Displaying publications 241 - 260 of 4035 in total

Abstract:
Sort:
  1. Prasanna MV, Nagarajan R, Chidambaram S, Elayaraja A
    Bull Environ Contam Toxicol, 2012 Sep;89(3):507-11.
    PMID: 22684361 DOI: 10.1007/s00128-012-0698-4
    A baseline study was carried out to assess the metal concentrations and microbial contamination at selected Lake waters in and around Miri City, East Malaysia. Sixteen surface water samples were collected at specific Lakes in the environs of major settlement areas and recreational centers in Miri City. The Physico-chemical parameters [pH, Electrical Conductivity (EC) and Dissolved Oxygen (DO)], metals (Fe, Mn, Cu, Cd, Ni and Zn) and Escherichia coli (E. coli) were analysed. The concentrations of Fe, Mn and Ni have been found to be above the permissible limits of drinking water quality standards. The metals data have also been used for the calculation of heavy metal pollution index. Higher values of E. coli indicate microbial contamination in the Lake waters.
    Matched MeSH terms: Water Microbiology; Water Pollutants, Chemical/analysis*; Water Supply*
  2. Ngu LH, Law PL, Wong KK, Yusof AA
    Water Sci Technol, 2010;62(5):1129-35.
    PMID: 20818055 DOI: 10.2166/wst.2010.407
    This research investigated the effects of co- and counter-current flow patterns on oil-water-solid separation efficiencies of a circular separator with inclined coalescence mediums. Oil-water-solid separations were tested at different influent concentrations and flowrates. Removal efficiencies increased as influent flowrate decreased, and their correlationship can be represented by power equations. These equations were used to predict the required flowrate, Q(ss50), for a given influent suspended solids concentration C(iss) to achieve the desired effluent suspended solids concentration, C(ess) of 50 mg/L, to meet environmental discharge requirements. The circular separator with counter-current flow was found to attend removal efficiencies relatively higher as compared to the co-current flow. As compared with co-current flow, counter-current flow Q(ss50) was approximately 1.65 times higher than co-current flow. It also recorded 13.16% higher oil removal at influent oil concentration, C(io) of 100 mg/L, and approximately 5.89% higher TSS removal at all influent flowrates. Counter-current flow's better removal performances were due to its higher coalescing area and constant interval between coalescence plate layers.
    Matched MeSH terms: Water Movements; Water Pollutants, Chemical/chemistry*; Water Purification/methods*
  3. Ahmad AL, Wong SS, Teng TT, Zuhairi A
    J Hazard Mater, 2007 Jun 25;145(1-2):162-8.
    PMID: 17161910
    Coagulation-flocculation is a proven technique for the treatment of high suspended solids wastewater. In this study, the central composite face-centered design (CCFD) and response surface methodology (RSM) have been applied to optimize two most important operating variables: coagulant dosage and pH, in the coagulation-flocculation process of pulp and paper mill wastewater treatment. The treated wastewater with high total suspended solids (TSS) removal, low SVI (sludge volume index) and high water recovery are the main objectives to be achieved through the coagulation-flocculation process. The effect of interactions between coagulant dosage and pH on the TSS removal and SVI are significant, whereas there is no interaction between coagulant dosage and water recovery. Quadratic models have been developed for the response variables, i.e. TSS removal, SVI and water recovery based on the high coefficient of determination (R(2)) value of >0.99 obtained from the analysis of variances (ANOVA). The optimum conditions for coagulant dosage and pH are 1045mgL(-1) and 6.75, respectively, where 99% of TSS removal, SVI of 37mLg(-1) and 82% of water recovery can be obtained.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Purification/methods*; Water Purification/standards
  4. Yusop Z, Tan LW, Ujang Z, Mohamed M, Nasir KA
    Water Sci Technol, 2005;52(9):125-32.
