We retrospectively reviewed poisoning admissions to all government health facilities from 1999 to 2001, in an effort to expand our current knowledge on poisoning in Malaysia to a level that better reflects a nationwide burden. There were 21 714 admissions reported with 779 deaths. The case-fatality rate was 35.88/1000 admissions. The majority of admissions (89.7%) and deaths (98.9%) occurred in adults. Some 55.1% of all admissions were female, mostly involving pharmaceutical agents. Male poisoning admissions were more often due to chemical substances. The prevalence of poisoning and death was highest among Indians compared to all other races in Malaysia. Overall, the majority of poisoning admissions were due to pharmaceutical agents, with agents classified as non-opioid analgesics, anti-pyretics and anti-rheumatics the most common. Pesticides accounted for the largest number of fatalities. It was also the commonest substance reported in cases of intentional self-harm. Most cases of poisoning admissions occurred due to accidental exposure (47%), followed by cases of intentional self-harm (20.7%). Overall, this study has managed to contribute substantial additional information regarding the epidemiology of poisoning in Malaysia, highlighting important issues, such as the rampant poisonings involving pesticides and analgesics, as well as the high prevalence of poisoning among Indians in Malaysia.
The effect of organic solvent on the structure and dynamics of proteins was investigated by multiple molecular dynamics simulations (1 ns each) of Candida rugosa lipase in water and in carbon tetrachloride. The choice of solvent had only a minor structural effect. For both solvents the open and the closed conformation of the lipase were near to their experimental X-ray structures (C(alpha) rms deviation 1-1.3 A). However, the solvents had a highly specific effect on the flexibility of solvent-exposed side chains: polar side chains were more flexible in water, but less flexible in organic solvent. In contrast, hydrophobic residues were more flexible in organic solvent, but less flexible in water. As a major effect solvent changed the dynamics of the lid, a mobile element involved in activation of the lipase, which fluctuated as a rigid body about its average position. While in water the deviations were about 1.6 A, organic solvent reduced flexibility to 0.9 A. This increase rigidity was caused by two salt bridges (Lys85-Asp284, Lys75-Asp79) and a stable hydrogen bond (Lys75-Asn 292) in organic solvent. Thus, organic solvents stabilize the lid but render the side chains in the hydrophobic substrate-binding site more mobile. [figure: see text]. Superimposition of open (black, PDB entry 1CRL) and closed (gray, PDB entry 1TRH) conformers of C. rugosa lipase. The mobile lid is indicated.
A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor.
The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability.
A non-redundant database of 4536 structural domains, comprising more than 790,000 residues, has been used for the calculation of their solvent accessibility in the native protein environment and then in the isolated domain environment. Nearly 140,000 (18%) residues showed a change in accessible surface area in the above two conditions. General features of this change under these two circumstances have been pointed out. Propensities of these interfacing amino acid residues have been calculated and their variation for different secondary structure types has been analyzed. Actual amount of surface area lost by different secondary structures is higher in the case of helix and strands compared to coil and other conformations. Overall change in surface area in hydrophobic and uncharged residues is higher than that in charged residues. An attempt has been made to know the predictability of interface residues from sequence environments. This analysis and prediction results have significant implications towards determining interacting residues in proteins and for the prediction of protein-protein, protein-ligand, protein-DNA and similar interactions.
An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.
Secondary metabolite contents (total phenolic, flavonoid, tocopherol, and tocotrienol) and antioxidant activities of Hashemi rice bran extracts obtained by ultrasound-assisted and traditional solvent (ethanol and 50:50 (v/v) ethanol-water) extraction techniques were compared. Phenolic and, flavonoid compounds were identified using ultra-high performance liquid chromatography and method validation was performed. Significant differences (p < 0.05) were observed among the different extraction techniques upon comparison of phytochemical contents and antioxidant activities. The extracts obtained using the ethanol-water (50:50 v/v) ultrasonic technique showed the highest amounts of total phenolics (288.40 mg/100 g dry material (DM)), total flavonoids (156.20 mg/100 g DM), and total tocotrienols (56.23 mg/100 g DM), and the highest antioxidant activity (84.21% 1,1-diphenyl-2-picrylhydrazyl (DPPH), 65.27% β-carotene-linoleic bleaching and 82.20% nitric oxide scavenging activity). Secondary metabolite contents and antioxidant activities of the rice bran extracts varied depending of the extraction method used, and according to their effectiveness, these were organized in a decreasing order as follows: ethanol-water (50:50 v/v) ultrasonic, ethanol-water (50:50 v/v) maceration, ethanol ultrasonic and ethanol maceration methods. Ferulic, gallic and chlorogenic acids were the most abundant phenolic compounds in rice bran extracts. The phytochemical constituents of Hashemi rice bran and its antioxidant properties provides insights into its potential application to promote health.
