Displaying publications 281 - 300 of 427 in total

Abstract:
Sort:
  1. Lim JC, Thevarajoo S, Selvaratnam C, Goh KM, Shamsir MS, Ibrahim Z, et al.
    J Basic Microbiol, 2017 Feb;57(2):151-161.
    PMID: 27859397 DOI: 10.1002/jobm.201600494
    Anoxybacillus sp. SK 3-4 is a Gram-positive, rod-shaped bacterium and a member of family Bacillaceae. We had previously reported that the strain is an aluminum resistant thermophilic bacterium. This is the first report to provide a detailed analysis of the global transcriptional response of Anoxybacillus when the cells were exposed to 600 mg L(-1) of aluminum. The transcriptome was sequenced using Illumina MiSeq sequencer. Total of 708 genes were differentially expressed (fold change >2.00) with 316 genes were up-regulated while 347 genes were down-regulated, in comparing to control with no aluminum added in the culture. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of genes encoding for cell metabolism such as glycolysis, sulfur metabolism, cysteine and methionine metabolism were up-regulated; while most of the gene associated with tricarboxylic acid cycle (TCA cycle) and valine, leucine and isoleucine metabolism were down-regulated. In addition, a significant number of the genes encoding ABC transporters, metal ions transporters, and some stress response proteins were also differentially expressed following aluminum exposure. The findings provide further insight and help us to understand on the resistance of Anoxybacillus sp. SK 3-4 toward aluminium.
    Matched MeSH terms: Aluminum/metabolism*
  2. Ahmad AL, Abd Shukor SR, Leo CP
    J Nanosci Nanotechnol, 2006 Dec;6(12):3910-4.
    PMID: 17256351
    Polymeric vanadium pentoxide gel was formed via the reaction of V2O5 powder with hydrogen peroxide. The polymeric vanadium pentoxide gel was then dispersed in alumina gel. Different vanadium loading composites were coated on alumina support and calcined at 500 degrees C for 1 hr. These composite layers were characterized using TGA, FT-IR, XRD, SEM, and Autosorb. It was found that the lamellar structure of polymerized vanadium pentoxide was retained in the inorganic matrix. Crystalline alumina in gamma phase was formed after calcinations. However, the vanadium-alumina mixed oxides are lack of the well defined PXRD peaks for polycrystalline V2O5. This is possibly because the vanadia species are highly dispersed in the alumina matrix or the vanadia species are dispersed as crystalline which is smaller than 4 nm. In addition, the imbedded polymeric vanadium oxide improved the specific area and average pore diameter of the composite layer.
    Matched MeSH terms: Aluminum Oxide/chemistry*
  3. Hanasil NS, Raja Ibrahim RK, Duralim M, Sapingi HHJ, Mahdi MA
    Appl Spectrosc, 2020 Dec;74(12):1452-1462.
    PMID: 32166979 DOI: 10.1177/0003702820915532
    In this work, principal component analysis (PCA) was utilized to analyze laser-induced breakdown spectroscopy (LIBS) signals of the extracted chicken fat, lamb fat, beef fat, and lard froze using two different freezing methods. The frozen samples were ablated using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser with a wavelength of 1064 nm, 170 mJ pulse energy, and 6 ns pulse duration to produce plasma on target surfaces. The samples were ablated using 30-60 shots of the laser beam at different spots. Stronger LIBS signals from the extracted chicken fat and lamb fat were obtained with liquid nitrogen (LN2) method. However, LIBS signals obtained from the freezer freezing method were found to be stronger for extracted beef fat and lard. The PCA was then used to visualize the LIBS spectra of extracted animal fats into a score plot. Data points of each extracted animal fat were divided into three groups representing LIBS spectra collected at the early, middle, and end part of the ablation process. The score plot revealed that the data points of the three groups of frozen extracted animal fats using the LN2 method were more closely clustered than those frozen in the freezer. Good discrimination with 97% of the variance was achieved between the extracted chicken fat, lamb fat, beef fat, and lard using the LN2 method in the three-dimensional score plot. LIBS signals of the extracted animal fats produced from the LN2 method were found to be more stable than those from the freezer method.
    Matched MeSH terms: Aluminum/chemistry
  4. Van Rostenberghe H, Ho JJ, Lim CH, Abd Hamid IJ
    Cochrane Database Syst Rev, 2020 07 01;7:CD012011.
    PMID: 32609375 DOI: 10.1002/14651858.CD012011.pub2
    BACKGROUND: Phototherapy is a well-established effective therapy for treating babies with significant neonatal jaundice. Studies have shown that increasing light intensity will increase its efficiency. A potentially inexpensive and easy way of increasing the intensity of light on the body of the infant may be to hang reflective materials from the sides of phototherapy units.

