Displaying publications 261 - 274 of 274 in total

Abstract:
Sort:
  1. Tang EL, Rajarajeswaran J, Fung S, Kanthimathi MS
    J Sci Food Agric, 2015 Oct;95(13):2763-71.
    PMID: 25582089 DOI: 10.1002/jsfa.7078
    BACKGROUND: Petroselinum crispum (English parsley) is a common herb of the Apiaceae family that is cultivated throughout the world and is widely used as a seasoning condiment. Studies have shown its potential as a medicinal herb. In this study, P. crispum leaf and stem extracts were evaluated for their antioxidant properties, protection against DNA damage in normal 3T3-L1 cells, and the inhibition of proliferation and migration of the MCF-7 cells.

    RESULTS: The dichloromethane extract of P. crispum exhibited the highest phenolic content (42.31 ± 0.50 mg GAE g(-1) ) and ferric reducing ability (0.360 ± 0.009 mmol g(-1) ) of the various extractions performed. The extract showed DPPH radical scavenging activity with an IC50 value of 3310.0 ± 80.5 µg mL(-1) . Mouse fibroblasts (3T3-L1) pre-treated with 400 µg mL(-1) of the extract showed 50.9% protection against H2 O2 -induced DNA damage, suggesting its potential in cancer prevention. The extract (300 µg mL(-1) ) inhibited H2 O2 -induced MCF-7 cell migration by 41% ± 4%. As cell migration is necessary for metastasis of cancer cells, inhibition of migration is an indication of protection against metastasis.

