Enterovirus A71 (EV-A71), which is transmitted by the fecal-oral route, causes hand, foot and mouth disease and, rarely, severe neurological complications. In Malaysia, the indigenous rural community (Orang Asli) has a high prevalence of parasitic diseases due to poor sanitation, water supply and hygiene practices. This cross-sectional study compared the seroepidemiology of EV-A71 among rural Orang Asli and urban Kuala Lumpur populations in West Malaysia, and determined the risk factors associated with EV-A71 seropositivity in rural Orang Asli. Seropositive rates were determined by neutralization assay. EV-A71 seropositivity was strongly associated with increasing age in both populations. Rural Orang Asli children ≤12 years had significantly higher EV-A71 seropositivity rates than urban Kuala Lumpur children (95.5% vs 57.6%, P < 0.001), and also higher rates in the age groups of 1-3, 4-6 and 7-12 years. Multivariate analysis confirmed that age ≤12 years (adjusted OR 8.1, 95% CI 3.2-20.7, P < 0.001) and using untreated water (adjusted OR 6.2, 95% CI 2.3-16.6, P < 0.001) were independently associated with EV-A71 seropositivity in the Orang Asli population. Supply of clean drinking water may reduce the risk of EV-A71 infection. With significantly higher EV-A71 seropositive rates, younger rural children should be a priority target for future vaccination programs in Malaysia.
Beta-agonists and sulfonamides are widely used for treating both humans and livestock for bronchial and cardiac problems, infectious disease and even as growth promoters. There are concerns about their potential environmental impacts, such as producing drug resistance in bacteria. This study focused on their spatial distribution in surface water and the identification of pollution sources in the Langat River basin, which is one of the most urbanized watersheds in Malaysia. Fourteen beta-agonists and 12 sulfonamides were quantitatively analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A geographic information system (GIS) was used to visualize catchment areas of the sampling points, and source profiling was conducted to identify the pollution sources based on a correlation between a daily pollutant load of the detected contaminant and an estimated density of human or livestock population in the catchment areas. As a result, 6 compounds (salbutamol, sulfadiazine, sulfapyridine, sulfamethazine, sulfadimethoxine and sulfamethoxazole) were widely detected in mid catchment areas towards estuary. The source profiling indicated that the pollution sources of salbutamol and sulfamethoxazole were from sewage, while sulfadiazine was from effluents of cattle, goat and sheep farms. Thus, this combination method of quantitative and spatial analysis clarified the spatial distribution of these drugs and assisted for identifying the pollution sources.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Carboxymethyl sago starch-acid hydrogel was prepared via irradiation technique to remove divalent metal ions (Pb, Cu and Cd) from their aqueous solution. The hydrogel was characterized by using Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The removal of these metal ions was analyzed by using inductively coupled plasma-optic emission spectra (ICP-OES) to study the amount of metal uptake by the hydrogel. Parameters of study include effect of pH, amount of sample, contact time, initial concentration of metal solution and reaction temperature. FTIR spectroscopy shows the CMSS hydrogel absorption peaks at 1741cm(-1), 1605cm(-1) and 1430cm(-1) which indicates the substitution of carboxymethyl group of modified sago starch. The degradation temperature of CMSS hydrogel is higher compared to CMSS due to the crosslinking by electron beam radiation and formed a porous hydrogel. From the data obtained, about 93.5%, 88.4% and 85.5% of Pb, Cu and Cd ions has been respectively removed from their solution under optimum condition.