    OBJECTIVES: To assess the effects of reflective materials in combination with phototherapy compared with phototherapy alone for unconjugated hyperbilirubinaemia in neonates.

    SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 11), in the Cochrane Library; Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R); and the Cumulative Index of Nursing and Allied Health Literature (CINAHL), on 1 November 2019. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials.

    SELECTION CRITERIA: We included randomised and quasi-randomised controlled trials if the participants, who were term or preterm infants, received phototherapy with curtains made of reflective materials of any type in the treatment arm, and if those in the comparison arm received similar phototherapy without curtains or other intensified phototherapy, such as a double bank of lights.

    DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. We used the GRADE approach to assess the certainty of evidence.

    MAIN RESULTS: Of 15 studies identified, we included 12 (1288 babies) in the review - 11 comparing phototherapy with reflective materials and phototherapy alone, and one comparing a single phototherapy light bank with reflective materials with double phototherapy. All reflective materials consisted of curtains on three or four sides of the cot and were made of white plastic (five studies), white linen (two studies), or aluminium (three studies); materials were not specified in two studies. Only 11 studies (10 comparing reflective materials versus none and one comparing reflective curtains and a single bank of lights with a double (above and below) phototherapy unit) provided sufficient data to be included in the meta-analysis. Two excluded studies used the reflective materials in a way that did not meet our inclusion criteria, and we excluded one study because it compared four different phototherapy interventions not including reflective materials. The risk of bias of included studies was generally low, but all studies had high risk of performance bias due to lack of blinding of the intervention. Three studies (281 participants) reported a decline in serum bilirubin (SB) (μmol/L) at four to eight hours (mean difference (MD) -14.61, 95% confidence interval (CI) -19.80 to -9.42; I² = 57%; moderate-certainty evidence). Nine studies (893 participants) reported a decline in SB over 24 hours and showed a faster decline in SB in the intervention group, but heterogeneity (I² = 97%) was too substantial to permit a meaningful estimate of the actual effect size (very low-certainty evidence). Subgroup analysis by type of reflective material used did not explain the heterogeneity. Exchange transfusion was reported by two studies; both reported none in either group. Four studies (466 participants) reported the mean duration of phototherapy, and in each of these studies, it was reduced in the intervention group but there was substantial heterogeneity (I² = 88%), precluding meaningful meta-analysis of data. The only two studies that reported the mean duration of hospital stay in hours showed a meaningful reduction (MD -41.08, 95% CI -45.92 to -36.25; I² = 0; moderate-certainty evidence). No studies reported costs of the intervention, parental or medical staff satisfaction, breastfeeding outcomes, or neurodevelopmental follow-up. The only study that compared use of curtains with double phototherapy reported similar results for both groups. Studies that monitored adverse events did not report increased adverse events related to the use of curtains, including acute life-threatening events, but other rarer side effects could not be excluded.

    AUTHORS' CONCLUSIONS: Moderate-certainty evidence shows that the use of reflective curtains during phototherapy may result in greater decline in SB. Very low-certainty evidence suggests that the duration of phototherapy is reduced, and moderate-certainty evidence shows that the duration of hospital stay is also reduced. Available evidence does not show any increase in adverse events, but further studies are needed.

