Displaying publications 261 - 280 of 837 in total

Abstract:
Sort:
  1. Tan XL, Othman RY, Teo CH
    3 Biotech, 2020 Apr;10(4):183.
    PMID: 32257739 DOI: 10.1007/s13205-020-02176-7
    5-Enolpyruvylshikimate 3-phosphate synthase (EPSPS) is the primary target for the broad-spectrum herbicide, glyphosate. Improvement of EPSPS gene for high level of glyphosate tolerance is important to generate glyphosate-tolerant crops. In this study, we report the isolation and characterization of EPSPS genes of glyphosate-tolerant Pseudomonas nitroreducens strains FY43 and FY47. Both P. nitroreducens strains FY43 and FY47, which showed glyphosate tolerance up to 8.768% (518.4 mM, 32 × higher than field application), were isolated from soil samples collected from oil palm plantation with a long history of glyphosate application. The glyphosate tolerance property of EPSPS genes of strains FY43 and FY47 was functionally characterized by expressing the genes in Escherichia coli strain BL21(DE3). Error-prone PCR was performed to mutagenize native EPSPS gene of strains FY43 and FY47. Ten mutagenized EPSPS with amino acid changes (R21C, N265S, A329T, P71L, T258A, L184F, G292C, G292S, L35F and A242V) were generated through error-prone PCR. Both native and mutated EPSPS genes of strains FY43 and FY47 were introduced into Escherichia coli strain BL21(DE3) and transformants were selected on basal salt medium supplemented with 8.768% (518.4 mM) glyphosate. Mutants with mutations (R21C, N265S, A329T, P71L, T258A, L35F, A242V, L184F and G292C) showed sensitivity to 8.768% glyphosate, whereas glyphosate tolerance for mutant with G292S mutation was not affected by the mutation.
    Matched MeSH terms: Escherichia coli
  2. Mohamad Sobri MF, Abd-Aziz S, Abu Bakar FD, Ramli N
    Int J Mol Sci, 2020 Jun 04;21(11).
    PMID: 32512945 DOI: 10.3390/ijms21114035
    β-glucosidases (Bgl) are widely utilized for releasing non-reducing terminal glucosyl residues. Nevertheless, feedback inhibition by glucose end product has limited its application. A noticeable exception has been found for β-glucosidases of the glycoside hydrolase (GH) family 1, which exhibit tolerance and even stimulation by glucose. In this study, using local isolate Trichoderma asperellum UPM1, the gene encoding β-glucosidase from GH family 1, hereafter designated as TaBgl2, was isolated and characterized via in-silico analyses. A comparison of enzyme activity was subsequently made by heterologous expression in Escherichia coli BL21(DE3). The presence of N-terminal signature, cis-peptide bonds, conserved active site motifs, non-proline cis peptide bonds, substrate binding, and a lone conserved stabilizing tryptophan (W) residue confirms the identity of Trichoderma sp. GH family 1 β-glucosidase isolated. Glucose tolerance was suggested by the presence of 14 of 22 known consensus residues, along with corresponding residues L167 and P172, crucial in the retention of the active site's narrow cavity. Retention of 40% of relative hydrolytic activity on ρ-nitrophenyl-β-D-glucopyranoside (ρNPG) in a concentration of 0.2 M glucose was comparable to that of GH family 1 β-glucosidase (Cel1A) from Trichoderma reesei. This research thus underlines the potential in the prediction of enzymatic function, and of industrial importance, glucose tolerance of family 1 β-glucosidases following relevant in-silico analyses.
    Matched MeSH terms: Escherichia coli
  3. Swaminathan A, Abd Aziz NH, Ayub NA, Wong KK, Cheah FC
    BMC Res Notes, 2021 Nov 22;14(1):420.
    PMID: 34809696 DOI: 10.1186/s13104-021-05842-y
    OBJECTIVE: Pregnant women with bacterial vaginosis due to Gardnerella vaginalis (GV) infection presents with a wide-ranging disease symptomatology. We speculate this may be due to interaction that varies between host immune response and the pathogen. We studied the oxidative burst in polymorphonuclear leukocytes (PMNL)s from maternal blood (MB) and cord blood (CB) upon phagocytosis of GV and compared against E. coli and Group B Streptococcus (GBS).

