Displaying publications 241 - 260 of 317 in total

Abstract:
Sort:
  1. Al-Nabulsi M, Daud A, Yiu C, Omar H, Sauro S, Fawzy A, et al.
    Materials (Basel), 2019 Aug 07;12(16).
    PMID: 31394743 DOI: 10.3390/ma12162504
    Objective: To evaluate the effect of a new application method of bulk-fill flowable composite resin material on bond-strength, nanoleakage, and mechanical properties of dentine bonding agents.

    MATERIALS AND METHODS: Sound extracted human molars were randomly divided into: manufacturer's instructions (MI), manual blend 2 mm (MB2), and manual blend 4 mm (MB4). Occlusal enamel was removed and flattened, dentin surfaces were bonded by Prime & Bond universal (Dentsply and Optibond FL, Kerr). For the MI group, adhesives were applied following the manufacturer's instructions then light-cured. For MB groups, SDR flow+ bulk-fill flowable composite resin was applied in 2- or 4-mm increment then manually rubbed by a micro brush for 15 s with uncured dentine bonding agents and the mixture was light-cured. Composite buildup was fabricated incrementally using Ceram.X One, Dentsply nanohybrid composite resin restorative material. After 24-h water storage, the teeth were sectioned to obtain beams of about 0.8 mm2 for 24-h and thermocycled micro-tensile bond strength at 0.5 mm/min crosshead speed. Degree of conversion was evaluated with micro-Raman spectroscopy. Contraction gaps at 24 h after polymerization were evaluated and atomic force microscopy (AFM) nano-indentation processes were undertaken for measuring the hardness across the interface. Depth of resin penetration was studied using a scanning electron microscope (SEM). Bond strength data was expressed using two-way ANOVA followed by Tukey's test. Nanoindentation hardness was separately analyzed using one-way ANOVA.

    RESULTS: Factors "storage F = 6.3" and "application F = 30.11" significantly affected the bond strength to dentine. For Optibond FL, no significant difference in nanoleakage was found in MI/MB4 groups between baseline and aged specimens; significant difference in nanoleakage score was observed in MB2 groups. Confocal microscopy analysis showed MB2 Optibond FL and Prime & Bond universal specimens diffusing within the dentine. Contraction gap was significantly reduced in MB2 specimens in both adhesive systems. Degree of conversion (DC) of the MB2 specimens were numerically more compared to MS1 in both adhesive systems.

    CONCLUSION: Present study suggests that the new co-blend technique might have a positive effect on bond strengths of etch-and-rinse adhesives to dentine.

    Matched MeSH terms: Spectrum Analysis, Raman
  2. Maarof M, Mohd Nadzir M, Sin Mun L, Fauzi MB, Chowdhury SR, Idrus RBH, et al.
    Polymers (Basel), 2021 Feb 08;13(4).
    PMID: 33567703 DOI: 10.3390/polym13040508
    The current strategy for rapid wound healing treatment involves combining a biomaterial and cell-secreted proteins or biomolecules. This study was aimed at characterizing 3-dimensional (3D) collagen hydrogels fortified with dermal fibroblast-conditioned medium (DFCM) as a readily available acellular skin substitute. Confluent fibroblasts were cultured with serum-free keratinocyte-specific medium (KM1 and KM2) and fibroblast-specific medium (FM) to obtain DFCM. Subsequently, the DFCM was mixed with collagen (Col) hydrogel and chondroitin-4-sulphate (C4S) to fabricate 3D constructs termed Col/C4S/DFCM-KM1, Col/C4S/DFCM-KM2, and Col/C4S/DFCM-FM. The constructs successfully formed soft, semi-solid and translucent hydrogels within 1 h of incubation at 37 °C with strength of <2.5 Newton (N). The Col/C4S/DFCM demonstrated significantly lower turbidity compared to the control groups. The Col/C4S/DFCM also showed a lower percentage of porosity (KM1: 35.15 ± 9.76%; KM2: 6.85 ± 1.60%; FM: 14.14 ± 7.65%) compared to the Col (105.14 ± 11.87%) and Col/C4S (143.44 ± 27.72%) constructs. There were no changes in both swelling and degradation among all constructs. Fourier transform infrared spectrometry showed that all groups consisted of oxygen-hydrogen bonds (O-H) and amide I, II, and III. In conclusion, the Col/C4S/DFCM constructs maintain the characteristics of native collagen and can synergistically deliver essential biomolecules for future use in skin therapeutic applications.