    Matched MeSH terms: Aluminum*
  5. Lee HS, Singh JK, Ismail MA
    Sci Rep, 2017 02 03;7:41935.
    PMID: 28157233 DOI: 10.1038/srep41935
    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.
    Matched MeSH terms: Aluminum; Aluminum Hydroxide
  6. Hameed YT, Idris A, Hussain SA, Abdullah N
    J Environ Manage, 2016 Dec 15;184(Pt 3):494-503.
    PMID: 27789092 DOI: 10.1016/j.jenvman.2016.10.033
    Chemical composition and flocculation efficiency were investigated for a commercially produced tannin - based coagulant and flocculant (Tanfloc). The results of Fourier Transform Infrared Spectroscopy (FTIR) and Energy Dispersive Spectroscopy (EDX) confirmed what claimed about the chemical composition of Tanfloc. For moderate polluted municipal wastewater investigated in both jar test and pilot plant, Tanfloc showed high turbidity removal efficiency of approximately 90%, while removal efficiencies of BOD5 and COD were around 60%. According to floc size distribution, Tanfloc was able to show distinct performance compared to Polyaluminum chloride (PAC). While 90% of flocs produced by Tanfloc were smaller than 144 micron, they were smaller than 96 micron for PAC. Practically, zeta potential measurement showed the cationic nature of Tanfloc and suggested coincidence of charge neutralization and another flocculation mechanism (bridging or patch flocculation). Sludge Volumetric Index (SVI) measurements were in agreement with the numbers found in the literature, and they were less than 160 mL/g. Calcium cation as flocculation aid showed significant improvement of flocculation efficiency compared to other cations. Finally Tanfloc showed competing performance compared to PAC in terms of turbidity, BOD5 and COD removal, floc size and sludge characteristics.
    Matched MeSH terms: Aluminum Hydroxide/chemistry*
  7. Krishnan H, Gopinath SCB, Md Arshad MK, Zulhaimi HI, Ramanathan S
    Mikrochim Acta, 2021 03 31;188(4):144.
    PMID: 33791872 DOI: 10.1007/s00604-021-04794-1
    A conventional photolithography technique was used to fabricate three types of Archimedean-spiral interdigitated electrodes (AIDEs) containing concentric interlocking electrodes with different electrode and gap sizes, i.e., 150 μm (D1), 100 μm (D2), and 50 μm (D3). The precision of the fabrication was validated by surface topography using scanning electron microscopy, high power microscopy, 3D-nano profilometry, and atomic force microscopy. These AIDEs were fabricated with a tolerance of ± 6 nm in dimensions. The insignificant current variation at the pico-ampere range for all bare AIDEs further proved the reproducibility of the device. The large gap sized AIDE (D1) is insensitive to acidic medium, whereas D2 and D3 are insensitive to alkali medium. D2 was the best with regard to its electrical characterization. Furthermore, uniformly synthesized molecularly imprinted polymer (MIP) nanoparticles prepared with human blood clotting factor IX and its aptamer were in the size range 140 to 160 nm, attached on the sensing surface and characterized. The average thickness of deposited MIP film was 1.7 μm. EDX data shows the prominent peaks for silicon and aluminum substrates as 61.79 and 22.52%, respectively. The MIP nanoparticles-deposited sensor surface was characterized by applying it in electrolyte solutions, and smooth curves with the current flow were observed at pH lower than 8 and discriminated against alkali media. This study provides a new MIP amalgamated AIDE with nano-gapped fingers enabling analysis of other biomaterials due to its operation in an ideal buffer range.
    Matched MeSH terms: Aluminum/chemistry
  8. Razak AA, Abu-Hassan MI, Al-Makramani BM, Al-Sanabani FA, Al-Shami IZ, Almansour HM
    J Contemp Dent Pract, 2016 Nov 01;17(11):920-925.
    PMID: 27965501
    AIM: The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan).

    MATERIALS AND METHODS: Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests.

    RESULTS: The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups.

    CONCLUSION: In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks.

    CLINICAL SIGNIFICANCE: The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations.

    Matched MeSH terms: Aluminum Oxide/chemistry
  9. Taha NA, Al-Rawash MH, Imran ZA
    Int Endod J, 2022 May;55(5):416-429.
    PMID: 35152464 DOI: 10.1111/iej.13707
    AIM: The aim of the study was to compare the outcome of full pulpotomy using 2 calcium silicate-based materials compared with mineral trioxide aggregate (MTA) in symptomatic mature permanent teeth with carious pulp exposure.

    METHODOLOGY: This study was designed as a parallel, double blind, randomized controlled trial where symptomatic mature permanent teeth with carious pulp exposure meeting the inclusion criteria were randomly treated with full pulpotomy using one of 3 calcium silicate-based materials (ProRoot MTA, Biodentine and TotalFill). Full pulpotomy was performed, and haemostasis was achieved via a cotton pellet moistened with 2.5% NaOCl. A 3-mm layer of the calcium silicate-based material was randomly placed as the pulpotomy agent through a block randomization process followed by a resin-based composite restoration. Postoperative periapical radiograph was taken. Clinical and radiographic evaluation were completed after 6 months and 1 year. The patient and evaluator were blinded to the type of materials used. Pain levels were scored preoperatively and 7 days after treatment. Effect of potential prognosis factors including gender, age, diagnosis, bleeding time and type of caries were also analysed.