The aim of this work was to characterize the natural low transition temperature mixtures (LTTMs) as promising green solvents for biomass pretreatment with the critical characteristics of cheap, biodegradable and renewable, which overcome the limitations of ionic liquids (ILs). The LTTMs were derived from inexpensive commercially available hydrogen bond acceptor (HBA) and l-malic acid as the hydrogen bond donor (HBD) in distinct molar ratios of starting materials and water. The peaks involved in the H-bonding shifted and became broader for the OH groups. The thermal properties of the LTTMs were not affected by water while the biopolymers solubility capacity of LTTMs was improved with the increased molar ratio of water and treatment temperature. The pretreatment of oil palm biomass was consistence with the screening on solubility of biopolymers. This work provides a cost-effective alternative to utilize microwave hydrothermal extracted green solvents such as malic acid from natural fruits and plants.
This study demonstrated the effect of two-pot sequential pretreatment, comprising of ultrasound assisted deep eutectic solvent (DES) with the aim to investigate the effects of ultrasound amplitude and duration in enhancing delignification. Oil palm fronds (OPF) were ultrasonicated in a water medium, followed by a pretreatment using DES (choline chloride:urea). Fourier transform infra-red spectroscopy, X-ray diffraction, field emission scanning electron microscope, Brunauer-Emmet-Teller and solubilised lignin concentration were conducted to confirm the effectiveness of ultrasound assisted DES on the pretreatment of OPF. The recommended ultrasound conditions were determined to be 70% amplitude and duration of 30 min, where the sequential DES pretreatment was able to reduce lignin content of OPF to 14.01%, while improving xylose recovery by 58%.
This paper presents the successful application of ultrasound-assisted packed-bed (UAE-PB) method for the extraction of hypericin from the Hypericum perfuratum L. The Soxhlet system was utilized for the determination of suitable solvent from ethanol, methanol or from the mixture of different proportions of ethanol-methanol. The mixture of 50:50 v/v ethanol-methanol was obtained to be the most suitable solvent since it led to the highest extraction amount of hypericin. The extraction amount of hypericin increased by 13.6% and 21.4% when the solvent changed from pure methanol to the mixture of 50:50 v/v ethanol-methanol for the extraction time of 3 and 8 h, respectively. Subsequently, the extraction was conducted through the UAE-PB, and the effects of temperature, time, and the ratio of solvent to the dried plant were studied. The response surface method (RSM) was used to investigate the effect of parameters on the extraction in the UAE-PB system. At the temperature of 60 °C, extraction time of 105 min, and the solvent to plant ratio of 15.3, the maximum extraction yield of hypericin was achieved. In the optimal conditions, the amount of extraction was 0.112 mg hypericin/g dried plant, which was in accordance with the optimized predicted value (0.111 mg hypericin/g dried plant) from Design-Expert software.
Different extraction processes were employed to extract bioactive metabolites from Salacca zalacca flesh by a range of aqueous and organic solvents. The highest extraction yield was obtained by 50% ethanol extract of SE (73.18 ± 4.35%), whereas SFE_1 showed the lowest yield (0.42 ± 0.08%). All extracts were evaluated for in vitro α-glucosidase inhibitory activity, measured by their IC50 values in comparison to that of quercetin, the positive control (IC50 = 2.7 ± 0.7 μg/mL). The lowest α-glucosidase inhibitory activity was indicated by water extract of SE (IC50 = 724.3 ± 42.9 μg/mL) and the highest activity was demonstrated by 60% ethanol extract by UAE (IC50 = 16.2 ± 2.4 μg/mL). All extracts were analysed by GC-MS and identified metabolites like carbohydrates, fatty acids, organic acids, phenolic acids, sterols and alkane-based compounds etcetera that may possess the potential as α-glucosidase inhibitor and may attribute to the α-glucosidase inhibitory activity.