    PMID: 16445181
    Runoff quality draining from 17.14 km2 urban catchment in Johor Bahru, Malaysia, was analysed. The land-use consists of residential (30.3%), agricultural (27.3%), open space (27.9%), industrial (8.1%) and commercial (6.4%) areas. Three storm events were sampled in detail. These storms produced stormflow between 0.84 mm and 27.82 mm, and peakflow from 2.19 m3/s to 42.36 m3/s. Water quality showed marked variation during storms especially for TSS, BOD and COD with maximum concentrations of 778 mg/l, 135 mg/l and 358 mg/l, respectively. Concentrations of TOC, DOC, NH3-N, Fe and level of colour were also high. In general, the river quality is badly polluted and falls in Class V based on the Malaysian Interim National Water Quality Standards. Event Mean Concentrations (EMC) for various parameters varied considerably between storms. The largest storm produced higher EMC for TSS, NO3-N and SS whereas the smaller storms tend to register higher EMC for BOD, COD, NH3-N, TOC, Ca, K, Mg, Fe and Zn. Such variations could be explained in terms of pollutant availability and the effects of flushing and dilution. Based on a three-month average recurrence interval (ARI) of rainfall, the estimated event loadings (ton/ha) of TSS, BOD, COD, TOC, NH3-N and NO3-N were 0.055, 0.016, 0.012, 0.039, 0.010, 0.0007 and 0.0002, respectively. Heavy metals present in trace quantities. Storms with 3 months ARI could capture about 70% of the total annual loads of major pollutants.
    Matched MeSH terms: Water Movements; Water Pollutants/analysis*; Water Supply/standards*
  5. Alslaibi TM, Abustan I, Mogheir YK, Afifi S
    Waste Manag Res, 2013 Jan;31(1):50-9.
    PMID: 23148014 DOI: 10.1177/0734242X12465462
    Landfills are a source of groundwater pollution in Gaza Strip. This study focused on Deir Al Balah landfill, which is a unique sanitary landfill site in Gaza Strip (i.e., it has a lining system and a leachate recirculation system). The objective of this article is to assess the generated leachate quantity and percolation to the groundwater aquifer at a specific site, using the approaches of (i) the hydrologic evaluation of landfill performance model (HELP) and (ii) the water balance method (WBM). The results show that when using the HELP model, the average volume of leachate discharged from Deir Al Balah landfill during the period 1997 to 2007 was around, 6800 m3/year. Meanwhile, the average volume of leachate percolated through the clay layer was 550 m3/year, which represents around 8% of the generated leachate. Meanwhile, the WBM indicated that the average volume of leachate discharged from Deir Al Balah landfill during the same period was around 7660 m3/year--about half of which comes from the moisture content of the waste, while the remainder comes from the infiltration of precipitation and re-circulated leachate. Therefore, the estimated quantity of leachate to groundwater by these two methods was very close. However, compared with the measured leachate quantity, these results were overestimated and indicated a dangerous threat to the groundwater aquifer, as there was no separation between municipal, hazardous and industrial wastes, in the area.
    Matched MeSH terms: Water Pollutants/analysis*; Water Pollutants, Chemical/analysis; Water Pollutants, Chemical/chemistry*
  6. Tay KS, Madehi N
    Sci Total Environ, 2015 Jul 1;520:23-31.