    RESULTS: One hundred and sixty-four teeth in 146 patients received full pulpotomy and were randomly assigned to either the tested or control material through block randomization technique (50 MTA, 50 Biodentine and 64 TotalFill). The age ranged from 10 to 70 years. The diagnosis was irreversible pulpitis in 112 teeth (72%) and reversible pulpitis in 28 teeth (28%). The majority of patients presented with severe pain, during the first week 96.9% reported complete relief of pain or mild pain. Four cases had immediate failure. At 6 months the overall success rate was 92.2%, over 1 year 156/164 teeth attended follow-up with 12 failures (2 restorative failures and 10 endodontic failures), the overall success of pulpotomy at 1 year was 92.3% (144/156); 91.8% in MTA, 93.3% in Biodentine and 91.9% in TotalFill with no significant difference amongst the groups and no side effects observed. No significant association was evident between outcome and the investigated variables.

    CONCLUSIONS: The 1-year success rate of full pulpotomy did not differ significantly between Biodentine pulpotomy, TotalFill pulpotomy, and MTA pulpotomy. The study was registered with clinical trials; registration number (NCT04345263).

    Matched MeSH terms: Aluminum Compounds/therapeutic use
  10. Othman R, Hasni SI, Baharuddin ZM, Hashim KSH, Mahamod LH
    Environ Sci Pollut Res Int, 2017 Oct;24(29):22861-22872.
    PMID: 28721625 DOI: 10.1007/s11356-017-9715-9
    Slope failure has become a major concern in Malaysia due to the rapid development and urbanisation in the country. It poses severe threats to any highway construction industry, residential areas, natural resources and tourism activities. The extent of damages that resulted from this catastrophe can be lessened if a long-term early warning system to predict landslide prone areas is implemented. Thus, this study aims to characterise the relationship between Oxisols properties and soil colour variables to be manipulated as key indicators to forecast shallow slope failure. The concentration of each soil property in slope soil was evaluated from two different localities that consist of 120 soil samples from stable and unstable slopes located along the North-South Highway (PLUS) and East-West Highway (LPT). Analysis of variance established highly significant difference (P 
    Matched MeSH terms: Aluminum Silicates/chemistry*
  11. Lim SF, Lee AY
    Environ Sci Pollut Res Int, 2015 Jul;22(13):10144-58.
    PMID: 25854202 DOI: 10.1007/s11356-015-4203-6
    In the present study, the feasibility of soil used as a low-cost adsorbent for the removal of Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution was investigated. The kinetics for adsorption of the heavy metal ions from aqueous solution by soil was examined under batch mode. The influence of the contact time and initial concentration for the adsorption process at pH of 4.5, under a constant room temperature of 25 ± 1 °C were studied. The adsorption capacity of the three heavy metal ions from aqueous solution was decreased in order of Pb(2+) > Cu(2+) > Zn(2+). The soil was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopic-energy dispersive X-ray (SEM-EDX), and Brunauer, Emmett, and Teller (BET) surface area analyzer. From the FTIR analysis, the experimental data was corresponded to the peak changes of the spectra obtained before and after adsorption process. Studies on SEM-EDX showed distinct adsorption of the heavy metal ions and the mineral composition in the study areas were determined to be silica (SiO2), alumina (Al2O3), and iron(III) oxide (FeO3). A distinct decrease of the specific surface area and total pore volumes of the soil after adsorption was found from the BET analysis. The experimental results obtained were analyzed using four adsorption kinetic models, namely pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion. Evaluating the linear correlation coefficients, the kinetic studies showed that pseudo-second-order equation described the data appropriable than others. It was concluded that soil can be used as an effective adsorbent for removing Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution.
    Matched MeSH terms: Aluminum Oxide/chemistry
  12. Neelakantan P, Ahmed HMA, Wong MCM, Matinlinna JP, Cheung GSP
    Int Endod J, 2018 Aug;51(8):847-861.
    PMID: 29377170 DOI: 10.1111/iej.12898