    CONCLUSION: Petroselinum crispum has health-promoting properties with the potential to prevent oxidative stress-related diseases and can be developed into functional food.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  2. Ghasemzadeh A, Jaafar HZ, Rahmat A
    PMID: 26223685 DOI: 10.1186/s12906-015-0718-0
    Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  3. Ghasemzadeh A, Jaafar HZ, Karimi E
    Int J Mol Sci, 2012 Nov 13;13(11):14828-44.
    PMID: 23203096 DOI: 10.3390/ijms131114828
    The effect of foliar application of salicylic acid (SA) at different concentrations (10-3 M and 10-5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10-5 M SA treatment. As the SA concentration was decreased from 10-3 M to 10-5 M, the free radical scavenging power (FRAP) increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL-1, the DPPH antioxidant activity recorded the highest value of 58.30%-72.90% with the 10-5 M SA treatment followed by the 10-3 M SA (52.14%-63.66%) treatment. The lowest value was recorded in the untreated control plants (42.5%-46.7%). These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10-5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in ginger can be increased by foliar application of SA in a controlled environment and that the anticancer activity in young ginger extracts could be improved.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  4. Lee ST, Wong PF, Hooper JD, Mustafa MR
    Phytomedicine, 2013 Nov 15;20(14):1297-305.
    PMID: 23920276 DOI: 10.1016/j.phymed.2013.07.002
    Alpha (α)-tomatine, a major saponin found in tomato has been shown to inhibit the growth of androgen-independent prostate cancer PC-3 cells. The effects of α-tomatine in combination with the chemotherapeutic agent paclitaxel against PC-3 cells were investigated in the present study. Combined treatment with a sub-toxic dose of α-tomatine and paclitaxel significantly decreased cell viability with concomitant increase in the percentage of apoptotic PC-3 cells. The combined treatment, however, had no cytotoxic effect on the non-neoplastic prostate RWPE-1 cells. Apoptosis of PC-3 cells was accompanied by the inhibition of PI3K/Akt pro-survival signaling, an increase in the expression of the pro-apoptotic protein BAD but a decrease in the expressions of anti-apoptotic proteins, Bcl-2 and Bcl-xL. Results from a mouse xenograft model showed the combined treatment completely suppressed subcutaneous tumor growth without significant side effects. Consistent with its in vitro anti-cancer effects, tumor materials from mice showed increased apoptosis of tumor cells with reduced protein expression of activated PI3K/Akt. These results suggest that the synergistic anti-cancer effects of paclitaxel and α-tomatine may be beneficial for refractory prostate cancer treatment.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  5. Arbab IA, Abdul AB, Sukari MA, Abdullah R, Syam S, Kamalidehghan B, et al.
    J Ethnopharmacol, 2013 Jan 9;145(1):343-54.
    PMID: 23178663 DOI: 10.1016/j.jep.2012.11.020
    Clausena excavata Burm. f. has been used in folk medicines in eastern Thailand for the treatment of cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  6. Lee ST, Wong PF, He H, Hooper JD, Mustafa MR
    PLoS One, 2013;8(2):e57708.
    PMID: 23437404 DOI: 10.1371/journal.pone.0057708
    Nuclear factor-kappa B (NF-κB) plays a role in prostate cancer and agents that suppress its activation may inhibit development or progression of this malignancy. Alpha (α)-tomatine is the major saponin present in tomato (Lycopersicon esculentum) and we have previously reported that it suppresses tumor necrosis factor-alpha (TNF-α)-induced nuclear translocation of nuclear factor-kappa B (NF-κB) in androgen-independent prostate cancer PC-3 cells and also potently induces apoptosis of these cells. However, the precise mechanism by which α-tomatine suppresses NF-κB nuclear translocation is yet to be elucidated and the anti-tumor activity of this agent in vivo has not been examined.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  7. Orlikova B, Schumacher M, Juncker T, Yan CC, Inayat-Hussain SH, Hajjouli S, et al.
    Food Chem Toxicol, 2013 Sep;59:572-8.
    PMID: 23845509 DOI: 10.1016/j.fct.2013.06.051
    (R)-(+)-Goniothalamin (GTN), a styryl-lactone isolated from the medicinal plant Goniothalamus macrophyllus, exhibits pharmacological activities including cytotoxic and anti-inflammatory effects. In this study, GTN modulated TNF-α induced NF-κB activation. GTN concentrations up to 20 μM showed low cytotoxic effects in K562 chronic myelogenous leukemia and in Jurkat T cells. Importantly, at these concentrations, no cytotoxicity was observed in healthy peripheral blood mononuclear cells. Our results confirmed that GTN inhibited tumor necrosis factor-α (TNF-α)-induced NF-κB activation in Jurkat and K562 leukemia cells at concentrations as low as 5 μM as shown by reporter gene assays and western blots. Moreover, GTN down-regulated translocation of the p50/p65 heterodimer to the nucleus, prevented binding of NF-κB to its DNA response element and reduced TNF-α-activated interleukin-8 (IL-8) expression. In conclusion, GTN inhibits TNF-α-induced NF-κB activation at non-apoptogenic concentrations in different leukemia cell models without presenting toxicity towards healthy blood cells underlining the anti-leukemic potential of this natural compound.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  8. Tabana YM, Hassan LE, Ahamed MB, Dahham SS, Iqbal MA, Saeed MA, et al.
    Microvasc Res, 2016 09;107:17-33.
    PMID: 27133199 DOI: 10.1016/j.mvr.2016.04.009
    We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06μM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  9. Karimian H, Fadaeinasab M, Moghadamtousi SZ, Hajrezaei M, Zahedifard M, Razavi M, et al.
    Cell Physiol Biochem, 2015;36(3):988-1003.
    PMID: 26087920 DOI: 10.1159/000430273
    BACKGROUND: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models.

    METHODS AND RESULTS: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels.

    CONCLUSION: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  10. Teoh PL, Cheng AY, Liau M, Lem FF, Kaling GP, Chua FN, et al.
    Pharm Biol, 2017 Dec;55(1):394-401.
    PMID: 27931178
    CONTEXT: Clinacanthus nutans Lindau (Acanthaceae) is a medicinal plant that has been reported to have anti-inflammatory, antiviral, antimicrobial and antivenom activities. In Malaysia, it has been widely claimed to be effective in various cancer treatments but scientific evidence is lacking.