    Matched MeSH terms: Spectrum Analysis
  3. Rahmat F, Fen YW, Anuar MF, Omar NAS, Zaid MHM, Matori KA, et al.
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670482 DOI: 10.3390/molecules26041061
    In this paper, the structural and optical properties of ZnO-SiO2-based ceramics fabricated from oil palm empty fruit bunch (OPEFB) were investigated. The OPEFB waste was burned at 600, 700 and 800 °C to form palm ash and was then treated with sulfuric acid to extract silica from the ash. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses confirmed the existence of SiO2 in the sample. Field emission scanning electron microscopy (FESEM) showed that the particles displayed an irregular shape and became finer after leaching. Then, the solid-state method was used to produce the ZnO-SiO2 composite and the samples were sintered at 600, 800, 1000, 1200 and 1400 °C. The XRD peaks of the Zn2SiO4 showed high intensity, which indicated high crystallinity of the composite. FESEM images proved that the grain boundaries were larger as the temperature increased. Upon obtaining the absorbance spectrum from ultraviolet-visible (UV-Vis) spectroscopy, the energy band gaps obtained were 3.192, 3.202 and 3.214 eV at room temperature, 600 and 800 °C, respectively, and decreased to 3.127, 2.854 and 2.609 eV at 1000, 1200 and 1400 °C, respectively. OPEFB shows high potential as a silica source in producing promising optical materials.
    Matched MeSH terms: Spectrum Analysis
  4. Aljohani G, Said MA, Lentz D, Basar N, Albar A, Alraqa SY, et al.
    Molecules, 2019 Feb 07;24(3).
    PMID: 30736403 DOI: 10.3390/molecules24030590
    An efficient microwave-assisted one-step synthetic route toward Mannich bases is developed from 4-hydroxyacetophenone and different secondary amines in quantitative yields, via a regioselective substitution reaction. The reaction takes a short time and is non-catalyzed and reproducible on a gram scale. The environmentally benign methodology provides a novel alternative, to the conventional methodologies, for the synthesis of mono- and disubstituted Mannich bases of 4-hydroxyacetophenone. All compounds were well-characterized by FT-IR, ¹H NMR, 13C NMR, and mass spectrometry. The structures of 1-{4-hydroxy-3-[(morpholin-4-yl)methyl]phenyl}ethan-1-one (2a) and 1-{4-hydroxy-3-[(pyrrolidin-1-yl)methyl]phenyl}ethan-1-one (3a) were determined by single crystal X-ray crystallography. Compound 2a and 3a crystallize in monoclinic, P2₁/n, and orthorhombic, Pbca, respectively. The most characteristic features of the molecular structure of 2a is that the morpholine fragment adopts a chair conformation with strong intramolecular hydrogen bonding. Compound 3a exhibits intermolecular hydrogen bonding, too. Furthermore, the computed Hirshfeld surface analysis confirms H-bonds and π⁻π stack interactions obtained by XRD packing analyses.
    Matched MeSH terms: Spectrum Analysis
  5. Latif NHA, Rahim AA, Brosse N, Hussin MH
    Int J Biol Macromol, 2019 Jun 01;130:947-957.
    PMID: 30851323 DOI: 10.1016/j.ijbiomac.2019.03.032
    This study reports on the effects of unmodified autohydrolyzed ethanol organosolv lignin (AH EOL) and modified autohydrolyzed ethanol organosolv lignin on the structural characteristics and antioxidant properties upon incorporation of p-hydroxyacetophenone (AHP EOL). The lignin samples isolated from black liquor of oil palm fronds (OPF) were evaluated and compared using various complementary analyses; FTIR, 1H and 13C NMR spectroscopy, 2D-NMR spectroscopy (HMBC and HSQC), CHN, GPC, HPLC and thermal analyses (TGA and DSC). Chemically modified organosolv lignin (AHP EOL) provided lignin with lower molecular weight (Mw), which has smaller fragments that leads to higher solubility rate in water in comparison to unmodified organosolv lignin, AH EOL (DAHP EOL: 19.8% > DAH EOL: 14.0%). It was evident that the antioxidant properties of modified organosolv lignin has better reducing power in comparison to the unmodified organosolv lignin. Therefore, the functionalization of lignin polymers enhanced their antioxidant properties and structural features towards a various alternative approach in lignin-based applications.
