctional or loss of mineralization leads to weak bone and increased fracture risk. In this study, we reported the effect of different types of phytoestrogens (daidzein, genistein and equol) on mineralization in hFOB 1.19 cells stimulated with bisphenol A (BPA).

    MAIN METHODS: Cell mineralization capacity of phytoestrogens was investigated by evaluating calcium, phosphate content and alkaline phosphatase activity. Bone related markers, osteocalcin and osteonectin, responsible in maintaining mineralization were also measured.

    KEY FINDINGS: BPA is significantly interfering with bone mineralization in hFOB 1.19 cells. However, the enhanced mineralization efficacy of daidzein and genistein (particularly at a dose of 5 and 40 μg/mL, respectively) was evidenced by increasing calcium and phosphate content, higher ALP activity, compared to the untreated BPA group. The quantitative analyses were confirmed through morphological findings. Osteocalcin and osteonectin levels were increased in phytoestrogens-treated cells. These findings revealed the potential effect of phytoestrogens in reverting the demineralization process due to BPA exposure in hFOB 1.19 cells.

    SIGNIFICANCE: We found that osteoblast differentiation and mineralization were maintained following treatment with phytoestrogens under BPA exposure.

    Matched MeSH terms: Cells, Cultured
  11. Vijayan V, Shalini K, Yugesvaran V, Yee TH, Balakrishnan S, Palanimuthu VR
    Curr Pharm Des, 2018;24(28):3366-3375.
    PMID: 30179118 DOI: 10.2174/1381612824666180903110301
    BACKGROUND: Triple-Negative Breast Cancer is an aggressive type of breast cancer, which is not treatable by chemotherapy drugs, due to the lack of Estrogen Receptor (ER), Progesterone Receptor (PR) expression and Human Epidermal Growth Factor Receptor 2 (HER2) on the cell surface.

    OBJECTIVE: The aim of this study was to compare the effect of paclitaxel loaded PLGA nanoparticle (PTX-NPs) on the cytotoxicity and apoptosis of the different MDA-MB type of cell lines.

    METHOD: PTX-NPs were prepared by nanoprecipitation method and characterized earlier. The cytotoxicity of PTX-NPs was evaluated by MTT and LDH assay, later apoptosis was calculated by flow cytometry analysis.

    RESULTS: The prepared NP size of 317.5 nm and zetapontial of -12.7 mV showed drug release of 89.1 % at 48 h. MDA-MB-231 type cell showed significant cytotoxicity by MTT method of 47.4 ± 1.2 % at 24 h, 34.6 ± 0.8 % at 48 h and 23.5 ± 0.5 % at 72 h and LDH method of 35.9 ± 1.5 % at 24 h, 25.4 ± 0.6 % at 48 h and 19.8 ± 2.2 % at 72 h with apoptosis of 47.3 ± 0.4 %.

    CONCLUSION: We have found that PTX-NPs showed the cytotoxic effect on all the MDA-MB cancer cell lines and showed potent anticancer activities against MDA-MB-231 cell line via induction of apoptosis.