    RESULTS: The PHAGOBURST™ assay detects fluorescence from oxidized dihydrorhodamine during oxidative burst. The average percentage of PMNL showing oxidative burst was almost two-fold greater with GBS (99.5%) and E. coli (98.2%) than GV (56.9%) (p 

    Matched MeSH terms: Escherichia coli
  4. Phan MD, Nhu NTK, Achard MES, Forde BM, Hong KW, Chong TM, et al.
    J Antimicrob Chemother, 2017 10 01;72(10):2729-2736.
    PMID: 29091192 DOI: 10.1093/jac/dkx204
    Objectives: Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958.

    Methods: Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost.

    Results: A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B.

    Conclusions: This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.

    Matched MeSH terms: Uropathogenic Escherichia coli/drug effects; Uropathogenic Escherichia coli/genetics*; Uropathogenic Escherichia coli/growth & development
  5. Teoh WK, Salleh FM, Shahir S
    3 Biotech, 2017 Jun;7(2):97.
    PMID: 28560637 DOI: 10.1007/s13205-017-0740-7
    Microbial arsenite oxidation is an essential biogeochemical process whereby more toxic arsenite is oxidized to the less toxic arsenate. Thiomonas strains represent an important arsenite oxidizer found ubiquitous in acid mine drainage. In the present study, the arsenite oxidase gene (aioBA) was cloned from Thiomonas delicata DSM 16361, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant Aio consisted of two subunits with the respective molecular weights of 91 and 21 kDa according to SDS-PAGE. Aio catalysis was optimum at pH 5.5 and 50-55 °C. Aio exhibited stability under acidic conditions (pH 2.5-6). The V max and K m values of the enzyme were found to be 4 µmol min(-1) mg(-1) and 14.2 µM, respectively. SDS and Triton X-100 were found to inhibit the enzyme activity. The homology model of Aio showed correlation with the acidophilic adaptation of the enzyme. This is the first characterization studies of Aio from a species belonging to the Thiomonas genus. The arsenite oxidase was found to be among the acid-tolerant Aio reported to date and has the potential to be used for biosensor and bioremediation applications in acidic environments.
    Matched MeSH terms: Escherichia coli
  6. Chong, S. Y., Rao, P. V., Soon, J. M.
    MyJurnal
    Street-vended beverages are commonly prepared by mechanical extraction of the pulp, usually
    unpasteurised and requires multiple handling steps. Foodborne pathogens transmitted via skin of
    street vendors or via faecal-oral route may contaminate the preparation surfaces and beverages.
    The aim of this study is to identify Escherichia spp. strains of street-vended beverages and their
    associated preparation surfaces using 16s rRNA analysis. The hygienic practice of vendors was represented by Staphylococcus spp. analysis and Staphylococcus aureus is not detected in beverages and associated preparation surfaces. A total of 80 samples (18 beverages, 15 swab
    samples and 47 direct film samples) were collected followed by enumeration of microbial load.
    Polymerase Chain Reaction (PCR) amplification and 16S ribosomal ribonucleic acid (rRNA)
    sequencing were carried out. Results of 16S rRNA sequence analysis indicated that three gram-negative isolates were identified as Escherichia coli RM9387 (Accession no. CP009104.1),
    Escherichia coli c164 (Accession no. JQ781646.1) and Escherichia fergusonii E10 (Accession no. KJ626264.1) with similarity value of 99% respectively.
    Matched MeSH terms: Escherichia coli
  7. Bnfaga AA, Lee KW, Than LTL, Amin-Nordin S
    J Biomed Sci, 2023 Mar 23;30(1):19.
    PMID: 36959635 DOI: 10.1186/s12929-023-00913-7
    BACKGROUND: Lactobacilli are essential microbiota that maintain a healthy, balanced vaginal environment. Vaginitis is a common infection in women during their reproductive years. Many factors are associated with vaginitis; one of them is the imbalance of microbiota in the vaginal environment. This study aimed to evaluate the antimicrobial properties of Lactobacillus delbrueckii 45E (Ld45E) against several species of bacteria, namely, Group B Streptococcus (GBS), Escherichia coli, Klebsiella spp., and Candida parapsilosis, as well as to determine the concentration of interleukin-17 (IL-17) in the presence of Ld45E.