    Matched MeSH terms: Spectrum Analysis
  6. Ahmad U, Sohail M, Ahmad M, Minhas MU, Khan S, Hussain Z, et al.
    Int J Biol Macromol, 2019 May 15;129:233-245.
    PMID: 30738157 DOI: 10.1016/j.ijbiomac.2019.02.031
    Oral drug delivery is natural, most acceptable and desirable route for nearly all drugs, but many drugs like NSAIDs when delivered by this route cause gastrointestinal irritation, gastric bleeding, ulcers, and many undesirable effects which limits their usage by oral delivery. Moreover, it is almost impossible to control the release of a drug in a targeted location in body. We developed thermo-responsive chitosan-co-poly(N-isopropyl-acrylamide) injectable hydrogel as an alternative for the gastro-protective and controlled delivery of loxoprofen sodium as a model drug. A free radical polymerization technique was used to synthesize thermo-responsive hydrogel by cross-linking chitosan HCl with NIPAAM using glutaraldehyde as cross-linker. Confirmation of crosslinked hydrogel structure was done by Fourier transform infrared spectra (FTIR). The thermal stability of hydrogel was confirmed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The scanning electron microscopy (SEM) was performed to evaluate the structural morphology of cross-linked hydrogel. To evaluate the rheological behavior of hydrogel with increasing temperature, rheological study was performed. Swelling and in vitro drug release studies were carried out under various temperature and pH conditions. The swelling study revealed that maximum swelling was observed at low pH (pH 1.2) and low temperature (25 °C) compared to the high range of pH and temperature and it resulted in quick release of the drug. The high range of pH (7.4) and temperature (37 °C) however caused controlled release of the drug. The in vivo evaluation of the developed hydrogel in rabbits demonstrated the controlled release behavior of fabricated system.
    Matched MeSH terms: Spectrum Analysis
  7. Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:388-395.
    PMID: 30948075 DOI: 10.1016/j.msec.2019.02.107
    Cobalt oxide nanocubes incorporated with reduced graphene oxide (rGO-Co3O4) was prepared by using simple one-step hydrothermal route. Crystallinity and structural characteristics of the nanocomposite were analyzed and confirmed using X-ray diffraction (XRD) and Raman analysis, respectively. The cubical shape of the Co3O4 nanostructures and the distribution of Co3O4 nanocubes on the surface of rGO sheets were identified through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) mapping analysis, respectively. Raman spectra depicted the presence of D and G bands for GO and rGO with different ID/IG values and thus confirmed the reduction of GO into rGO. The electrochemical study reflects that the rGO-Co3O4 nanocomposite shows good electrocatalytic activity in oxidation of depression biomarker serotonin (5-HT) in phosphate buffer (pH 7.2). The detection of 5-HT was carried out by using rGO-Co3O4 nanocomposite modified glassy carbon electrode under dynamic condition using amperometry technique with a linear range of 1-10 μM. The limit of detection and limit of quantification were calculated and found to be 1.128 and 3.760 μM, respectively with a sensitivity value of 0.133 μΑ·μM-1. The sensor showed selectivity in the presence of different interferent species such as ascorbic acid, dopamine and uric acid.
    Matched MeSH terms: Spectrum Analysis, Raman
  8. Nizam NUM, Hanafiah MM, Mahmoudi E, Halim AA, Mohammad AW
    Sci Rep, 2021 Apr 21;11(1):8623.
    PMID: 33883637 DOI: 10.1038/s41598-021-88084-z
    In this study, two biomass-based adsorbents were used as new precursors for optimizing synthesis conditions of a cost-effective powdered activated carbon (PAC). The PAC removed dyes from an aqueous solution using carbonization and activation by KOH, NaOH, and H2SO4. The optimum synthesis, activation temperature, time and impregnation ratio, removal rate, and uptake capacity were determined. The optimum PAC was analyzed and characterized using Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), Zeta potential, and Raman spectroscopy. Morphological studies showed single-layered planes with highly porous surfaces, especially PAC activated by NaOH and H2SO4. The results showed that the experimental data were well-fitted with a pseudo-second-order model. Based on Langmuir isotherm, the maximum adsorption capacity for removing methylene blue (MB) was 769.23 mg g-1 and 458.43 mg g-1 for congo red (CR). Based on the isotherm models, more than one mechanism was involved in the adsorption process, monolayer for the anionic dye and multilayer for the cationic dye. Elovich and intraparticle diffusion kinetic models showed that rubber seed shells (RSS) has higher α values with a greater tendency to adsorb dyes compared to rubber seed (RS). A thermodynamic study showed that both dyes' adsorption process was spontaneous and exothermic due to the negative values of the enthalpy (ΔH) and Gibbs free energy (ΔG). The change in removal efficiency of adsorbent for regeneration study was observed in the seventh cycles, with a 3% decline in the CR and 2% decline in MB removal performance. This study showed that the presence of functional groups and active sites on the produced adsorbent (hydroxyl, alkoxy, carboxyl, and π - π) contributed to its considerable affinity for adsorption in dye removal. Therefore, the optimum PAC can serve as efficient and cost-effective adsorbents to remove dyes from industrial wastewater.