Rhodomyrtus tomentosa (Aiton) Hassk. has a wide spectrum of pharmacological effects and has been used to treat wounds, colic diarrhoea, heartburns, abscesses and gynaecopathy. The potential antiproliferative activities of R. tomentosa extracts from different solvents were evaluated in vitro on HepG2, MCF-7 and HT 29 cell lines while antioxidant activity was monitored by radical scavenging assay (DPPH), copper reducing antioxidant capacity (CUPRAC) and β-carotene bleaching assay. Extracts from R. tomentosa show the viability of the cells in concentration-dependent manner. According to the IC50 obtained, the ethyl acetate extracts showed significant antiproliferative activity on HepG2 (IC50 11.47 ± 0.280 μg/mL), MCF-7 (IC50 2.68 ± 0.529 μg/mL) and HT 29 (IC50 16.18 ± 0.538 μg/mL) after 72 h of treatment. Bioassay guided fractionation of the ethyl acetate extract led to the isolation of lupeol. Methanol extracts show significant antioxidant activities in DPPH (EC50 110.25 ± 0.005 μg/ml), CUPRAC (EC50 53.84 ± 0.004) and β-carotene bleaching (EC50 58.62 ± 0.001) due to the presence of high total flavonoid and total phenolic content which were 110.822 ± 0.017 mg butylated hydroxytoluene (BHT)/g and 190.467 ± 0.009 mg gallic acid (GAE)/g respectively. Taken together, the results extracts show the R. tomentosa as a potential source of antioxidant and antiproliferative efficacy.
The potential of Averrhoa bilimbi pectin (ABP) as a source of biopolymer for edible film (EF) production was explored, and deep eutectic solvent (DES) (1% w/w) containing choline chloride-citric acid monohydrate at a molar ratio of 1:1 was used as the plasticizer. The EF-ABP3:1, which was produced from ABP with large branch size, showed a higher value of melting temperature (175.30 °C), tensile stress (7.32 MPa) and modulus (33.64 MPa). The EF-ABP3:1 also showed better barrier properties by obtaining the lowest water vapor transmission rates (1.10-1.18 mg/m2.s) and moisture absorption values (2.61-32.13%) depending on the relative humidity compared to other EF-ABPs (1.39-1.83 mg/m2.s and 3.48-51.50%, respectively) that have linear structure with smaller branch size. From these results, it was suggested that the galacturonic acid content, molecular weight, degree of esterification and pectin structure of ABP significantly influenced the properties of EFs. The interaction of highly branched pectin chains was stronger than the linear chains, thus reduced the effect of plasticizer and produced a mechanically stronger EF with better barrier properties. Hence, it was suggested that these EFs could be used as alternative degradable packaging/coating materials.
Luteolin and apigenin derivatives present in oil palm (Elaeis guineensis) leaves (OPL) are reported to possess excellent antioxidant properties relating to numerous health benefits. To meet the global demand for flavonoids, OPL, which is plentifully generated as an agricultural by-product from oil palm plantations, can be further exploited as a new source of natural antioxidant compounds. However, to produce a standardized herbal preparation, validation of the quantification method for these compounds is required. Therefore, in this investigation, we developed and validated an improved and rapid analytical method, ultra-high-performance liquid chromatography equipped with ultraviolet/photodiode array (UHPLC-UV/PDA) for the quantification of 12 luteolin and apigenin derivatives, particularly focusing on flavonoid isomeric pairs: orientin/isoorientin and vitexin/isovitexin, present in various OPL extracts. Several validation parameters were assessed, resulting in the UHPLC-UV/PDA technique offering good specificity, linearity, accuracy, precision, and robustness, where the values were within acceptable limits. Subsequently, the validated method was employed to quantify luteolin and apigenin derivatives from OPL subjected to different drying treatments and extraction with various solvent systems, giving total luteolin (TLC) and apigenin content (TAC) in the range of 2.04-56.30 and 1.84-160.38 µg/mg extract, respectively. Additionally, partial least square (PLS) analysis disclosed the combination of freeze dry-aqueous methanol yielded OPL extracts with high TLC and TAC, which are strongly correlated with antioxidant activity. Therefore, we provide the first validation report of the UHPLC-UV/PDA method for quantification of luteolin and apigenin derivatives present in various OPL extracts, suggesting that this approach could be employed in standardized herbal preparations by adopting orientin, isoorientin, vitexin, and isovitexin as chemical markers.