The purpose of the present study was to investigate the potential risk of herbicide contamination (2,4-dichlorophenoxy (2,4-D), 2-methyl-4-chlorophenoxyacetic acid (MCPA), metsulfuron, bensulfuron, and pyrazosulfuron) in the rice fields of the Muda Irrigation Scheme, Kedah, Malaysia. The study included two areas with different irrigation water sources namely non-recycled (N-RCL) and recycled (RCL) water. Periodic water sampling was carried out from the drainage canals during the planting period of the wet season 2006/2007 and dry season 2007. The HPLC-UV was used to detect herbicide residues in the water samples collected from the rice fields. The results showed that the concentration of sulfonylurea herbicides such as bensulfuron and metsulfuron in the rice field was 0.55 and 0.51 μg/L, respectively. The potential risk of contamination depended on the actual dosage of each herbicide applied by farmers to their rice fields. The potential risk of water pollution by the five herbicides studied in the area with RCL water tended to be more widespread compared to the area with N-RCL water due to surface water runoff with higher levels of weedicides to the surrounding areas. During the two seasons, 50-73% of the water samples collected from the area receiving RCL water contained the five herbicides studied at concentrations of more than 0.05 μg/L, and this percentage was higher than that from the areas receiving N-RCL water (45-69%). During the wet season, the overall total mean concentration of the eight herbicides found in the samples collected from the area with RCL water (6.27 μg/L) was significantly higher (P water (2.39 μg/L). Meanwhile, during the dry season, there was no significant difference (P > 0.05) in the herbicide concentrations between the areas receiving RCL (6.16 μg/L) and N-RCL water (7.43 μg/L) water.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Samples of sea-surface microlayer (SML) and sub-surface water (SSW) were collected from two areas-Kaohsiung City (Taiwan) and the southwest coast of Peninsular Malaysia to study the influence of SML on enrichment and distribution and to compare SML with the SSW. Anionic surfactants (MBAS) predominated in this study and were significantly higher in Kaohsiung than in Malaysia. Industrial areas in Kaohsiung were enriched with high loads of anthropogenic sources, accounted for higher surfactant amounts, and pose higher environmental disadvantages than in Malaysia, where pollutants were associated with agricultural activities. The dissolved organic carbon (DOC), MBAS, and cationic surfactant (DBAS) concentrations in the SML correlated to the SSW, reflecting exchanges between the SML and SSW in Kaohsiung. The relationships between surfactants and the physiochemical parameters indicated that DOC and saltwater dilution might affect the distributions of MBAS and DBAS in Kaohsiung. In Malaysia, DOC might be the important factor controlling DBAS.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children.
The aim of this work was to characterize the natural low transition temperature mixtures (LTTMs) as promising green solvents for biomass pretreatment with the critical characteristics of cheap, biodegradable and renewable, which overcome the limitations of ionic liquids (ILs). The LTTMs were derived from inexpensive commercially available hydrogen bond acceptor (HBA) and l-malic acid as the hydrogen bond donor (HBD) in distinct molar ratios of starting materials and water. The peaks involved in the H-bonding shifted and became broader for the OH groups. The thermal properties of the LTTMs were not affected by water while the biopolymers solubility capacity of LTTMs was improved with the increased molar ratio of water and treatment temperature. The pretreatment of oil palm biomass was consistence with the screening on solubility of biopolymers. This work provides a cost-effective alternative to utilize microwave hydrothermal extracted green solvents such as malic acid from natural fruits and plants.
The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations.
Recently noted that the methylene blue cause severe central nervous system toxicity. It is essential to optimize the methylene blue from aqueous environment. In this study, a comparison of an optimization of methylene blue was investigated by using modified Ca(2+) and Zn(2+) bio-polymer hydrogel beads. A batch mode study was conducted using various parameters like time, dye concentration, bio-polymer dose, pH and process temperature. The isotherms, kinetics, diffusion and thermodynamic studies were performed for feasibility of the optimization process. Freundlich and Langmuir isotherm equations were used for the prediction of isotherm parameters and correlated with dimensionless separation factor (RL). Pseudo-first order and pseudo-second order Lagegren's kinetic equations were used for the correlation of kinetic parameters. Intraparticle diffusion model was employed for diffusion of the optimization process. The Fourier Transform Infrared Spectroscopy (FTIR) shows different absorbent peaks of Ca(2+) and Zn(2+) beads and the morphology of the bio-polymer material analyzed with Scanning Electron Microscope (SEM). The TG & DTA studies show that good thermal stability with less humidity without production of any non-degraded products.
Matched MeSH terms: Water Pollutants, Chemical/chemistry*
Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system.
This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
Twenty seven filamentous fungal strains representing five genera; Aspergillus, Penicillium, Trichoderma, Myriodontium and Pleurotus were isolated from four sources; domestic wastewater sludge cake (SC) from IWK (Indah Water Konsortium) wastewater treatment plant, palm oil mill effluent compost from Sri Ulu palm Oil Processing Mill, compost of plant debris, and fungal fruiting bodies from a rotten wood stump. Thirty-three strains/isolates were tested for their ability to convert domestic wastewater sludge into compost by assessing biomass production and growth rate on sludge enriched media. The strains/isolates Aspergillus niger, SS-T2008, WW-P1003 and RW-P1 512 produced the highest dry biomass at higher sludge supplemented culture media from their respective group (Aspergillus, Trichoderma, Penicillium and Basidiomycetes, respectively). This implied these strains are better adapted for growth at higher sludge rich substances, and subsequently may be efficient in bioconversion/biodegradation of sludge. The fungi isolated from ecological closely related sources were more amendable to adaptation in a sludge rich culture media.