    PMID: 25791053 DOI: 10.1016/j.scitotenv.2015.03.033
    Application of ozonation in water treatment involves complex oxidation pathways that could lead to the formation of various by-products, some of which may be harmful to living organisms. In this work, ozonation by-products of ofloxacin (OFX), a frequently detected pharmaceutical pollutant in the environment, were identified and their ecotoxicity was estimated using the Ecological Structure Activity Relationships (ECOSAR) computer program. In order to examine the role of ozone (O3) and hydroxyl radicals (∙OH) in the degradation of ofloxacin, ozonation was performed at pH2, 7 and 12. In this study, 12 new structures have been proposed for the ozonation by-products detected during the ozonation of ofloxacin. According to the identified ozonation by-products, O3 and ∙OH were found to react with ofloxacin during ozonation. The reaction between ofloxacin and O3 proceeded via hydroxylation and breakdown of heterocyclic ring with unsaturated double-bond. The reaction between ofloxacin and ·OH generated various by-products derived from the breakdown of heterocyclic ring. Ecotoxicity assessment indicated that ozonation of OFX could yield by-products of greater toxicity compared with parent compounds.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity; Water Pollutants, Chemical/chemistry*; Water Purification/methods*
  7. Ismail R, Kassim MA, Inman M, Baharim NH, Azman S
    Water Sci Technol, 2002;46(9):179-83.
    PMID: 12448467
    Environmental monitoring was carried out at Upper Layang Reservoir situated in Masai, Johor, Malaysia. The study shows that thermal stratification and natural mixing of the water column do exist in the reservoir and the level of stratification varies at different times of the year. Artificial destratification via diffused air aeration techniques was employed at the reservoir for two months. The results show that thermal stratification was eliminated after a week of continuous aeration. The concentrations of iron and to a lesser extent manganese in the water column was also reduced during the aeration period.
    Matched MeSH terms: Water Movements; Water Supply*; Water Purification/methods*
  8. Tuan DD, Hung C, Da Oh W, Ghanbari F, Lin JY, Lin KA
    Chemosphere, 2020 Dec;261:127552.
    PMID: 32731015 DOI: 10.1016/j.chemosphere.2020.127552
    As cobalt (Co) represents an effective transition metal for activating Oxone to degrade contaminants, tricobalt tetraoxide (Co3O4) is extensively employed as a heterogeneous phase of Co for Oxone activation. Since Co3O4 can be manipulated to exhibit various shapes, 2-dimensional plate-like morphology of Co3O4 can offer large contact surfaces. If the large plate-like surfaces can be even porous, forming porous nanoplate Co3O4 (PNC), such a PNC should be a promising catalyst for Oxone activation. Therefore, a facile but straightforward method is proposed to prepare such a PNC for activating Oxone to degrade pollutants. In particular, a cobaltic coordination polymer with a morphology of hexagonal nanoplate, which is synthesized through coordination between Co2+ and thiocyanuric acid (TCA), is adopted as a precursor. Through calcination, CoTCA could be transformed into hexagonal nanoplate-like Co3O4 with pores to become PNC. This PNC also shows different characteristics from the commercial Co3O4 nanoparticle (NP) in terms of surficial reactivity and textural properties. Thus, PNC exhibits a much higher catalytic activity than the commercial Co3O4 NP towards activation of Oxone to degrade a model contaminant, salicylic acid (SA). Specifically, SA was 100% degraded by PNC activating Oxone within 120 min, and the Ea of SA degradation by PNC-activated Oxone is 70.2 kJ/mol. PNC can also remain stable and effective for SA degradation even in the presence of other anions, and PNC could be reused over multiple cycles without significant loss of catalytic activity. These features validate that PNC is a promising and useful Co-based catalyst for Oxone activation.
    Matched MeSH terms: Water; Water Pollutants, Chemical/analysis*; Water Purification/methods*
  9. Pak HY, Chuah CJ, Yong EL, Snyder SA
    Sci Total Environ, 2021 Aug 01;780:146661.