The Box-Behnken design was applied to optimize the extraction of pectin from Averrhoa bilimbi (ABP) using deep eutectic solvents (DES). The four variables of extraction were percentage of DES (X1), extraction time (X2), temperature (X3), and molar ratio of DES components (X4). The quadratic regression equation was established as a predicted model with R2 value of 0.9375. The optimal condition was X1 = 3.74% (w/v), X2 = 2.5 h, X3 = 80 °C, and X4 = 1:1. No significant difference between the predicted (14.70%) and experimental (14.44%) maximum yield of sample was noted. Characterization of physico-chemical properties characterization of ABP was performed. The main components of ABP were galacturonic acids, arabinoses, and xyloses. ABP also showed good functional properties such as water holding capacity (3.70 g/g), oil holding capacity (2.40 g/g), and foaming capacity (133.33%). The results also showed that ABP exhibited free radical scavenging activity (41.46%) and ferric reducing antioxidant power (1.15 mM).
An easy and efficient strategy to prepare betulinic acid esters with various anhydrides was used by the enzymatic synthesis method. It involves lipase-catalyzed acylation of betulinic acid with anhydrides as acylating agents in organic solvent. Lipase from Candida antarctica immobilized on an acrylic resin (Novozym 435) was employed as a biocatalyst. Several 3-O-acyl-betulinic acid derivatives were successfully obtained by this procedure. The anticancer activity of betulinic acid and its 3-O-acylated derivatives were then evaluated in vitro against human lung carcinoma (A549) and human ovarian (CAOV3) cancer cell lines. 3-O-glutaryl-betulinic acid, 3-O-acetyl-betulinic acid, and 3-O-succinyl-betulinic acid showed IC(50)<10 microg/ml against A549 cancer cell line tested and showed better cytotoxicity than betulinic acid. In an ovarian cancer cell line, all betulinic acid derivatives prepared showed weaker cytotoxicity than betulinic acid.
Nanoliposome and nanoniosome formulations containing myrtle extract were prepared without using cholesterol and toxic organic solvents for the first time. The formulations had different concentrations of lecithin (5, 7, and 9% w/w) and Hydrophilic-Lipophilic Balance (HLB) values (6.76, 8.40, and 9.59). The physicochemical characterization results showed a nearly spherical shape for the prepared nanosamples. The particle sizes, zeta potentials and encapsulation efficiencies for the prepared nanoliposomes and nanoniosomes were at a range of 260-293 nm and 224-520 nm; -33.16 to - 31.16 mV and - 33.3 to - 10.36 mV; and 68-73% and 79-83%, respectively. The formulated nanoniosomes showed better stability during storage time. Besides, the encapsulation efficiency and in vitro release rate of myrtle extract could be controlled by adjusting the lecithin concentration and HLB value. The release of myrtle extract from nanovesicles showed a pH-responsive character. The FTIR analysis confirmed that the myrtle extract was encapsulated in nanovesicles physically.