    Matched MeSH terms: Spectrum Analysis, Raman
  9. Boudriga S, Haddad S, Murugaiyah V, Askri M, Knorr M, Strohmann C, et al.
    Molecules, 2020 Apr 23;25(8).
    PMID: 32340203 DOI: 10.3390/molecules25081963
    A novel one-pot [3+2]-cycloaddition reaction of (E)-3-arylidene-1-phenyl-succinimides, cyclic 1,2-diketones (isatin, 5-chloro-isatin and acenaphtenequinone), and diverse α-aminoacids such as 2-phenylglycine or sarcosine is reported. The reaction provides succinimide-substituted dispiropyrrolidine derivatives with high regio- and diastereoselectivities under mild reaction conditions. The stereochemistry of these N-heterocycles has been confirmed by four X-ray diffraction studies. Several synthetized compounds show higher inhibition on acetylcholinesterase (AChE) than butyrylcholinesterase (BChE). Of the 17 synthesized compounds tested, five exhibit good AChE inhibition with IC50 of 11.42 to 22.21 µM. A molecular docking study has also been undertaken for compound 4n possessing the most potent AChE inhibitory activity, disclosing its binding to the peripheral anionic site of AChE enzymes.
    Matched MeSH terms: Spectrum Analysis
  10. Ngatiman M, Jami MS, Abu Bakar MR, Subramaniam V, Loh SK
    Heliyon, 2021 Jan;7(1):e05931.
    PMID: 33490684 DOI: 10.1016/j.heliyon.2021.e05931
    The formation of struvite crystals or magnesium ammonium phosphate (MgNH4PO4) in palm oil mill effluent (POME) occurs as early as in the secondary stage of POME treatment system. Its growth continues in the subsequent tertiary treatment which reduces piping diameter, thus affecting POME treatment efficiency. Hypothesis. The beneficial use of the crystal is the motivation. This occurrence is rarely reported in scientific articles despite being a common problem faced by palm oil millers. The aim of this study is to characterize struvite crystals found in an anaerobic digester of a POME treatment facility in terms of their physical and chemical aspects. The compositions, morphology and properties of these crystals were determined via energy dispersive spectroscopy (EDS), elemental analysis, scanning electron microscopy (SEM) and x-ray diffraction (XRD). Solubility tests were carried out to establish solubility curve for struvite from POME. Finally, crystal growth experiment was done applying reaction crystallization method to demonstrate struvite precipitation from POME. Results showed that high phosphorous (P) (24.85 wt%) and magnesium (Mg) (21.33 wt%) content was found in the struvite sample. Elemental analysis detected carbon (C), hydrogen (H), nitrogen (N) and sulfur (S) below 4 wt%. The crystals analysed by XRD in this study were confirmed as struvite with 94.8% struvite mineral detected from its total volume. Having an orthorhombic crystal system, struvite crystals from POME recorded an average density of 1.701 g cm-3. Solubility curve of struvite from POME was established with maximum solubility of 275.6 mg L-1 at pH 3 and temperature 40 °C. Minimum solubility of 123.6 mg L-1 was recorded at pH 7 and temperature 25 °C. Crystal growth experiment utilizing POME as the source medium managed to achieve 67% reduction in phosphorous content. This study concluded that there is a potential of harnessing valuable nutrients from POME in the form of struvite. Struvite precipitation technology can be adapted in the management of POME in order to achieve maximum utilization of the nutrients that are still abundant in POME. At the same time maximization of nutrient extractions from POME will also reduce pollutants loading in the final discharge.