    METHODS: The probiotic characteristics of Ld45E were evaluated by examining its morphology, pH tolerance, adhesive ability onto HeLa cells, hemolytic activity, antibiotic susceptibility, and autoaggregation ability. Then, the antimicrobial activity of Ld45E was determined using Ld45E culture, cell-free supernatant, and crude bacteriocin solution. Co-aggregation and competition ability assays against various pathogens were conducted. The immunoregulatory effects of Ld45E were analyzed by measuring the proinflammatory cytokine IL-17. A p-value less than 0.05 was considered statistical significance.

    RESULTS: Ld45E is 3-5 mm in diameter and round with a flat-shaped colony. pH 4 and 4.5 were the most favorable range for Ld45E growth within 12 h of incubation. Ld45E showed a strong adhesion ability onto HeLa cells (86%) and negative hemolytic activities. Ld45E was also sensitive to ceftriaxone, cefuroxime, ciprofloxacin, and doxycycline. We found that it had a good autoaggregation ability of 80%. Regarding antagonistic properties, Ld45E culture showed strong antimicrobial activity against GBS, E. coli, and Klebsiella spp. but only a moderate effect on C. parapsilosis. Cell-free supernatant of Ld45E exerted the most potent inhibitory effects at 40 °C against all genital pathogens, whereas bacteriocin showed a robust inhibition at 37 °C and 40 °C. The highest co-aggregation affinity was observed with GBS (81%) and E. coli (40%). Competition ability against the adhesion of GBS (80%), E. coli (76%), Klebsiella (72%), and C. parapsilosis (58%) was found. Ld45E was able to reduce the induction of the proinflammatory protein IL-17.

    CONCLUSIONS: Ld45E possessed antimicrobial and immunoregulatory properties, with better cell-on-cell activity than supernatant activity. Thus, Ld45E is a potential probiotic candidate for adjunct therapy to address vaginal infections.