    PMID: 34030308 DOI: 10.1016/j.scitotenv.2021.146661
    Land use plays a significant role in determining the spatial patterns of water quality in the Johor River Basin (JRB), Malaysia. In the recent years, there have been several occurrences of pollution in these rivers, which has generated concerns over the long-term sustainability of the water resources in the JRB. Specifically, this water resource is a shared commodity between two states, namely, Johor state of Malaysia and Singapore, a neighbouring country adjacent to Malaysia. Prior to this study, few research on the influence of land use configuration on water quality have been conducted in Johor. In addition, it is also unclear how water quality varies under different seasonality in the presence of point sources. In this study, we investigated the influence of land use and point sources from wastewater treatment plants (WWTPs) on the water quality in the JRB. Two statistical techniques - Multivariate Linear Regression (MLR) and Redundancy Analysis (RA) were undertaken to analyse the relationships between river water quality and land use configuration, as well as point sources from WWTPs under different seasonality. Water samples were collected from 49 sites within the JRB from March to December in 2019. Results showed that influence from WWTPs on water quality was greater during the dry season and less significant during the wet season. In particular, point source was highly positively correlated with ammoniacal‑nitrogen (NH3-N). On the other hand, land use influence was greater than point source influence during the wet season. Residential and urban land use were important predictors for nutrients and organic matter (chemical oxygen demand); and forest land use were important sinks for heavy metals but a significant source of manganese.
    Matched MeSH terms: Fresh Water; Water Purification; Water Quality; Waste Water; Water Resources
  10. Hossain K, Quaik S, Ismail N, Rafatullah M, Avasan M, Shaik R
    Iran J Biotechnol, 2016 Sep;14(3):154-162.
    PMID: 28959331 DOI: 10.15171/ijb.1216
    BACKGROUND: Application of membrane technology to wastewater treatment has expanded over the last decades due to increasingly stringent legislation, greater opportunities for water reuse/recycling processes and continuing advancement in membrane technology.

    OBJECTIVES: In the present study, a bench-scale submerged microfiltration membrane bioreactor (MBR) was used to assess the treatment of textile wastewater.

    MATERIALS AND METHODS: The decolorization capacity of white-rot fungus coriolus versicolor was confirmed through agar plate and liquid batch studies. The temperature and pH of the reactor were controlled at 29±1°C and 4.5±2, respectively. The bioreactor was operated with an average flux of 0.05 m.d(-1) (HRT=15hrs) for a month.

    RESULTS: Extensive growth of fungi and their attachment to the membrane led to its fouling and associated increase of the transmembrane pressure requiring a periodic withdrawal of sludge and membrane cleaning. However, stable decoloration activity (approx. 98%), BOD (40-50%), COD (50-67%) and total organic carbon (TOC) removal (>95%) was achieved using the entire system (fungi + membrane), while the contribution of the fungi culture alone for TOC removal, as indicated by the quality of the reactor supernatant, was 35-50% and 70%, respectively.

    CONCLUSIONS: The treated wastewater quality satisfied the requirement of water quality for dyeing and finishing process excluding light coloration. Therefore, textile wastewater reclamation and reuse is a promising alternative, which can both conserve or supplement the available water resource and reduce or eliminate the environmental pollution.

    Matched MeSH terms: Water; Water Purification; Water Quality; Waste Water; Water Resources
  11. Lee KM, Lai CW, Ngai KS, Juan JC
    Water Res, 2016 Jan 01;88:428-448.
    PMID: 26519627 DOI: 10.1016/j.watres.2015.09.045
    Today, a major issue about water pollution is the residual dyes from different sources (e.g., textile industries, paper and pulp industries, dye and dye intermediates industries, pharmaceutical industries, tannery and craft bleaching industries, etc.), and a wide variety of persistent organic pollutants have been introduced into our natural water resources or wastewater treatment systems. In fact, it is highly toxic and hazardous to the living organism; thus, the removal of these organic contaminants prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade those organic contaminants and advanced heterogeneous photocatalysis involving zinc oxide (ZnO) photocatalyst appears to be one of the most promising technology. In recent years, ZnO photocatalyst have attracted much attention due to their extraordinary characteristics. The high efficiency of ZnO photocatalyst in heterogeneous photocatalysis reaction requires a suitable architecture that minimizes electron loss during excitation state and maximizes photon absorption. In order to further improve the immigration of photo-induced charge carriers during excitation state, considerable effort has to be exerted to further improve the heterogeneous photocatalysis under UV/visible/solar illumination. Lately, interesting and unique features of metal doping or binary oxide photocatalyst system have gained much attention and became favourite research matter among various groups of scientists. It was noted that the properties of this metal doping or binary oxide photocatalyst system primarily depend on the nature of the preparation method and the role of optimum dopants content incorporated into the ZnO photocatalyst. Therefore, this paper presents a critical review of recent achievements in the modification of ZnO photocatalyst for organic contaminants degradation.