    Matched MeSH terms: Spectrum Analysis
  11. Saallah S, Roslan J, Julius FS, Saallah S, Mohamad Razali UH, Pindi W, et al.
    Molecules, 2021 Apr 28;26(9).
    PMID: 33924820 DOI: 10.3390/molecules26092564
    Collagen was extracted from the body wall of sea cucumber (Holothuria scabra) using the pepsin-solubilized collagen method followed by isolation using dialysis and the ultrafiltration membrane. The yield and physicochemical properties of the collagen obtained from both isolation methods, denoted as D-PSC and UF-PSC, were compared. The ultrafiltration method affords a higher yield of collagen (11.39%) than that of the dialysis (5.15%). The isolated collagens have almost the same amino acid composition, while their functional groups, referred to as amide A, B, I, II, and III bands, were in accordance with commercial collagen, as verified by Fourier Transform Infrared (FT-IR) spectroscopy. The UV-Vis absorption peaks at 240 nm and 220 nm, respectively, indicated that the collagens produced are type-I collagen. The D-PSC showed interconnecting sheet-like fibrils, while the UF-PSC exhibited a flaky structure with flat-sheets arranged very close to each other. The higher yield and comparable physicochemical properties of the collagen obtained by ultrafiltration as compared with dialysis indicate that the membrane process has high potential to be used in large-scale collagen production for food and pharmaceutical applications.
    Matched MeSH terms: Spectrum Analysis
  12. Sayyed RZ, Shaikh SS, Wani SJ, Rehman MT, Al Ajmi MF, Haque S, et al.
    Molecules, 2021 Apr 22;26(9).
    PMID: 33922162 DOI: 10.3390/molecules26092443
    The present study was aimed to evaluate the suitability of agro-wastes and crude vegetable oils for the cost-effective production of poly-β-hydroxybutyrate (PHB), to evaluate growth kinetics and PHB production in Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 with these carbon substrates and to study the biodegradation of PHB accumulated by these cultures. Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 accumulates higher amounts of PHB corn (79.90% of dry cell mass) and rice straw (66.22% of dry cell mass) medium respectively. The kinetic model suggests that the Pseudomonas sp. RZS1 follows the Monod model more closely than A. faecalis RZS4. Both the cultures degrade their PHB extract under the influence of PHB depolymerase. Corn waste and rice straw appear as the best and cost-effective substrates for the sustainable production of PHB from Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1. The biopolymer accumulated by these organisms is biodegradable in nature. The agro-wastes and crude vegetable oils are good and low-cost sources of nutrients for the growth and production of PHB and other metabolites. Their use would lower the production cost of PHB and the low-cost production will reduce the sailing price of PHB-based products. This would promote the large-scale commercialization and popularization of PHB as an ecofriendly bioplastic/biopolymer.
    Matched MeSH terms: Spectrum Analysis
  13. Manah Chandra Changmai, Mohammed Faruque Reza, Zamzuri idris, Regunath Kandasamy, Kastury Gohain
    MyJurnal
    Introduction: Intracranial brain tumour like meningiomas and glioblastomas are most prevalent tumour. The metas- tasis to the brain is one of the major issues in the tumours of the central nervous system. The diagnosis of metastatic and primary brain tumour is incomprehensible with standard magnetic resonance imaging (MRI). The magnetic res- onance spectroscopy (MRS) is basically performed in standard clinical setting for diagnosing and tracking the brain tumour. Method: It is a retrospective study containing 53 patients with MRS. The patients with metastatic tumour (n=10), glioblastomas (n=8) and meningiomas (n=20) are included in the study. Single voxel technique is applied in the tumour core to determine the metabolites. The tumour N-acetyl aspartate (NAA), Choline (Cho), Creatine (Cr), Lactate, Alanine and lipids were analysed. The ratios of NAA/Cr, Cho/NAA and Cho/Cr were recorded and com- pared between the three tumours. The metabolites were detected between short echo time (TE) to long echo time (TE) during MRS. Results: There is a sharp fall of NAA peak in metastatic tumour. The resonance of creatine, lactate and alanine is higher in glioblastomas. A high lipid mean value of 3.13(0.17) is seen in metastatic tumour. The ROC curve shows a low NAA/Cr specificity of 46.7%, high sensitivity of 83.3% in Cho/NAA and Cho/Cr ratio. Conclusion: The metabolic profiles of metastatic brain tumour, glioblastomas and meningioma illustrate a divergence in their description that will assist in planning therapeutic and surgical intervention of these tumours.