    Matched MeSH terms: Tumor Cells, Cultured
  12. Yun SI, Song BH, Frank JC, Julander JG, Olsen AL, Polejaeva IA, et al.
    Viruses, 2018 08 11;10(8).
    PMID: 30103523 DOI: 10.3390/v10080422
    Zika virus (ZIKV) causes no-to-mild symptoms or severe neurological disorders. To investigate the importance of viral and host genetic variations in determining ZIKV infection outcomes, we created three full-length infectious cDNA clones as bacterial artificial chromosomes for each of three spatiotemporally distinct and genetically divergent ZIKVs: MR-766 (Uganda, 1947), P6-740 (Malaysia, 1966), and PRVABC-59 (Puerto Rico, 2015). Using the three molecularly cloned ZIKVs, together with 13 ZIKV region-specific polyclonal antibodies covering nearly the entire viral protein-coding region, we made three conceptual advances: (i) We created a comprehensive genome-wide portrait of ZIKV gene products and their related species, with several previously undescribed gene products identified in the case of all three molecularly cloned ZIKVs. (ii) We found that ZIKV has a broad cell tropism in vitro, being capable of establishing productive infection in 16 of 17 animal cell lines from 12 different species, although its growth kinetics varied depending on both the specific virus strain and host cell line. More importantly, we identified one ZIKV-non-susceptible bovine cell line that has a block in viral entry but fully supports the subsequent post-entry steps. (iii) We showed that in mice, the three molecularly cloned ZIKVs differ in their neuropathogenicity, depending on the particular combination of viral and host genetic backgrounds, as well as in the presence or absence of type I/II interferon signaling. Overall, our findings demonstrate the impact of viral and host genetic variations on the replication kinetics and neuropathogenicity of ZIKV and provide multiple avenues for developing and testing medical countermeasures against ZIKV.
    Matched MeSH terms: Vero Cells
  13. Khaghani SAB, Akbarova G, Soon CF, Dilbazi G
    Cell Tissue Bank, 2018 Dec;19(4):763-775.
    PMID: 30377863 DOI: 10.1007/s10561-018-9732-z
    Cytokines are extremely potent biomolecules that regulate cellular functions and play multiple roles in initiation and inhibition of disease. These highly specialised macromolecules are actively involved in control of cellular proliferation, apoptosis, cell migration and adhesion. This work, investigates the effect of transforming growth factor-beta2 (TGF-β2) on the biological regulation of chondrocyte and the repair of a created model wound on a multilayer culture system. Also the effect of this cytokine on cell length, proliferation, and cell adhesion has been investigated. Chondrocytes isolated from knee joint of rats and cultured at 4 layers. Each layer consisted of 2 × 105 cells/ml with and without TGF-β2. The expression of mRNA and protein levels of TGF-β receptors and Smad1, 3, 4, and 7 have been analysed by RT-PCR and western blot analysis. The effect of different supplementations in chondrocyte cell proliferation, cell length, adhesion, and wound repair was statistically analysed by One-way ANOVA test. Our results showed that the TGFβ2 regulates mRNA levels of its own receptors, and of Smad3 and Smad7. Also the TGF-β2 caused an increase in chondrocyte cell length, but decreased its proliferation rate and the wound healing process. TGF-β2 also decreased cell adhesion ability to the surface of the culture flask. Since, TGF-β2 increased the cell size, but showed negative effect on cell proliferation and adhesion of CHC, the effect of manipulated TGF-β2 with other growth factors and/or proteins needs to be investigated to finalize the utilization of this growth factor and design of scaffolding in treatment of different types of arthritis.
    Matched MeSH terms: Cells, Cultured
  14. Syed Azhar SNA, Ashari SE, Salim N
    Int J Nanomedicine, 2018;13:6465-6479.
    PMID: 30410332 DOI: 10.2147/IJN.S171532
    Introduction: Kojic monooleate (KMO) is an ester derived from a fungal metabolite of kojic acid with monounsaturated fatty acid, oleic acid, which contains tyrosinase inhibitor to treat skin disorders such as hyperpigmentation. In this study, KMO was formulated in an oil-in-water nanoemulsion as a carrier for better penetration into the skin.

    Methods: The nanoemulsion was prepared by using high and low energy emulsification technique. D-optimal mixture experimental design was generated as a tool for optimizing the composition of nanoemulsions suitable for topical delivery systems. Effects of formulation variables including KMO (2.0%-10.0% w/w), mixture of castor oil (CO):lemon essential oil (LO; 9:1) (1.0%-5.0% w/w), Tween 80 (1.0%-4.0% w/w), xanthan gum (0.5%-1.5% w/w), and deionized water (78.8%-94.8% w/w), on droplet size as a response were determined.

    Results: Analysis of variance showed that the fitness of the quadratic polynomial fits the experimental data with F-value (2,479.87), a low P-value (P<0.0001), and a nonsignificant lack of fit. The optimized formulation of KMO-enriched nanoemulsion with desirable criteria was KMO (10.0% w/w), Tween 80 (3.19% w/w), CO:LO (3.74% w/w), xanthan gum (0.70% w/w), and deionized water (81.68% w/w). This optimum formulation showed good agreement between the actual droplet size (110.01 nm) and the predicted droplet size (111.73 nm) with a residual standard error <2.0%. The optimized formulation with pH values (6.28) showed high conductivity (1,492.00 µScm-1) and remained stable under accelerated stability study during storage at 4°C, 25°C, and 45°C for 90 days, centrifugal force as well as freeze-thaw cycles. Rheology measurement justified that the optimized formulation was more elastic (shear thinning and pseudo-plastic properties) rather than demonstrating viscous characteristics. In vitro cytotoxicity of the optimized KMO formulation and KMO oil showed that IC50 (50% inhibition of cell viability) value was >100 µg/mL.