    Matched MeSH terms: Escherichia coli
  8. Singh P, Pandey P, Arya DK, Anjum MM, Poonguzhali S, Kumar A, et al.
    Biomed Mater, 2023 Mar 27;18(3).
    PMID: 36921352 DOI: 10.1088/1748-605X/acc4a1
    The morbidity rate following a surgical procedure increasing rapidly in the cases associated with surgical site infections. Traditional sutures lack the ability to deliver drugs as the incorporation of the drug in their structure would hamper their mechanical properties. To prevent such infections, we developed an extracellular matrix mimicking electrospun nanofibrous yarns of poly-(D,L)-lactic acid and polyvinyl alcohol loaded with vancomycin and ferulic acid, prepared by uniaxial electrospinning technique.In-vitrocharacterization such as scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, tensile strength testing, degradation studies, and antimicrobial studies along within-vivoevaluation done with help of incision wound healing rat model and simultaneous testing of microbial load in the incised tissue. Thein-vitrostudies indicated the nanofiber yarns have size range 200-300 nm with a tensile strength of 7.54 ± 0.58 MPa. The dual drug-loaded yarn showed sustained drug release over a period of 48 h.In-vitrowater uptake and biodegradation data indicated optimum results suitable for suturing applications. Antimicrobial study showed excellent antimicrobial activity against bothS. aureus and E. coli.Results obtained fromin-vivostudy suggested excellent wound healing potential of nanofiber yarns as compared with commercial silk sutures. The histopathological studies confirmed restoring ability of nanofiber yarn to the normal skin structure. Enzyme-linked immunosorbent assay (ELISA) study revealed the downregulation of inflammatory markers i.e. TNF-alpha and IL-6, making nanofibers sutures suitable for surgical wound healing applications. Overall, the present study may conclude that the developed dual drug-loaded nanofiber yarns have excellent potential in surgical wound healing applications.
    Matched MeSH terms: Escherichia coli
  9. Rimba AB, Mohan G, Chapagain SK, Arumansawang A, Payus C, Fukushi K, et al.
    Environ Sci Pollut Res Int, 2021 May;28(20):25920-25938.
    PMID: 33475923 DOI: 10.1007/s11356-020-12285-8
    This paper aims to assess the influence of land use and land cover (LULC) indicators and population density on water quality parameters during dry and rainy seasons in a tourism area in Indonesia. This study applies least squares regression (OLS) and Pearson correlation analysis to see the relationship among factors, and all LULC and population density were significantly correlated with most of water quality parameter with P values of 0.01 and 0.05. For example, DO shows high correlation with population density, farm, and built-up in dry season; however, each observation point has different percentages of LULC and population density. The concentration value should be different over space since watershed characteristics and pollutions sources are not the same in the diverse locations. The geographically weighted regression (GWR) analyze the spatially varying relationships among population density, LULC categories (i.e., built-up areas, rice fields, farms, and forests), and 11 water quality indicators across three selected rivers (Ayung, Badung, and Mati) with different levels of tourism urbanization in Bali Province, Indonesia. The results explore that compared with OLS estimates, GWR performed well in terms of their R2 values and the Akaike information criterion (AIC) in all the parameters and seasons. Further, the findings exhibit population density as a critical indicator having a highly significant association with BOD and E. Coli parameters. Moreover, the built-up area has correlated positively to the water quality parameters (Ni, Pb, KMnO4 and TSS). The parameter DO is associated negatively with the built-up area, which indicates increasing built-up area tends to deteriorate the water quality. Hence, our findings can be used as input to provide a reference to the local governments and stakeholders for issuing policy on water and LULC for achieving a sustainable water environment in this region.
    Matched MeSH terms: Escherichia coli
  10. Septama AW, Yuandani Y, Khairunnisa NA, Nasution HR, Utami DS, Kristiana R, et al.
    Lett Appl Microbiol, 2023 Nov 01;76(11).
    PMID: 37898554 DOI: 10.1093/lambio/ovad126
    Citrus essential oils (EOs) have shown significant antibacterial activity. The present study was undertaken to evaluate the antibacterial activity of the peel oils of Citrus microcarpa and C. x amblycarpa against Escherichia coli. The minimum inhibition concentration (MIC) was determined by using the broth microdilution assay. The checkerboard method was used to identify synergistic effects of the EOs with tetracycline, while bacteriolysis was assessed by calculating the optical density of the bacterial supernatant, crystal violet assay was used to assess their antibiofilm. Ethidium bromide accumulation test was employed to assess efflux pump inhibition. Electron microscope analysis was performed to observe its morphological changes. The EOs of C. microcarpa and C. x amblycarpa were found to contain D-limonene major compound at 55.78% and 46.7%, respectively. Citrus microcarpa EOs exhibited moderate antibacterial against E. coli with a MIC value of 200 μg/mL. The combination of C. microcarpa oil (7.8 μg/mL) and tetracycline (62.5 μg/mL) exhibited a synergy with FICI of 0.5. This combination inhibited biofilm formation and disrupt bacterial cell membranes. Citrus microcarpa EOs blocked the efflux pumps in E. coli. Citrus microcarpa EOs demonstrated promising antibacterial activity, which can be further explored for the development of drugs to combat E. coli.
    Matched MeSH terms: Escherichia coli
  11. Le VT, Leelakriangsak M, Lee SW, Panphon S, Utispan K, Koontongkaew S
    Braz J Microbiol, 2019 Jan;50(1):33-42.
    PMID: 30637641 DOI: 10.1007/s42770-018-0014-5
    Antibacterial activity of cell-free supernatant from Escherichia coli E against selected pathogenic bacteria in food and aquaculture was the highest against Edwardsiella tarda 3, a significant aquaculture pathogen. Biochemical properties of the bacteriocins were studied and bacteriocin was found to be sensitive to proteinase K, demonstrating its proteinaceous nature. In addition, pH and temperature affected bacteriocin activity and stability. The bacteriocins were partially purified by ammonium sulfate precipitation. The antibacterial activity was only detected in 20% ammonium sulfate fraction and direct detection of its activity was performed by overlaying on the indicator strains. The inhibition zone associated with the antibacterial activity was detected in the sample overlaid by E. tarda 3 and Staphylococcus aureus DMST8840 with the relative molecular mass of about 27 kDa and 10 kDa, respectively. Bacteriocin showed no cytotoxic effect on NIH-3T3 cell line; however, two virulence genes, aer and sfa, were detected in the genome of E. coli E by PCR. The characteristics of bacteriocins produced by E. coli E exhibited the antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria and the safe use determined by cytotoxicity test which may have interesting biotechnological applications.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism*; Escherichia coli/chemistry
  12. Bapat RA, Mak KK, Pichika MR, Pang JC, Lin SL, Khoo SP, et al.
    BMC Oral Health, 2024 Mar 25;24(1):382.
    PMID: 38528501 DOI: 10.1186/s12903-024-04069-0
    AIMS AND OBJECTIVES: To analyze anti-MMP mode of action of Quaternary Ammonium Silane (QAS, codenamed as k21) by binding onto specific MMP site using computational molecular simulation and Anti-Sortase A (SrtA) mode of action by binding onto specific site using computational molecular simulation.