    OBJECTIVE: This study investigates the chemical constituents, anti-proliferative, and apoptotic properties of C. nutans root extracts.

    MATERIALS AND METHODS: The roots were subjected to solvent extraction using methanol and ethyl acetate. The anti-proliferative effects of root extracts were tested at the concentrations of 10 to 50 μg/mL on MCF-7 and HeLa by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for 72 h. Morphological changes were observed under light microscope. Pro-apoptotic effects of root extracts were examined using flow cytometric analysis and RT-PCR. The chemical compositions of root extracts were detected using GC-MS.

    RESULTS: The proliferation of MCF-7 cells was inhibited with the IC50 values of 35 and 30 μg/mL, respectively, for methanol and ethyl acetate root extracts. The average inhibition of HeLa cells was ∼25%. Induction of apoptosis in MCF-7 was supported by chromatin condensation, down-regulation of BCL2 and unaltered expression of BAX. However, only ethyl acetate extract caused the loss of mitochondrial membrane potential. GC-MS analysis revealed the roots extracts were rich with terpenoids and phytosterols.

    DISCUSSION AND CONCLUSIONS: The results demonstrated that root extracts promote apoptosis by suppressing BCL2 via mitochondria-dependent or independent manner. The identified compounds might work solely or cooperatively in regulating apoptosis. However, further studies are required to address this.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  11. Saeed MEM, Boulos JC, Elhaboub G, Rigano D, Saab A, Loizzo MR, et al.
    Phytomedicine, 2019 Sep;62:152945.
    PMID: 31132750 DOI: 10.1016/j.phymed.2019.152945
    BACKGROUND: Cucurbitacin E (CuE) is an oxygenated tetracyclic triterpenoid isolated from the fruits of Citrullus colocynthis (L.) Schrad.

    PURPOSE: This study outlines CuE's cytotoxic activity against drug-resistant tumor cell lines. Three members of ABC transporters superfamily, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and ABCB5 were investigated, whose overexpression in tumors is tightly linked to multidrug resistance. Further factors of drug resistance studied were the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR).

    METHODS: Cytotoxicity assays (resazurin assays) were used to investigate the activity of Citrullus colocynthis and CuE towards multidrug resistant cancer cells. Molecular docking (In silico) has been carried out to explore the CuE's mode of binding to ABC transporters (P-gp, BCRP and ABCB5). The visualization of doxorubicin uptake was done by a Spinning Disc Confocal Microscope. The assessment of proteins expression was done by western blotting analysis. COMPARE and hierarchical cluster analyses were applied to identify, which genes correlate with sensitivity or resistance to cucurbitacins (CuA, CuB, CuE, CuD, CuI, and CuK).

    RESULTS: Multidrug-resistant cells overexpressing P-gp or BCRP were cross-resistant to CuE. By contrast, TP53 knock-out cells were sensitive to CuE. Remarkably, resistant cells transfected with oncogenic ΔEGFR or ABCB5 were hypersensitive (collateral sensitive) to CuE. In silico analyses demonstrated that CuE is a substrate for P-gp and BCRP. Immunoblot analyses highlighted that CuE targeted EGFR and silenced its downstream signaling cascades. The most striking result that emerged from the doxorubicin uptake by ABCB5 overexpressing cells is that CuE is an effective inhibitor for ABCB5 transporter when compared with verapamil. The COMPARE analyses of transcriptome-wide expression profiles of tumor cell lines of the NCI identified common genes involved in cell cycle regulation, cellular adhesion and intracellular communication for different cucurbitacins.