    The aim of this systematic review was to address the question: Do different irrigating protocols have an impact on the dislocation resistance of mineral trioxide aggregate (MTA)-based materials? The review was performed using a well-defined search strategy in three databases (PubMed, Scopus, Web of Science) to include laboratory studies performed between January 1995 and May 2017, in accordance with PRISMA guidelines. Two reviewers analysed the papers, assessed the risk of bias and extracted data on teeth used, sample size, size of root canal preparation, type of MTA-based material, irrigants, canal filling method, storage method and duration, region of roots and the parameters of push-out testing (slice thickness, plunger dimensions and plunger loading direction), the main results and dislocation resistance values (in MPa). From 255 studies, 27 were included for full-text analysis. Eight papers that met the inclusion criteria were included in this review. There was a wide variation in dislocation resistance due to differences in irrigation sequence, time and concentration of irrigants, storage method and duration, and the parameters of push-out bond strength testing. A meta-analysis was not done but qualitative synthesis of the included studies was performed. No definitive conclusion could be drawn to evaluate the effect of irrigation protocols on dislocation resistance of MTA-based materials. Recommendations have been provided for standardized testing methods and reporting of future studies, so as to obtain clinically relevant information and to understand the effects of irrigating protocols on root canal sealers and their interactions with the dentine walls of root canals.
    Matched MeSH terms: Aluminum Compounds/pharmacology*
  13. Gaaz TS, Sulong AB, Kadhum AAH, Al-Amiery AA, Nassir MH, Jaaz AH
    Molecules, 2017 May 20;22(5).
    PMID: 28531126 DOI: 10.3390/molecules22050838
    Nanotubular clay minerals, composed of aluminosilicate naturally structured in layers known as halloysite nanotubes (HNTs), have a significant reinforcing impact on polymer matrixes. HNTs have broad applications in biomedical applications, the medicine sector, implant alloys with corrosion protection and manipulated transportation of medicines. In polymer engineering, different research studies utilize HNTs that exhibit a beneficial enhancement in the properties of polymer-based nanocomposites. The dispersion of HNTs is improved as a result of pre-treating HNTs with acids. The HNTs' percentage additive up to 7% shows the highest improvement of tensile strength. The degradation of the polymer can be also significantly improved by doping a low percentage of HNTs. Both the mechanical and thermal properties of polymers were remarkably improved when mixed with HNTs. The effects of HNTs on the mechanical and thermal properties of polymers, such as ultimate strength, elastic modulus, impact strength and thermal stability, are emphasized in this study.
    Matched MeSH terms: Aluminum Silicates/chemistry*
  14. Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2014;9:4749-62.
    PMID: 25336952 DOI: 10.2147/IJN.S63608
    The primary challenge in finding a treatment for tuberculosis (TB) is patient non-compliance to treatment due to long treatment duration, high dosing frequency, and adverse effects of anti-TB drugs. This study reports on the development of a nanodelivery system that intercalates the anti-TB drug isoniazid into Mg/Al layered double hydroxides (LDHs). Isoniazid was found to be released in a sustained manner from the novel nanodelivery system in humans in simulated phosphate buffer solutions at pH 4.8 and pH 7.4. The nanodelivery formulation was highly biocompatible compared to free isoniazid against human normal lung and 3T3 mouse fibroblast cells. The formulation was active against Mycobacterium tuberculosis and gram-positive bacteria and gram-negative bacteria. Thus results show significant promise for the further study of these nanocomposites for the treatment of TB.
    Matched MeSH terms: Aluminum Hydroxide/toxicity; Aluminum Hydroxide/chemistry*
  15. Sagara I, Dicko A, Ellis RD, Fay MP, Diawara SI, Assadou MH, et al.
    Vaccine, 2009 May 18;27(23):3090-8.
    PMID: 19428923 DOI: 10.1016/j.vaccine.2009.03.014