    MATERIALS AND METHODS: In silico Molecular Dynamics (MD) was used to determine the interactions of K21 inside the pocket of the targeted protein (crystal structure of fibroblast collagenase-1 complexed to a diphenyl-ether sulphone based hydroxamic acid; PDB ID: 966C; Crystal structure of MMP-2 active site mutant in complex with APP-derived decapeptide inhibitor. MD simulations were accomplished with the Desmond package in Schrödinger Drug Discovery Suite. Blood samples (~ 0.5 mL) collected into K2EDTA were immediately transferred for further processing using the Litron MicroFlow® PLUS micronucleus analysis kit for mouse blood according to the manufacturer's instructions. Bacterial Reverse Mutation Test of K21 Molecule was performed to evaluate K21 and any possible metabolites for their potential to induce point mutations in amino acid-requiring strains of Escherichia coli (E. coli) (WP2 uvrA (tryptophan-deficient)).

    RESULTS: Molecular Simulation depicted that K21 has a specific pocket binding on various MMPs and SrtA surfaces producing a classical clouting effect. K21 did not induce micronuclei, which are the result of chromosomal damage or damage to the mitotic apparatus, in the peripheral blood reticulocytes of male and female CD-1 mice when administered by oral gavage up to the maximum recommended dose of 2000 mg/kg. The test item, K21, was not mutagenic to Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2 uvrA in the absence and presence of metabolic activation when tested up to the limit of cytotoxicity or solubility under the conditions of the test.

    CONCLUSION: K21 could serve as a potent protease inhibitor maintaining the physical and biochemical properties of dental structures.