    Conclusion: The survival rate of 3T3 cell on KMO formulation (54.76%) was found to be higher compared to KMO oil (53.37%) without any toxicity sign. This proved that the KMO formulation was less toxic and can be applied for cosmeceutical applications.

    Matched MeSH terms: 3T3 Cells
  15. Anwar A, Siddiqui R, Raza Shah M, Ahmed Khan N
    J Microbiol Biotechnol, 2019 Jan 28;29(1):171-177.
    PMID: 30415525 DOI: 10.4014/jmb.1805.05028
    Parasitic infections have remained a significant burden on human and animal health. In part, this is due to lack of clinically-approved, novel antimicrobials and a lack of interest by the pharmaceutical industry. An alternative approach is to modify existing clinically-approved drugs for efficient delivery formulations to ensure minimum inhibitory concentration is achieved at the target site. Nanotechnology offers the potential to enhance the therapeutic efficacy of drugs through modification of nanoparticles with ligands. Amphotericin B, nystatin, and fluconazole are clinically available drugs in the treatment of amoebal and fungal infections. These drugs were conjugated with gold nanoparticles. To characterize these gold-conjugated drug, atomic force microscopy, ultraviolet-visible spectrophotometry and Fourier transform infrared spectroscopy were performed. These drugs and their gold nanoconjugates were examined for antimicrobial activity against the protist pathogen, Acanthamoeba castellanii of the T4 genotype. Moreover, host cell cytotoxicity assays were accomplished. Cytotoxicity of these drugs and drug-conjugated gold nanoparticles was also determined by lactate dehydrogenase assay. Gold nanoparticles conjugation resulted in enhanced bioactivity of all three drugs with amphotericin B producing the most significant effects against Acanthamoeba castellanii (p < 0.05). In contrast, bare gold nanoparticles did not exhibit antimicrobial potency. Furthermore, amoebae treated with drugs-conjugated gold nanoparticles showed reduced cytotoxicity against HeLa cells. In this report, we demonstrated the use of nanotechnology to modify existing clinically-approved drugs and enhance their efficacy against pathogenic amoebae. Given the lack of development of novel drugs, this is a viable approach in the treatment of neglected diseases.
    Matched MeSH terms: HeLa Cells
  16. Cheong HC, Lee CYQ, Cheok YY, Shankar EM, Sabet NS, Tan GMY, et al.
    Immunobiology, 2019 01;224(1):34-41.
    PMID: 30477893 DOI: 10.1016/j.imbio.2018.10.010
    BACKGROUND: Persistent inflammation caused by Chlamydia trachomatis in the female genital compartment represents one of the major causes of pelvic inflammatory disease (PID), ectopic pregnancy and infertility in females. Here, we examined the pro-inflammatory cytokine response following stimulation with three different types of C. trachomatis antigens, viz. chlamydial protease-like factor (CPAF), heat shock protein 60 (HSP60) and major outer membrane protein (MOMP).

    METHODS: A total of 19 patients with genital C. trachomatis infection and 10 age-matched healthy controls were recruited for the study. Peripheral blood mononuclear cells (PBMCs) isolated from genital C. trachomatis-infected females were cultured in the presence of CPAF, HSP60 and MOMP antigens, and cytokines were measured by ELISA assay.

    RESULTS: We reported that pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) were robustly secreted following antigenic exposure. Notably, CPAP and MOMP were more potent in triggering IL-1β, as compared to HSP60. Elevated levels of the proinflammatory cytokines were also noted in the samples infected with plasmid-bearing C. trachomatis as compared to those infected with plasmid-free strains.

    CONCLUSIONS: Our study highlights distinct ability of chlamydial antigens in triggering pro-inflammatory response in the host immune cells.