    Matched MeSH terms: Water Pollutants, Chemical/radiation effects*; Water Pollutants, Chemical/chemistry; Water Purification*
  12. Azdiya Suhada Abdul Rahim Arifin, Ismayadi Ismail, Abdul Halim Abdullah, Farah Nabilah Shafiee, Idza Riati Ibrahim
    MyJurnal
    Clean water is very important for health and well-being of humans and ecosystem. However, over the year, a billion tons of industrial waste, fertilizers and chemical waste were dumped untreated into water bodies, such as rivers, lake and oceans contributing towards water pollution, then threatening human health and ecosystem. Hence, the need for clean water has urged scientists to research and find solutions for improving water quality. Application of nanoparticles in wastewater treatment improves the environmental quality by elimination of harmful pollutants in wastewater. Magnetite is one of the nanoparticles used in wastewater treatment because of its specific large surface area, high reactivity in adsorption and recoverable from treated water via magnetic separation technology. Preparation method of magnetite nanoparticles is the important key to its adsorption efficiency.
    Matched MeSH terms: Water; Water Pollution; Water Purification; Water Quality; Waste Water
  13. Khan FSA, Mubarak NM, Tan YH, Karri RR, Khalid M, Walvekar R, et al.
    Environ Sci Pollut Res Int, 2020 Dec;27(35):43526-43541.
    PMID: 32909134 DOI: 10.1007/s11356-020-10482-z
    Substantial discharge of hazardous substances, especially dyes and heavy metal ions to the environment, has become a global concern due to many industries neglecting the environmental protocols in waste management. A massive discharge of contaminantsfrom different anthropogenic activities, can pose alarming threats to living species and adverse effect to the ecosystem stability. In the process of treating the polluted water, various methods and materials are used. Hybrid nanocomposites have attained numerous interest due to the combination of remarkable features of the organic and inorganic elements in a single material. In this regards, carbon and polymer based nanocomposites have gained particular interest because of their tremendous magnetic properties and stability. These nanocomposites can be fabricated using several approaches that include filling, template, hydrothermal, pulsed-laser irradiation, electro-spinning, detonation induced reaction, pyrolysis, ball milling, melt-blending, and many more. Moreover, carbon-based and polymer-based magnetic nanocomposites have been utilized for an extensive number of applications such as removal of heavy metal and dye adsorbents, magnetic resonance imaging, and drug delivery. This review emphasized mainly on the production of magnetic carbon and polymer nanocomposites employing various approaches and their applications in water and wastewater treatment. Furthermore, the future opportunities and challenges in applying magnetic nanocomposites for heavy metal ion and dye removal from water and wastewater treatment plant.
    Matched MeSH terms: Water Pollutants, Chemical*; Water Purification*; Waste Water
  14. Kurniawan SB, Abdullah SRS, Imron MF, Said NSM, Ismail N', Hasan HA, et al.
    Int J Environ Res Public Health, 2020 Dec 12;17(24).