    Matched MeSH terms: Escherichia coli
  13. Mah SH, Sundrasegaran S, Lau HLN
    J Oleo Sci, 2024;73(4):489-502.
    PMID: 38556283 DOI: 10.5650/jos.ess23197
    Skincare industries are growing rapidly around the globe but most products are formulated using synthetic chemicals and organic solvent extracted plant extracts, thus may be hazardous to the users and incur higher cost for purification that eventually leads to phytonutrient degradation. Therefore, this study aimed to formulate a stable natural formulation with antioxidant and antimicrobial activities by using supercritical carbon dioxide (SC-CO 2 ) extracted palm-pressed fiber oil (PPFO) as an active ingredient with virgin coconut oil (VCO) as a formulation base. PPFO was extracted from fresh palm-pressed fiber (PPF) while VCO was from dried grated coconut copra using SC-CO 2 before being subjected to the analyses of physicochemical properties, phytonutrient content and biological activities including antioxidant and antimicrobial. The nanoemulgel formulations were then developed and examined for their stability through accelerated stability study for 3 months by measuring their pH, particle size, polydispersity index and zeta potential. The results showed that PPFO contained a high amount of phytonutrients, especially total carotenoid (1497 ppm) and total tocopherol and tocotrienol (2269 ppm) contents. The newly developed nanoemulgels maintained their particles in nano size and showed good stability with high negative zeta potentials. Sample nanoemulgel formulated with 3% PPFO diluted in VCO as effective concentration showed significantly stronger antioxidant activity than the control which was formulated from 3% tocopheryl acetate diluted in mineral oil, towards DPPH and ABTS radicals, with IC 50 values of 67.41 and 44.28 µL/mL, respectively. For the antibacterial activities, the sample nanoemulgel was found to inhibit Gram positive bacteria S. aureus and S. epidermidis growth but not the Gram negative strain E. coli. Overall, this study revealed the potential of SF-extracted PPFO as an active ingredient in the antioxidant topical formulations thus future study on in vitro skin cell models is highly recommended for validation.
    Matched MeSH terms: Escherichia coli
  14. Ibrahim TNBT, Feisal NAS, Azmi NM, Nazli SN, Salehuddin ASM, Nasir NICM, et al.
    Med J Malaysia, 2024 Mar;79(Suppl 1):14-22.
    PMID: 38555880
    INTRODUCTION: A study on the quality of drinking water was conducted at Air Kuning Treatment Plant In Perak, Malaysia, based on a sanitary survey in 14 sampling points stations from the intake area to the auxiliary points. This was to ensure the continuous supply of clean and safe drinking water to the consumers for public health protection. The objective was to examine the physical, microbiological, and chemical parameters of the water, classification at each site based on National Drinking Water Standards (NDWQS) and to understand the spatial variation using environmetric technique; principal component analysis (PCA).

    MATERIALS AND METHODS: Water samples were subjected to in situ and laboratory water quality analyses and focused on pH, turbidity, chlorine, Escherichia coli, total coliform, total hardness, iron (Fe), aluminium (Al), zinc (Zn), magnesium (Mg) and sodium (Na). All procedures followed the American Public Health Association (APHA) testing procedures.

    RESULTS: Based on the results obtained, the values of each parameter were found to be within the safe limits set by the NDWQS except for total coliform and iron (Fe). PCA has indicated that turbidity, total coliform, E. coli, Na, and Al were the major factors that contributed to the drinking water contamination in river water intake.

    CONCLUSION: Overall, the water from all sampling point stations after undergoing water treatment process was found to be safe as drinking water. It is important to evaluate the drinking water quality of the treatment plant to ensure that consumers have access to safe and clean drinking water as well as community awareness on drinking water quality is essential to promote public health and environmental protection.