    A double blind, randomized, controlled Phase 2 clinical trial was conducted to assess the safety, immunogenicity, and biologic impact of the vaccine candidate Apical Membrane Antigen 1-Combination 1 (AMA1-C1), adjuvanted with Alhydrogel. Participants were healthy children 2-3 years old living in or near the village of Bancoumana, Mali. A total of 300 children received either the study vaccine or the comparator. No impact of vaccination was seen on the primary endpoint, the frequency of parasitemia measured as episodes >3000/microL/day at risk. There was a negative impact of vaccination on the hemoglobin level during clinical malaria, and mean incidence of hemoglobin <8.5 g/dL, in the direction of lower hemoglobin in the children who received AMA1-C1, although these differences were not significant after correction for multiple tests. These differences were not seen in the second year of transmission.
    Matched MeSH terms: Aluminum Hydroxide/immunology; Aluminum Hydroxide/therapeutic use
  16. Masarudin MJ, Yusoff K, Rahim RA, Hussein MZ
    Nanotechnology, 2009 Jan 28;20(4):045602.
    PMID: 19417322 DOI: 10.1088/0957-4484/20/4/045602
    The delivery of a full plasmid, encoding the green fluorescent protein gene into African monkey kidney (Vero3) cells, was successfully achieved using nanobiocomposites based on layered double hydroxides. This demonstrated the potential of using the system as an alternative DNA delivery vector. Intercalation of the circular plasmid DNA, pEGFP-N2, into Mg/Al-NO(3)(-) layered double hydroxides (LDH) was accomplished through anion exchange routes to form the nanobiocomposite material. The host was previously synthesized at the Mg(2+) to Al(3+) molar ratio R(i) = 2 and subsequently intercalated with plasmid DNA. Size expansion of the interlamellae host from 8.8 A in LDH to 42 A was observed in the resulting nanobiocomposite, indicating stable hybridization of the plasmid DNA. The powder x-ray diffraction (PXRD) results, supplemented with Fourier-transform infrared (FTIR) spectroscopy, compositional and electrophoresis studies confirmed the encapsulation episode of the biomaterial. In order to elucidate the use of this resulting nanobiocomposite as a delivery vector, an MTT assay was performed to determine any cytotoxic effects of the host towards cells. The intercalated pEGFP-N2 anion was later successfully recovered through acidification with HNO(3) after treatment with DNA-degrading enzymes, thus also showing the ability of the LDH host to protect the intercalated biomaterial from degradation. Cell transfection studies on Vero3 cells were then performed, where cells transfected with the nanobiocomposite exhibited fluorescence as early as 12 h post-treatment compared to naked delivery of the plasmid itself.
    Matched MeSH terms: Aluminum Compounds/pharmacology; Aluminum Compounds/chemistry*
  17. Lim JC, Goh KM, Shamsir MS, Ibrahim Z, Chong CS
    J Basic Microbiol, 2015 Apr;55(4):514-9.
    PMID: 25523650 DOI: 10.1002/jobm.201400621
    The Anoxybacillus sp. SK 3-4, previously isolated from a hot spring, was screened for its heavy metals resistance (Al(3+), Mn(2+), Cu(2+), Co(2+), Zn(2+), and Ni(2+)) and the strain was found to be most resistant to aluminum. Significant growth of the strain was observed when it was grown in medium containing aluminum (200 mg L(-1)-800 mg L(-1)) with relative growth rates ranging between 77% and 100%. A gene encoding the aluminum resistance protein (accession number: WP_021095658.1) was found in genome of strain SK 3-4, which revealed high sequence identity (>95%) to its homologues from Anoxybacillus species. Sequence comparisons with two functionally characterized aluminum resistance proteins, namely G2alt and ALU1-P, showed 97% and 81% of sequence identity, respectively. Four putative metal binding sites were detected in SK 3-4 aluminum resistance protein and G2alt at same amino acid residue positions of 186, 195, 198, and 201. Strain SK 3-4 was found to be able to remove aluminum from aqueous solution. This study demonstrated that Anoxybacillus sp. SK 3-4 could be applied in the treatment of aluminum contaminated wastewater.
    Matched MeSH terms: Aluminum/metabolism*; Aluminum/pharmacology*
  18. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P, Anbu P, Lakshmipriya T
    Sci Rep, 2020 Feb 25;10(1):3351.
    PMID: 32099019 DOI: 10.1038/s41598-020-60208-x