    Matched MeSH terms: Cells, Cultured
  17. Ma B, Khazali A, Shao H, Jiang Y, Wells A
    Cell Commun Signal, 2019 12 12;17(1):164.
    PMID: 31831069 DOI: 10.1186/s12964-019-0489-1
    BACKGROUND: Carcinoma cells shift between epithelial and mesenchymal phenotypes during cancer progression, as defined by surface presentation of the cell-cell cohesion molecule E-cadherin, affecting dissemination, progression and therapy responsiveness. Concomitant with the loss of E-cadherin during the mesenchymal transition, the predominant receptor isoform for ELR-negative CXC ligands shifts from CXCR3-B to CXCR3-A which turns this classical G-protein coupled receptor from an inhibitor to an activator of cell migration, thus promoting tumor cell invasiveness. We proposed that CXCR3 was not just a coordinately changed receptor but actually a regulator of the cell phenotype.

    METHODS: Immunoblotting, immunofluorescence, quantitative real-time PCR and flow cytometry assays investigated the expression of E-cadherin and CXCR3 isoforms. Intrasplenic inoculation of human prostate cancer (PCa) cells with spontaneous metastasis to the liver analyzed E-cadherin and CXCR3-B expression during cancer progression in vivo.

    RESULTS: We found reciprocal regulation of E-cadherin and CXCR3 isoforms. E-cadherin surface expression promoted CXCR3-B presentation on the cell membrane, and to a lesser extent increased its mRNA and total protein levels. In turn, forced expression of CXCR3-A reduced E-cadherin expression level, whereas CXCR3-B increased E-cadherin in PCa. Meanwhile, a positive correlation of E-cadherin and CXCR3-B expression was found both in experimental PCa liver micro-metastases and patients' tissue.

    CONCLUSIONS: CXCR3-B and E-cadherin positively correlated in vitro and in vivo in PCa cells and liver metastases, whereas CXCR3-A negatively regulated E-cadherin expression. These results suggest that CXCR3 isoforms may play important roles in cancer progression and dissemination via diametrically regulating tumor's phenotype.