Butyltin compounds (BTs) including mono-, di-, and tributyltin and total tin (sigmaSn), were determined in green mussels (Perna viridis) from various Asian developing countries, such as Cambodia, China (Hong Kong and southern China), Malaysia, India, Indonesia, the Philippines, and Vietnam, to elucidate the contamination status, distribution, and possible sources and to assess the risks on aquatic organisms and humans. Butyltin compounds were detected in green mussels collected from all the sampling location investigated, suggesting widespread contamination of BTs along the coastal waters of Asian developing countries. Among butyltin derivatives, tributyltin (TBT) was the predominant compound, indicating its ongoing usage and recent exposures in Asian coastal waters. Higher concentrations of BTs were found in mussels collected at locations with intensive maritime activities, implying that the usage of TBT as a biocide in antifouling paints was a major source of BTs. In addition, relatively high concentrations of BTs were observed in mussels from aquaculture areas in Hong Kong and Malaysia, as it has been reported in Thailand. With the recent improvement in economic status in Asia, it is probable that an increase in TBT usage will occur in aquaculture. Although contamination levels were generally low in mussel samples from most of the Asian developing countries, some of those from polluted areas in Hong Kong, India, Malaysia, the Philippines, and Thailand revealed levels comparable to those in developed nations. Furthermore, the concentrations of TBT in some mussels from polluted areas exceeded the threshold for toxic effects on organisms and estimated tolerable average residue levels as seafoods for human consumption. A significant correlation was observed between the concentrations of sigmaBTs and sigmaSn in mussels, and sigmaBTs were made up mostly 100% of sigmaSn in mussels taken from locations having intensive maritime/human activities. This suggests that anthropogenic BTs represent the major source of tin accumulation in mussels. To our knowledge, this is a first comprehensive report on butyltin pollution monitoring in developing countries in the Asia-Pacific region.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
In Malaysia, most colored wastewater from dyeing factories is discharged to the environment causing serious problems. In this paper the influence of several reacting conditions, i.e. H2O2, pH, Ultraviolet (UV) intensity and dye concentration, on the performance of the immobilized system is discussed. The pH of the solution was varied from 3 to 11 while H2O2 concentration tested was from 10(-4) M to 5 x 10(-2) M. UV was tested at 365 nm and 254 nm, while dye concentration ranged from 2.5 x 10(-4) M to 10(-3) M. The influence of the reacting conditions was assessed based on absorbance. Using an OG concentration of 10(-3) M, the degradation increases from 17.8% to 49.7%. Optimum concentration of H2O2 was found to be 5 x 10(-3) M for degradation. Increasing the intensity of the UV light via shorter light wavelength also improves the performance of the system. Increasing the concentration of the dye reduces the overall performance of the system. Using the dye concentration of 2.5 x 10(-4) M (H2O2 = 10(-2) M, lambda = 254 nm, pH = 11), gives a degradation of 93.2%. At dye concentration of 10(-3) M, the performance was reduced to 53.1%.
The objective of this study is to investigate the potential of the activated rice husk to be used as an alternative adsorbent to powdered activated carbon (PAC) in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol. The rice husk (PRH) was activated by pyrolysis at 600 degrees C for 5 hours in a nitrogen atmosphere. Using the Langmuir model, the limiting adsorption capacities of PRH for the phenols were found to vary from 0.015-0.05 of those of PAC. The SBR reactors with and without adsorbent addition were operated with fill, react, settle, draw and idle periods in the ratio of 4:6:1:0.76:0.25 for a cycle time of 12 hours. For phenolic wastewater containing, 1,200 mg/L phenol, 1,200 mg/L p-methylphenol, 800 mg/L p-ethylphenol and 660 mg/L p-isopropylphenol, it was found that the biodegradation process alone was unable to produce effluent of quality which would satisfy the discharge standards of COD < or = 100 mg/L and phenol concentration < or = 1 mg/L. The addition of PAC in the ratio of PAC/phenolic compound at 0.095 g/g for phenol, 0.119 g/g for p-methylpheol, 0.179 g/g for p-ethylphenol and 0.220 g/g for p-isopropylphenol, can improve the effluent quality to satisfy the discharge standards. Equivalent treatment performance was achieved with the use of PRH at dosages of 2-3 times higher than those of PAC for all the phenolic wastewater studied. The increased adsorption capacity of PRH shown in the treatment indicates bioregeneration of the adsorbed surface during the treatment process.