    Matched MeSH terms: Escherichia coli
  15. Butt J, Jenab M, Werner J, Fedirko V, Weiderpass E, Dahm CC, et al.
    Gut Microbes, 2021;13(1):1-14.
    PMID: 33874856 DOI: 10.1080/19490976.2021.1903825
    Experimental evidence has implicated genotoxic Escherichia coli (E. coli) and enterotoxigenic Bacteroides fragilis (ETBF) in the development of colorectal cancer (CRC). However, evidence from epidemiological studies is sparse. We therefore assessed the association of serological markers of E. coli and ETBF exposure with odds of developing CRC in the European Prospective Investigation into Nutrition and Cancer (EPIC) study.Serum samples of incident CRC cases and matched controls (n = 442 pairs) were analyzed for immunoglobulin (Ig) A and G antibody responses to seven E. coli proteins and two isoforms of the ETBF toxin via multiplex serology. Multivariable-adjusted conditional logistic regression analyses were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of sero-positivity to E. coli and ETBF with CRC.The IgA-positivity of any of the tested E. coli antigens was associated with higher odds of developing CRC (OR: 1.42; 95% CI: 1.05-1.91). Dual-positivity for both IgA and IgG to E. coli and ETBF was associated with >1.7-fold higher odds of developing CRC, with a significant association only for IgG (OR: 1.75; 95% CI: 1.04, 2.94). This association was more pronounced when restricted to the proximal colon cancers (OR: 2.62; 95% CI: 1.09, 6.29) compared to those of the distal colon (OR: 1.24; 95% CI: 0.51, 3.00) (pheterogeneity = 0.095). Sero-positivity to E. coli and ETBF was associated with CRC development, suggesting that co-infection of these bacterial species may contribute to colorectal carcinogenesis. These findings warrant further exploration in larger prospective studies and within different population groups.
    Matched MeSH terms: Escherichia coli/immunology*; Escherichia coli Infections/immunology
  16. Mohammadi P, Taghavi E, Foong SY, Rajaei A, Amiri H, de Tender C, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124841.
    PMID: 37182628 DOI: 10.1016/j.ijbiomac.2023.124841
    Depending on its physicochemical properties and antibacterial activities, chitosan can have a wide range of applications in food, pharmaceutical, medicine, cosmetics, agriculture, and aquaculture. In this experimental study, chitosan was extracted from shrimp waste through conventional extraction, microwave-assisted extraction, and conventional extraction under microwave process conditions. The effects of the heating source on the physicochemical properties and antibacterial activity were investigated. The results showed that the heating process parameters affected the physicochemical properties considerably. The conventional procedure yielded high molecular weight chitosan with a 12.7 % yield, while the microwave extraction procedure yielded a porous medium molecular weight chitosan at 11.8 %. The conventional extraction under microwave process conditions led to medium molecular weight chitosan with the lowest yield (10.8 %) and crystallinity index (79 %). Antibacterial assessment findings revealed that the chitosan extracted using the conventional method had the best antibacterial activity in the agar disk diffusion assay against Listeria monocytogenes (9.48 mm), Escherichia coli. (8.79 mm), and Salmonella Typhimurium (8.57 mm). While the chitosan obtained by microwave-assisted extraction possessed the highest activity against E. coli. (8.37 mm), and Staphylococcus aureus (8.05 mm), with comparable antibacterial activity against S. Typhimurium (7.34 mm) and L. monocytogenes (6.52 mm). Moreover, the minimal inhibitory concentration and minimal bactericidal concentration assays demonstrated that among the chitosan samples investigated, the conventionally-extracted chitosan, followed by the chitosan extracted by microwave, had the best antibacterial activity against the target bacteria.
    Matched MeSH terms: Escherichia coli
  17. Sahoo S, Sahoo N, Biswal S, Mohanty BN, Behera B, Pahari A
    Trop Biomed, 2023 Jun 01;40(2):236-240.
    PMID: 37650411 DOI: 10.47665/tb.40.2.015
    Oriental theileriosis caused by Theileria orientalis is a growing health concern of lactating cows in its endemic areas. Rapid and sensitive diagnostic tests are demand areas for appropriate and effective prophylactic and therapeutic measures. Quantitative polymerase chain reaction (qPCR) is the answer for both detection and quantification of parasites. Present study deals with qPCR for detection of parasitemia level of T. orientalis in apparently healthy and clinically affected cows. Major piroplasm surface protein (MPSP) gene present in T. orientalis was cloned in pUC57 vector and transformed into E. coli Top 10 cells. Single and mixed infections of hemoprotozoa other than T. orientalis, causing anemia were differentiated through blood smear examination and PCR tests. T. orientalis was detected in 108 (63.15%) ill and 48 (26.66%) healthy cows. Piroplasms detected per 1000 red blood cells (RBCs) was 0-1 in the healthy group as compared to 3-22 in those showing clinical signs. Parasitemia in ill cows ranged between 6.9 × 102 and 4.5 × 103 parasites / µl of blood which was significantly higher (p<0.05) than healthy group (2.6 × 102 - 5.7 × 102 parasites / µl of blood). Phylogenetic study of the isolates showed similarity with Buffeli type that unfolded its pathogenic form in apparently healthy and ill cows.