    CONCLUSION: CuE represents a potential therapeutic candidate for the treatment of certain types of refractory tumors. To best of our knowledge, this is the first time to identify CuE and verapamil as inhibitors for ABCB5 transporter.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  12. Jabbarzadeh Kaboli P, Leong MP, Ismail P, Ling KH
    Pharmacol Rep, 2019 Feb;71(1):13-23.
    PMID: 30343043 DOI: 10.1016/j.pharep.2018.07.005
    BACKGROUND: Berberine is an alkaloid plant-based DNA intercalator that affects gene regulation, particularly expression of oncogenic and tumor suppressor proteins. The effects of berberine on different signaling proteins remains to be elucidated. The present study aimed to identify the effects of berberine against key oncogenic proteins in breast cancer cells.

    METHODS: Molecular docking and molecular dynamics simulations were used for EGFR, p38, ERK1/2, and AKT. The effects of berberine and lapatinib on MAPK and PI3K pathways in MDA-MB231 and MCF-7 cells were evaluated using immunoflorescence assays, and the amounts of phosphorylated kinases were compared to total kinases after treating with different concentrations of berberine.

    RESULTS: Simulations showed berberine accurately interacted with EGFR, AKT, P38, and ERK1/2 active sites in silico (scores = -7.57 to -7.92 Kcal/mol) and decreased the levels of active forms of corresponding enzymes in both cell lines; however, berberine binding to p38 showed less stability. Cytotoxicity analysis indicated that MDA-MB231 cells were resistant to berberine compared to MCF-7 cells [72 h IC50 = 50 versus 15 μM, respectively). Also, lapatinib strongly activated AKT but suppressed EGFR in MDA-MB231 cells. The activity of EGFR, AKT, P38, and ERK1/2 were affected by berberine; however, berberine dramatically reduced EGFR and AKT phosphorylation.

    CONCLUSION: By way of its multikinase inhibitory effects, berberine might be a useful replacement for lapatinib, an EGFR inhibitor which can cause acquired drug resistance in patients.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  13. Mohamad Rosdi MN, Mohd Arif S, Abu Bakar MH, Razali SA, Mohamed Zulkifli R, Ya'akob H
    Apoptosis, 2018 01;23(1):27-40.
    PMID: 29204721 DOI: 10.1007/s10495-017-1434-7
    Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant's bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  14. Seifaddinipour M, Farghadani R, Namvar F, Bin Mohamad J, Muhamad NA
    Molecules, 2020 Apr 13;25(8).
    PMID: 32295069 DOI: 10.3390/molecules25081776
    Pistacia (Pistacia vera) hulls (PV) is a health product that has been determined to contain bioactive phytochemicals which have fundamental importance for biomedical use. In this study, PV ethyl acetate extraction (PV-EA) fractions were evaluated with the use of an MTT assay to find the most cytotoxic fraction, which was found to be F13b1/PV-EA. After that, HPTLC was used for identify the most active compounds. The antioxidant activity was analyzed with DPPH and ABTS tests. Apoptosis induction in MCF-7 cells by F13b1/PV-EA was validated via flow cytometry analysis and a distinctive nuclear staining method. The representation of genes like Caspase 3, Caspase 8, Bax, Bcl-2, CAT and SOD was assessed via a reverse transcription (RT_PCR) method. Inhabitation of Tubo breast cancer cell development was examined in the BALB-neuT mouse with histopathology observations. The most abundant active components available in our extract were gallic acid and the flavonoid quercetin. The F13b1/PV-EA has antiradical activity evidence by its inhibition of ABTS and DPPH free radicals. F13b1/PV-EA displayed against MCF-7 a suppressive effect with an IC50 value of 15.2 ± 1.35 µg/mL. Also, the expression of CAT, SOD, Caspase 3, Caspase 8 and Bax increased and the expression of Bcl-2 decreased. F13b1/PV-EA dose-dependently inhibited tumor development in cancer-induced mice. Thus, this finding introduces F13b1/PV-EA as an effectual apoptosis and antitumor active agent against breast cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links