    PMID: 33322826 DOI: 10.3390/ijerph17249312
    The utilization of metal-based conventional coagulants/flocculants to remove suspended solids from drinking water and wastewater is currently leading to new concerns. Alarming issues related to the prolonged effects on human health and further pollution to aquatic environments from the generated nonbiodegradable sludge are becoming trending topics. The utilization of biocoagulants/bioflocculants does not produce chemical residue in the effluent and creates nonharmful, biodegradable sludge. The conventional coagulation-flocculation processes in drinking water and wastewater treatment, including the health and environmental issues related to the utilization of metal-based coagulants/flocculants during the processes, are discussed in this paper. As a counterpoint, the development of biocoagulants/bioflocculants for drinking water and wastewater treatment is intensively reviewed. The characterization, origin, potential sources, and application of this green technology are critically reviewed. This review paper also provides a thorough discussion on the challenges and opportunities regarding the further utilization and application of biocoagulants/bioflocculants in water and wastewater treatment, including the importance of the selection of raw materials, the simplification of extraction processes, the application to different water and wastewater characteristics, the scaling up of this technology to a real industrial scale, and also the potential for sludge recovery by utilizing biocoagulants/bioflocculants in water/wastewater treatment.
    Matched MeSH terms: Water Purification*; Drinking Water*; Waste Water
  15. Shuhaimi-Othman M, Nadzifah Y, Nur-Amalina R, Umirah NS
    ScientificWorldJournal, 2012;2012:861576.
    PMID: 22919358 DOI: 10.1100/2012/861576
    Freshwater quality criteria for iron (Fe), lead (Pb), nickel (Ni), and zinc (Zn) were developed with particular reference to aquatic biota in Malaysia, and based on USEPA's guidelines. Acute toxicity tests were performed on eight different freshwater domestic species in Malaysia which were Macrobrachium lanchesteri (prawn), two fish: Poecilia reticulata and Rasbora sumatrana, Melanoides tuberculata (snail), Stenocypris major (ostracod), Chironomus javanus (midge larvae), Nais elinguis (annelid), and Duttaphrynus melanostictus (tadpole) to determine 96 h LC(50) values for Fe, Pb, Ni, and Zn. The final acute value (FAV) for Fe, Pb, Ni, and Zn were 74.5, 17.0, 165, and 304.9 μg L(-1), respectively. Using an estimated acute-to-chronic ratio (ACR) of 8.3, the value for final chronic value (FCV) was derived. Based on FAV and FCV, a criterion maximum concentration (CMC) and a criterion continuous concentration (CCC) for Fe, Pb, Ni, and Zn that are 37.2, 8.5, 82.5, and 152.4 μg L(-1) and 9.0, 2.0, 19.9, and 36.7 μg L(-1), respectively, were derived. The results of this study provide useful data for deriving national or local water quality criteria for Fe, Pb, Ni, and Zn based on aquatic biota in Malaysia. Based on LC(50) values, this study indicated that N. elinguis, M. lanchesteri, N. elinguis, and R. sumatrana were the most sensitive to Fe, Pb, Ni, and Zn, respectively.
    Matched MeSH terms: Fresh Water; Water Pollutants, Chemical/analysis*; Water Quality*
  16. Hao YS, Othman N, Zaini MAA
    Int J Biol Macromol, 2024 Oct;277(Pt 4):134353.
    PMID: 39089559 DOI: 10.1016/j.ijbiomac.2024.134353
    The work was aimed at evaluating the adsorptive properties of waste newspaper (WN) activated carbons chemically produced using sodium salts for methylene blue (MB) and congo red (CR) removal. The activated carbons, designated as AC1, AC2, AC3 and AC4 were prepared through impregnation with NaH2PO4, Na2CO3, NaCl and NaOH, respectively and activation at 500 °C for 1 h. The activated carbons were characterized for surface chemistry, thermal stability, specific area, morphology and composition. The AC1 with a surface area of 917 m2/g exhibits a greater MB capacity of 651 mg/g. Meanwhile, a greater CR capacity was recorded by AC2 at 299 mg/g. The pseudo-second order model fitted well with the kinetic data, while the equilibrium data could be described by Langmuir model. The thermodynamic parameters, i.e.., positive ΔH°, negative ΔG° and positive ΔS° suggest that the adsorption of dyes is endothermic, spontaneous and feasible at high solution temperature. To conclude, WN is a potential cellulose source for producing activated carbon, while NaH2PO4 activation could be employed to convert WN into activated carbon for effective dye wastewater treatment.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification; Water Pollutants, Chemical/chemistry; Water Purification/methods
  17. Rahman ML, Fui CJ, Sarjadi MS, Arshad SE, Musta B, Abdullah MH, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(27):34541-34556.