    Matched MeSH terms: Escherichia coli
  18. Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA, Wren AW, et al.
    J Mater Sci Mater Med, 2016 Jan;27(1):18.
    PMID: 26676864 DOI: 10.1007/s10856-015-5620-2
    Bioactive glasses may function as antimicrobial delivery systems through the incorporation and subsequent release of therapeutic ions. The aim of this study was to evaluate the antimicrobial properties of a series of composite scaffolds composed of poly(octanediol citrate) with increased loads of a bioactive glass that releases zinc (Zn(2+)) and gallium (Ga(3+)) ions in a controlled manner. The antibacterial activity of these scaffolds was investigated against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The ability of the scaffolds to release ions and the subsequent ingress of these ions into hard tissue was evaluated using a bovine bone model. Scaffolds containing bioactive glass exhibited antibacterial activity and this increased in vitro with higher bioactive glass loads; viable cells decreased to about 20 % for the composite scaffold containing 30 % bioactive glass. The Ga(3+) release rate increased as a function of time and Zn(2+) was shown to incorporate into the surrounding bone.
    Matched MeSH terms: Escherichia coli/growth & development
  19. Ooi L, Heng LY, Mori IC
    Sensors (Basel), 2015;15(2):2354-68.
    PMID: 25621608 DOI: 10.3390/s150202354
    Biosensors fabricated with whole-cell bacteria appear to be suitable for detecting bioavailability and toxicity effects of the chemical(s) of concern, but they are usually reported to have drawbacks like long response times (ranging from hours to days), narrow dynamic range and instability during long term storage. Our aim is to fabricate a sensitive whole-cell oxidative stress biosensor which has improved properties that address the mentioned weaknesses. In this paper, we report a novel high-throughput whole-cell biosensor fabricated by immobilizing roGFP2 expressing Escherichia coli cells in a k-carrageenan matrix, for the detection of oxidative stress challenged by metalloid compounds. The E. coli roGFP2 oxidative stress biosensor shows high sensitivity towards arsenite and selenite, with wide linear range and low detection limit (arsenite: 1.0 × 10(-3)-1.0 × 10(1) mg·L(-1), LOD: 2.0 × 10(-4) mg·L(-1); selenite: 1.0 × 10(-5)-1.0 × 10(2) mg·L(-1), LOD: 5.8 × 10(-6) mg·L(-1)), short response times (0-9 min), high stability and reproducibility. This research is expected to provide a new direction in performing high-throughput environmental toxicity screening with living bacterial cells which is capable of measuring the bioavailability and toxicity of environmental stressors in a friction of a second.
    Matched MeSH terms: Escherichia coli/chemistry
  20. Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE, et al.
    PLoS One, 2014;9(7):e102744.
    PMID: 25047076 DOI: 10.1371/journal.pone.0102744
    Microbial strains optimization for the overproduction of desired phenotype has been a popular topic in recent years. The strains can be optimized through several techniques in the field of genetic engineering. Gene knockout is a genetic engineering technique that can engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, the complexities of the metabolic networks have made the process to identify the effects of genetic modification on the desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often lead to the combinatorial problem in obtaining optimal gene deletion strategy. Basically, the size of a genome-scale metabolic model is usually large. As the size of the problem increases, the computation time increases exponentially. In this paper, we propose Differential Bees Flux Balance Analysis (DBFBA) with OptKnock to identify optimal gene knockout strategies for maximizing the production yield of desired phenotypes while sustaining the growth rate. This proposed method functions by improving the performance of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by hybridizing Differential Evolution (DE) algorithm into neighborhood searching strategy of BAFBA. In addition, DBFBA is integrated with OptKnock to validate the results for improving the reliability the work. Through several experiments conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as the model organisms, DBFBA has shown a better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes compared to the methods used in previous works.
    Matched MeSH terms: Escherichia coli/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links