    Matched MeSH terms: Tumor Cells, Cultured
  18. Farghadani R, Seifaddinipour M, Rajarajeswaran J, Abdulla MA, Mohd Hashim NB, Khaing SL, et al.
    PeerJ, 2019;7:e7686.
    PMID: 31608167 DOI: 10.7717/peerj.7686
    Breast cancer is the most frequently diagnosed cancer among women worldwide. Recently, increasing attention has been paid to the anticancer effects of transition metal complexes of indole Schiff bases. β-diiminato ManganeseIII complex has shown promising cell cycle arrest and apoptosis induction against MCF-7 and MDA-MB-231 breast cancer cells. In this study, time- and dose- dependent inhibitory activity were evaluated using MTT assay after 48 h and 72 h exposure time. In addition, median effect analysis was conducted according to Chou-Talalay method to investigate whether MnIII complex has synergistic effect in combination with chemotherapeutic drugs on inhibiting breast cancer cell growth. The molecular mechanisms underlying its potent antiproliferative effect was determined through bioluminescent caspase-3/7, -8 and -9 activity assays and quantitative expression analysis of cell cycle- and apoptosis-related genes. Furthermore, safety evaluation of MnIII complex was assessed through the acute oral toxicity test in in vivo model. The MTT assay results revealed that it potently reduced the viability of MCF-7 (IC50 of 0.63 ± 0.07 µg/mL for 48 h and 0.39 ± 0.08 µg/mL for 72 h) and MDA-MB-231 (1.17 ± 0.06 µg/mL for 48 h, 1.03 ± 0.15 µg/mL for 72 h) cells in dose- and time-dependent manner. Combination treatment also enhanced the cytotoxic effects of doxorubicin but not tamoxifen on inhibiting breast cancer cell growth. The involvement of intrinsic and extrinsic pathway in apoptosis induction was exhibited through the increased activity of caspase-9 and caspase-8, respectively, leading to enhanced downstream executioner caspase-3/7 activity in treated MCF-7 and MDA-MB-231 cells. In addition, gene expression analysis revealed that MnIII complex exerts its antiproliferative effect via up-and down-regulation of p21 and cyclin D1, respectively, along with increased expression of Bax/Bcl-2 ratio, TNF-α, initiator caspase-8 and -10 and effector caspase-3 in MCF-7 and MDA-MB-231 cells. However, the results did not show increased caspase-8 activity in treated MCF-7 cells. Furthermore, in vivo acute oral toxicity test revealed no signs of toxicity and mortality in treated animal models compared to the control group. Collectively, the promising inhibitory effect and molecular and mechanistic evidence of antiproliferative activity of MnIII complex and its safety characterization have demonstrated that it may have therapeutic value in breast cancer treatment worthy of further investigation and development.
    Matched MeSH terms: MCF-7 Cells
  19. Bala JA, Balakrishnan KN, Jesse FFA, Abdullah AA, Noorzahari MSB, Ghazali MT, et al.
    Infect Genet Evol, 2020 01;77:104076.
    PMID: 31678648 DOI: 10.1016/j.meegid.2019.104076
    There is a little information on the characterization of Orf virus strains that are endemic in Malaysia. The relationship between the severity of disease and the molecular genetic profile of Orf virus strains has not been fully elucidated. This study documented the first confirmed report of contagious ecthyma causing by Orf virus in goats from a selected state of eastern peninsular Malaysia. The disease causes significant debilitation due to the inability of affected animals to suckle which brings a great economic loss to the farmers. A total of 504 animals were examined individually to recognize the affected animals with Orf lesion. Skin scrapping was used to collect the scab material from the infected animals. The presence of Orf virus was confirmed by combination of methods including virus isolation on vero cells, identification by Transmission Electron Microscopy (TEM) and molecular technique using PCR and Sanger sequencing. The results showed the successful isolation of four Orf virus strains with a typical cytopathic effects on the cultured vero cells line. The morphology was confirmed to be Orf virus with a distinctive ovoid and criss cross structure. The phylogenetic analysis revealed that these isolated strains were closely related to each other and to other previously isolated Malaysian orf viruses. In addition these Orf virus strains were closely related to Orf viruses from China and India. This study provides more valuable insight in terms of genotype of Orf virus circulating in Malaysia.
    Matched MeSH terms: Vero Cells
  20. Ichimizu S, Watanabe H, Maeda H, Hamasaki K, Ikegami K, Chuang VTG, et al.
    J Control Release, 2019 06 28;304:156-163.
    PMID: 31082432 DOI: 10.1016/j.jconrel.2019.05.015
    We recently developed a cell-penetrating drug carrier composed of albumin (HSA) combined with palmitoyl-cyclic-(D-Arg)12. While it is possible that the palmitoyl-cyclic-(D-Arg)12/HSA enters the cell mainly via macropinocytosis, the mechanism responsible for the induction of macropinocytosis and endosomal escape remain unknown. We report herein that palmitoyl-cyclic-(D-Arg)12/HSA might interact with heparan sulfate proteoglycan and the chemokine receptor CXCR4 followed by multiple activations of the PKC/PI3K/JNK/mTOR signaling pathways to induce macropinocytosis. This result was further confirmed by a co-treatment with 70 kDa dextran, a macropinocytosis marker. Using liposomes that mimic endosomes, the leakage of 5,6-carboxyfluorescein from liposome was observed in the presence of palmitoyl-cyclic-(D-Arg)12/HSA only in the case of the anionic late endosome-like liposomes but not the neutral early endosome-like liposomes. Heparin largely inhibited this leakage, suggesting the importance of electrostatic interactions between palmitoyl-cyclic-(D-Arg)12/HSA and the late-endosomal membrane. Immunofluorescence staining and Western blotting data indicated that the intact HSA could be transferred from endosomes to the cytosol. These collective data suggest that the palmitoyl-cyclic-(D-Arg)12/HSA is internalized via macropinocytosis and intact HSA is released from the late endosomes to the cytoplasm before the endosomes fuse with lysosomes. Palmitoyl-cyclic-(D-Arg)12/HSA not only functions as an intracellular drug delivery carrier but also as an inducer of macropinocytosis.
    Matched MeSH terms: HeLa Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links