In this study, the combination of parameters required for optimal extraction of anti-oxidative components from the Chinese lotus (CLR) and Malaysian lotus (MLR) roots were carefully investigated. Box-Behnken design was employed to optimize the pH (X1: 2-3), extraction time (X2: 0.5-1.5 h) and solvent-to-sample ratio (X3: 20-40 mL/g) to obtain a high flavonoid yield with high % DPPHsc free radical scavenging and Ferric-reducing power assay (FRAP). The analysis of variance clearly showed the significant contribution of quadratic model for all responses. The optimal conditions for both Chinese lotus (CLR) and Malaysian lotus (MLR) roots were obtained as: CLR: X1 = 2.5; X2 = 0.5 h; X3 = 40 mL/g; MLR: X1 = 2.4; X2 = 0.5 h; X3 = 40 mL/g. These optimum conditions gave (a) Total flavonoid content (TFC) of 0.599 mg PCE/g sample and 0.549 mg PCE/g sample, respectively; (b) % DPPHsc of 48.36% and 29.11%, respectively; (c) FRAP value of 2.07 mM FeSO4 and 1.89 mM FeSO4, respectively. A close agreement between predicted and experimental values was found. The result obtained succinctly revealed that the Chinese lotus exhibited higher antioxidant and total flavonoid content when compared with the Malaysia lotus root at optimum extraction condition.
BACKGROUND: Occupational exposure to various neurotoxic chemicals has been shown to be associated with colour vision impairment. It seems that this can occur at low exposure levels, sometimes well below the recommended occupational threshold limits. This study was undertaken to determine the effect of exposure to petroleum derivatives (polyethylene, polystyrene) and solvents (perchloroethylene) on colour perception.
METHODS: Colour vision was assessed using the Ishihara plates, the D-15 test and the Farnsworth Munsell 100 Hue test. Two factories using petroleum derivatives and three dry cleaning premises were chosen at random. A total of 93 apparently healthy employees were recruited from the five workplaces. Two age-matched control groups comprising 56 people, who were support staff of the university with no exposure to petroleum, solvents or their derivatives, were also recruited.
RESULTS: All subjects passed the Ishihara test, showing that none had a congenital red-green defect. Some of the exposed employees failed the D-15 and had abnormally high FM100 Hue scores. All control subjects passed all the colour vision tests. The D-15 test showed that 28 per cent (26 of 93) of exposed employees had a colour vision defect whereas the FM 100 Hue test found that 63 per cent (59 of 93) had a colour vision defect. Most defects were of the blue-yellow type (22.6 per cent) when using the D-15 test. However, with the FM 100 Hue test, most defects were of the non-polar type with no specific axis (50.5 per cent). Mean total error scores calculated from the FM100 Hue test for exposed employees were statistically significantly higher than those of the control subjects.
CONCLUSION: Employees directly exposed to petroleum derivatives and solvents have a higher risk of acquiring colour vision defects compared to subjects who are not.
Study sites: Factories; the control subjects were tested at the Optometry Clinic in Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
The study aimed to establish the detection method for bound 3-, 2-MCPD, and glycidol using accelerated solvent extraction (ASE) and gas chromatography mass spectrometry (GC-MS). The ASE was modified for reduced solvent volume and process time to extract lipid from the chocolate spread, infant formula, potato chips, and sweetened creamer. The solvent selected for ASE was a mixture of iso-hexane and acetone at 100°C with the lipid and analyte recovery ranging from 96.9% to 98.6% and 84.1% to 107.5%, respectively. The derivatisation of analytes was adopted from the AOCS method Cd29a-13 for GC-MS analysis. The results showed that the coefficient of determination (R2) of all analytes was >0.99. The limit of detection (LOD) was 0.1 mg kg-1 expressed in lipid basis for both bound 3- and 2-MCPD and 0.2 mg kg-1 expressed in lipid basis for bound glycidol. The limit of quantitation (LOQ) was 0.3 mg kg-1 expressed in lipid basis for both bound 3- and 2-MCPD and 0.6 mg kg-1 expressed in lipid basis for bound glycidol. A blank spiked with 3-monochloropropanediols fatty acid esters (MCPDE) and 2-MCPDE (0.3, 2.1, and 7.2 mg kg-1) and glycidol esters (0.6, 4.7, and 16.6 mg kg-1) were chosen for accuracy and precision tests. The recoveries were 91.7% to 105.9%. Both repeatability and within-laboratory reproducibility of the analysis were within the acceptable level of precision ranging from 1.7% to 16%. This is the first time that a full validation procedure extending to both accuracy and precision tests has been carried out for sweetened creamer and chocolate spread. Overall, the combined protocol of ASE and AOCS Cd29a-13 was successfully validated for both solid and liquid food samples with lipid content from 10% to 30%.