    Matched MeSH terms: Spectrum Analysis
  14. Sing D, Banerjee S, Jana SN, Mallik R, Dastidar SG, Majumdar K, et al.
    Front Pharmacol, 2021;12:629833.
    PMID: 34025404 DOI: 10.3389/fphar.2021.629833
    Andrographis paniculata (Burm. F) Nees, has been widely used for upper respiratory tract and several other diseases and general immunity for a historically long time in countries like India, China, Thailand, Japan, and Malaysia. The vegetative productivity and quality with respect to pharmaceutical properties of Andrographis paniculata varies considerably across production, ecologies, and genotypes. Thus, a field deployable instrument, which can quickly assess the quality of the plant material with minimal processing, would be of great use to the medicinal plant industry by reducing waste, and quality grading and assurance. In this paper, the potential of near infrared reflectance spectroscopy (NIR) was to estimate the major group active molecules, the andrographolides in Andrographis paniculata, from dried leaf samples and leaf methanol extracts and grade the plant samples from different sources. The calibration model was developed first on the NIR spectra obtained from the methanol extracts of the samples as a proof of concept and then the raw ground samples were estimated for gradation. To grade the samples into three classes: good, medium and poor, a model based on a machine learning algorithm - support vector machine (SVM) on NIR spectra was built. The tenfold classification results of the model had an accuracy of 83% using standard normal variate (SNV) preprocessing.
    Matched MeSH terms: Spectrum Analysis
  15. Khan MA, Nayan N, Shadiullah, Ahmad MK, Fhong SC, Tahir M, et al.
    Molecules, 2021 May 04;26(9).
    PMID: 34064537 DOI: 10.3390/molecules26092700
    In this work, advanced nanoscale surface characterization of CuO Nanoflowers synthesized by controlled hydrothermal approach for significant enhancement of catalytic properties has been investigated. The CuO nanoflower samples were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selected-area electron diffraction (SAED), high-angular annular dark field scanning transmission electron microscopy (HAADF-STEM) with elemental mapping, energy dispersive spectroscopy (STEM-EDS) and UV-Vis spectroscopy techniques. The nanoscale analysis of the surface study of monodispersed individual CuO nanoflower confirmed the fine crystalline shaped morphology composed of ultrathin leaves, monoclinic structure and purified phase. The result of HR-TEM shows that the length of one ultrathin leaf of copper oxide nanoflower is about ~650-700 nm, base is about ~300.77 ± 30 nm and the average thickness of the tip of individual ultrathin leaf of copper oxide nanoflower is about ~10 ± 2 nm. Enhanced absorption of visible light ~850 nm and larger value of band gap energy (1.68 eV) have further supported that the as-grown material (CuO nanoflowers) is an active and well-designed surface morphology at the nanoscale level. Furthermore, significant enhancement of catalytic properties of copper oxide nanoflowers in the presence of H2O2 for the degradation of methylene blue (MB) with efficiency ~96.7% after 170 min was obtained. The results showed that the superb catalytic performance of well-fabricated CuO nanoflowers can open a new way for substantial applications of dye removal from wastewater and environment fields.
    Matched MeSH terms: Spectrum Analysis, Raman
  16. Bhavani P, Manikandan A, Jaganathan SK, Shankar S, Antony SA
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1388-1395.
    PMID: 29448597 DOI: 10.1166/jnn.2018.14112
    Undoped and Mn2+ doped CoAl2O4 (MnxCo1-xAl2O4; x = 0.0 to 1.0) spinel nanoparticles were successfully synthesized by a microwave heating method using glycine as the fuel. X-ray powder diffraction (XRD) was confirmed the cubic spinel structure. The average crystallite size of the samples was found to be in the range of 16.46 nm to 20.25 nm calculated by Scherrer's formula. The nano-sized particle-like morphology of the samples was confirmed by high resolution scanning electron microscopy (HR-SEM) and transmission electron microscopy (HR-TEM) analysis. Energy dispersive X-ray (EDX) results showed the pure form of spinel aluminate structure. The band gap energy (Eg) of pure CoAl2O4 was estimated to be 3.68 eV from UV-Visible diffuse reflectance spectroscopy (DRS), and the Eg values increased with increase of Mn2+ ions, due to the smaller grain size. The magnetic hysteresis (M-H) loop showed the superparamagnetic nature, and the magnetization and coercivity values increased with increasing Mn2+ ions, which was confirmed by vibrating sample magnetometer (VSM). All compositions of the nano-catalysts were tested as catalyst successfully for the conversion of benzyl alcohol into benzaldehyde and observed good catalytic activity.