    An incredible amount of joss fly ash is produced from the burning of Chinese holy joss paper; thus, an excellent method of recycling joss fly ash waste to extract aluminosilicate nanocomposites is explored. The present research aims to introduce a novel method to recycle joss fly ash through a simple and straightforward experimental procedure involving acidic and alkaline treatments. The synthesized aluminosilicate nanocomposite was characterized to justify its structural and physiochemical characteristics. A morphological analysis was performed with field-emission transmission electron microscopy, and scanning electron microscopy revealed the size of the aluminosilicate nanocomposite to be ~25 nm, while also confirming a uniformly spherical-shaped nanostructure. The elemental composition was measured by energy dispersive spectroscopy and revealed the Si to Al ratio to be 13.24 to 7.96, showing the high purity of the extracted nanocomposite. The roughness and particle distribution were analyzed using atomic force microscopy and a zeta analysis. X-ray diffraction patterns showed a synthesis of faceted and cubic aluminosilicate crystals in the nanocomposites. The presence of silica and aluminum was further proven by X-ray photoelectron spectroscopy, and the functional groups were recognized through Fourier transform infrared spectroscopy. The thermal capacity of the nanocomposite was examined by a thermogravimetric analysis. In addition, the research suggested the promising application of aluminosilicate nanocomposites as drug carriers. The above was justified by an enzyme-linked apta-sorbent assay, which claimed that the limit of the aptasensing aluminosilicate-conjugated ampicillin was two-fold higher than that in the absence of the nanocomposite. The drug delivery property was further justified through an antibacterial analysis against Escherichia coli (gram-negative) and Bacillus subtilis (gram-positive).
    Matched MeSH terms: Aluminum Silicates/pharmacology*; Aluminum Silicates/chemistry
  19. Kianfar AH, Kamil Mahmood WA, Dinari M, Farrokhpour H, Enteshari M, Azarian MH
    Spectrochim Acta A Mol Biomol Spectrosc, 2015 Feb 05;136 Pt C:1582-92.
    PMID: 25459719 DOI: 10.1016/j.saa.2014.10.051
    The [Co(naphophen)(PPh3)(OH2)]ClO4 and [Co(naphophen)(PBu3)(OH2)]BF4 (where naphophen=bis(naphthaldehyde)1,2-phenylenediimine) complexes were synthesized and chracterized by FT-IR, UV-Vis, (1)H NMR, (13)C NMR spectroscopy and elemental analysis techniques. The coordination geometry of the synthesized complexes were determined by X-ray crystallography. Cobalt (III) complexes have six-coordinated pseudo-octahedral geometry in which the O(1), O(2), N(1) and N(2) atoms of the Schiff base forms the equatorial plane. These complexes showed a dimeric structure via hydrogen bonding between the phenolate oxygen and the hydrogens of the coordinated H2O molecule. The theoretical calculations were also performed to optimize the structure of the complexes in the gas phase to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification. The synthesized complexes were incorporated onto the Montmorillonite-K10 nanoclay via simple ion-exchange reaction. The structure and morphology of the obtained nanohybrids were identified by FT-IR, XRD, TGA/DTA, SEM and TEM techniques. Based on the XRD results of the new nanohybrid materials, the Schiff base complexes were intercalated in the interlayer spaces of clay. SEM and TEM micrographs of the clay/complex shows that the resulting hybrid nanomaterials has layer structures.
    Matched MeSH terms: Aluminum Silicates
  20. Kianfar AH, Mahmood WA, Dinari M, Azarian MH, Khafri FZ
    PMID: 24637279 DOI: 10.1016/j.saa.2014.02.089
    The [Co(Me(2)Salen)(PBu(3))(OH(2))]BF4 and [Co(Me(2)Salen)(PPh(3))(Solv)]BF(4), complexes were synthesized and characterized by FT-IR, UV-Vis, (1)H NMR spectroscopy and elemental analysis techniques. The coordination geometry of [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) was determined by X-ray crystallography. It has been found that the complex is containing [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) and [Co(Me(2)Salen)(PPh(3))(EtOH)]BF(4) hexacoordinate species in the solid state. Cobalt atom exhibits a distorted octahedral geometry and the Me(2)Salen ligand has the N2O2 coordinated environment in the equatorial plane. The [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) complex shows a dimeric structure via hydrogen bonding between the phenolate oxygen and hydrogens of coordinated H2O molecule. These complexes were incorporated into Montmorillonite-K10 nanoclay. The modified clays were identified by FT-IR, XRD, EDX, TGA/DTA, SEM and TEM techniques. According to the XRD results of the new nanohybrid materials, the Schiff base complexes are intercalated in the interlayer spaces of the clay. SEM and TEM micrographs show that the resulting hybrid nanomaterials have layer structures. Also, TGA/DTG results show that the intercalation reaction was taken place successfully.
    Matched MeSH terms: Aluminum Silicates
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links