A study on the modification of rice husk by various carboxylic acids showed that tartaric acid modified rice husk (TARH) had the highest binding capacities for Cu and Pb. The carboxyl groups on the surface of the modified rice husk were primarily responsible for the sorption of metal ions. A series of batch experiments using TARH as the sorbent for the removal of Cu and Pb showed that the sorption process was pH dependent, rapid and exothermic. The sorption process conformed to the Langmuir isotherm with maximum sorption capacities of 29 and 108 mg/g at 27 +/- 2 degrees C for Cu and Pb, respectively. The uptake increased with agitation rate. Decrease in sorbent particle size led to an increase in the sorption of metal ions and this could be explained by an increase in surface area and hence binding sites. Metal uptake was reduced in the presence of competitive cations and chelators. The affinity of TARH for Pb is greater than Cu.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
The persistence of metsulfuron-methyl (methyl 2-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosul fonyl]benzoate) in nonautoclaved and autoclaved Selangor, Lating, and Serdang series soils incubated at different temperatures and with different moisture contents was investigated under laboratory conditions using cucumber (Cucumis sativus L.) as the bioassay species. Significant degradation of metsulfuron-methyl was observed in nonautoclaved soil compared with the autoclaved soil sample, indicating the importance of microorganisms in the breakdown process. At higher temperatures the degradation rate in nonautoclaved soil improved with increasing soil moisture content. In nonautoclaved Selangor, Lating and Serdang series soils, the half-life was reduced from 4.79 to 2.78 days, 4.9 to 3.5, and from 3.3 to 1.9 days, respectively, when the temperature was increased from 20 degrees to 30 degrees C at 80% field capacity. Similarly, in nonautoclaved soil, the half-life decreased with an increasing soil moisture from 20% to 80% at 30 degrees C in the three soils studied. In the autoclaved soil, the half-life values were slightly higher than those obtained in the nonautoclaved soils, perhaps indicating that the compound may be broken down by nonbiological processes. The fresh weight of the bioassay species was reduced significantly in Serdang series soil treated with metsulfuron-methyl at 0.1 ppm. However, the reduction in fresh weight of the seedlings was least in Lating series soil, followed by Selangor series soil.
The objective of this study is to investigate the respective effects of Zn, Pb and Cd as well as the combined effect of Zn, Pb, Cd and Cu on the removal of nitrogen and oxygen demand in constructed wetlands. Four laboratory-scale gravel-filled subsurface-flow constructed wetland units planted with cattails (Typha latifolia) were operated outdoors and fed with primary-treated domestic wastewater at a constant flow rate of 25 ml/min. After 6 months, three of the wetland units were fed with the same type of wastewater spiked with Zn(II), Pb(II) and Cd(II), respectively, at 20, 5 and 1 mg/l for a further 9 months. The remaining unit was fed with the same type of wastewater spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II) at concentrations of 10, 2.5, 0.5 and 5 mg/l, respectively, over the same period. The chemical oxygen demand (COD) and ammoniacal nitrogen (AN) concentrations were monitored at the inlet, outlet and three additional locations along the length of the wetland units to assess the performance of the wetland units at various metal loadings. At the end of the study, all cattail plants were harvested for the determination of total Kjeldahl nitrogen and metal concentrations. The results showed that the COD removal efficiency was practically independent of increasing metal loading or a combination of metal loadings during the duration of the study. In contrast, the AN removal efficiency deteriorated progressively with increasing metal loading. The relative effect of the heavy metals was found to increase in the order: Zn
This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil, fresh lubricating oil, asphalt, and tire-particles as major contributors.
Matched MeSH terms: Water Pollutants, Chemical/analysis*
This study was conducted to evaluate the effect of an eminent decay fungus, Phanerocheate chrysosporium of organic residues on wastewater sludge for its improvement through decomposition and separation of waste particles by Liquid State Bioconversion (LSB). The effect of fungal treatment was compared to uninoculated (Control) at three different harvests 7, 14 and 21 days after inoculation (DAI). The observed results showed that the weight loss and solid content of wastewater sludge were significantly influenced by Phanerocheate chrysosporium. Both parameters were highly influenced at 7 DAI. The COD and pH of wastewater sludge were also highly influenced by fungal treatment.
Matched MeSH terms: Water Pollution/prevention & control