    Matched MeSH terms: Spectrum Analysis
  17. Sadrolhosseini AR, Krishnan G, Shafie S, Abdul Rashid S, Wadi Harun S
    Molecules, 2020 Dec 09;25(24).
    PMID: 33316885 DOI: 10.3390/molecules25245798
    This study used the carbon dots solution for the laser ablation technique to fabricate silver nanoparticles. The ablation time range was from 5 min to 20 min. Analytical methods, including Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy, transmission electron microscopy, and Raman spectroscopy were used to categorize the prepared samples. The UV-visible and z-scan techniques provided optical parameters such as linear and nonlinear refractive indices in the range of 1.56759 to 1.81288 and 7.3769 × 10-10 cm2 W-1 to 9.5269 × 10-10 cm2 W-1 and the nonlinear susceptibility was measured in the range of 5.46 × 10-8 to 6.97 × 10-8 esu. The thermal effusivity of prepared samples, which were measured using the photoacoustic technique, were in the range of 0.0941 W s1/2 cm-2 K-1 to 0.8491 W s1/2 cm-2 K-1. The interaction of the prepared sample with fluoride was investigated using a Raman spectrometer. Consequently, the intensity of the Raman signal decreased with the increasing concentration of fluoride, and the detection limit is about 0.1 ppm.
    Matched MeSH terms: Spectrum Analysis, Raman
  18. Lee HS, Singh JK, Ismail MA
    Sci Rep, 2017 02 03;7:41935.
    PMID: 28157233 DOI: 10.1038/srep41935
    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.
    Matched MeSH terms: Spectrum Analysis, Raman
  19. Edueng K, Mahlin D, Larsson P, Bergström CAS
    J Control Release, 2017 06 28;256:193-202.
    PMID: 28412224 DOI: 10.1016/j.jconrel.2017.04.015
    We developed a step-by-step experimental protocol using differential scanning calorimetry (DSC), dynamic vapour sorption (DVS), polarized light microscopy (PLM) and a small-scale dissolution apparatus (μDISS Profiler) to investigate the mechanism (solid-to-solid or solution-mediated) by which crystallization of amorphous drugs occurs upon dissolution. This protocol then guided how to stabilize the amorphous formulation. Indapamide, metolazone, glibenclamide and glipizide were selected as model drugs and HPMC (Pharmacoat 606) and PVP (K30) as stabilizing polymers. Spray-dried amorphous indapamide, metolazone and glibenclamide crystallized via solution-mediated nucleation while glipizide suffered from solid-to-solid crystallization. The addition of 0.001%-0.01% (w/v) HPMC into the dissolution medium successfully prevented the crystallization of supersaturated solutions of indapamide and metolazone whereas it only reduced the crystallization rate for glibenclamide. Amorphous solid dispersion (ASD) formulation of glipizide and PVP K30, at a ratio of 50:50% (w/w) reduced but did not completely eliminate the solid-to-solid crystallization of glipizide even though the overall dissolution rate was enhanced both in the absence and presence of HPMC. Raman spectroscopy indicated the formation of a glipizide polymorph in the dissolution medium with higher solubility than the stable polymorph. As a complementary technique, molecular dynamics (MD) simulations of indapamide and glibenclamide with HPMC was performed. It was revealed that hydrogen bonding patterns of the two drugs with HPMC differed significantly, suggesting that hydrogen bonding may play a role in the greater stabilizing effect on supersaturation of indapamide, compared to glibenclamide.
    Matched MeSH terms: Spectrum Analysis, Raman
  20. Ashraf Z, Rafiq M, Nadeem H, Hassan M, Afzal S, Waseem M, et al.
    PLoS One, 2017;12(5):e0178069.
    PMID: 28542395 DOI: 10.1371/journal.pone.0178069
    The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy).Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM) than standard kojic acid (IC50 16.69μM). The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM) and (IC50 16.69μM) respectively.Lineweaver-Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-7.90 kcal/mol) as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.
    Matched MeSH terms: Spectrum Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links