    PMID: 32557073 DOI: 10.1007/s11356-020-09462-0
    A waste material known as palm oil empty fruit bunch (EFB) is used as a source of cellulose for the development of polymeric materials for the removal of metal ions from industrial wastewater. A poly(acrylonitrile)-grafted palm cellulose copolymer was synthesized by a conventional free radical initiating process followed by synthesis of a poly(amidoxime) ligand by oximation reaction. The resulting products were characterized by FT-IR, FE-SEM, EDX, TGA, DSC, and XPS. The poly(amidoxime) ligand was used to coordinate with and extract a series of transition metal ions from water samples. The binding capacity (qe) of the ligand with the metal ions such as copper, iron, cobalt, nickel, and lead were 260, 210, 168, 172, and 272 mg g-1, respectively at pH 6. The adsorption process followed the pseudo-first-order kinetic model (R2 > 0.99) and as well as the Freundlich isotherm model (R2 > 0.99) indicating the occurrence of a multi-layer adsorption process in the amidoxime ligand adsorbent. Results from reusability studies show that the ligand can be recycled for at least 10 cycles without any significant losses to its initial adsorption capacity. The synthesized polymeric ligand was shown to absorb heavy metals from electroplating wastewater with up to 95% efficiency.
    Matched MeSH terms: Water Pollutants, Chemical*; Water Purification*; Waste Water
  18. Khanday WA, Soon KA, Ahmed MJ, Hummadi EH
    Int J Biol Macromol, 2025 Jan;285:138301.
    PMID: 39638171 DOI: 10.1016/j.ijbiomac.2024.138301
    Chitosan (CH) and pencil clay (CL) were utilized to prepare stable epichlorohydrin cross-linked chitosan-clay hybrid beads (CCHB) for the adsorptive removal of anionic reactive black 5 (RB5) dye. Among various percentage weight ratios of chitosan/clay hybrid beads, 40 % CH-60 % CL was selected as the best adsorbent owing to its stability and removal efficiency. The pore properties of CCHB in terms of surface area, total pore volume, and average pore width were 40.33 m2/g, 0.088 cm3/g, and 86.06 Å, respectively. The adsorption behavior of RB5 on CCHB followed Langmuir and pseudo-second-order models. Thermodynamic parameters confirm the endothermic and spontaneous nature of RB5 adsorption and the regeneration studies reveal a negligible decrease in removal efficiency of CCHB after 5 adsorption-desorption cycles. The CCHB exhibited adsorption capacities of 169.49, 200.00, and 227.27 mg/g for RB5, respectively, at 30, 40, and 50 °C. The prepared chitosan-clay hybrid bead adsorbent can be efficiently applied for anionic wastewater treatment.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification; Water Pollutants, Chemical/chemistry; Water Purification/methods
  19. Mohd Amin MF, Heijman SG, Lopes SI, Rietveld LC
    ScientificWorldJournal, 2014;2014:162157.
    PMID: 25197693 DOI: 10.1155/2014/162157
    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles' classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism.
    Matched MeSH terms: Water/chemistry*; Water Pollutants, Chemical/analysis*; Water Pollutants, Chemical/chemistry; Water Purification/methods*
  20. Ngu H, Wong KK, Law PL
    Water Environ Res, 2012 Apr;84(4):299-304.
    PMID: 22834217
    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.
    Matched MeSH terms: Water Movements; Water Pollutants, Chemical/isolation & purification*; Water Purification/instrumentation; Water Purification/methods*; Water Purification/standards
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links