METHODS: Microscopic agglutination test (MAT)-positive and MAT-negative human serum samples (n=30) from patients with leptospirosis were obtained from the Public Health Laboratory, Kota Kinabalu, Sabah, Malaysia and control serum samples (n=10) were obtained from healthy student volunteers. We estimated the levels of IL-1β, IL-6, IL-8, IL-10, and TNF-α in serum samples by a Luminex assay.
RESULTS: The levels of IL-6, IL-8, and IL1-β were significantly higher in 13% of the patients with leptospirosis compared to the healthy controls, while the levels of IL-10 and TNF-α were not elevated in either group.
CONCLUSION: Our data suggest that elevated levels of IL-6, IL- 8, and IL1-β may be associated with leptospirosis disease severity, which requires patient follow-up for confirmation.
Methods: In this study, the region spanning exon 2 from the 4th to 18th codon within the peptide sequence of wtKRAS was chosen for sequence manipulation. Mutated G12V and G13D K-ras controls were generated in silico, along with additional single amino acid substitutions flanking the original codon 12/13 mutations. IEDB was used for assessing human and mouse MHC class I/II epitope predictions, as well as linear B-cell epitopes predictions, while RNA secondary structure prediction was performed via CENTROIDFOLD. A scoring and ranking system was established in order to shortlist top mimotopes whereby normalized and reducing weighted scores were assigned to peptide sequences based on seven immunological parameters. Among the top 20 ranked peptide sequences, peptides of three mimotopes were synthesized and subjected to in vitro and in vivo immunoassays. Mice PBMCs were treated in vitro and subjected to cytokine assessment using CBA assay. Thereafter, mice were immunized and sera were subjected to IgG-based ELISA.
Results: In silico immunogenicity prediction using IEDB tools shortlisted one G12V mimotope (68-V) and two G13D mimotopes (164-D, 224-D) from a total of 1,680 candidates. Shortlisted mimotopes were predicted to promote high MHC-II and -I affinities with optimized B-cell epitopes. CBA assay indicated that: 224-D induced secretions of IL-4, IL-5, IL-10, IL-12p70, and IL-21; 164-D triggered IL-10 and TNF-α; while 68-V showed no immunological responses. Specific-IgG sera titers against mutated K-ras antigens from 164-D immunized Balb/c mice were also elevated post first and second boosters compared to wild-type and G12/G13 controls.
Discussion: In silico-guided predictions of mutated K-ras T- and B-cell epitopes were successful in identifying two immunogens with high predictive scores, Th-bias cytokine induction and IgG-specific stimulation. Developments of such immunogens are potentially useful for future immunotherapeutic and diagnostic applications against KRAS(+) malignancies, monoclonal antibody production, and various other research and development initiatives.
MATERIALS AND METHODS: Male Wistar rats were used for the experiments. Blood glucose (BG), urea, blood pressure (BP), and heart rate (HR) were analyzed before and 48 h after STZ injection. Further, these parameters were monitored up to 3 months of diabetes induction. Subsequently, the inflammatory markers (C-reactive protein, tumor necrosis factor-alpha, and nitrate) and oxidative stress markers were estimated after 3 months of diabetes induction in the kidney homogenate. Histological analysis of renal tissue was also carried out.
RESULTS: Linear elevation of BG, urea, mean arterial pressure (MAP), and HR was observed up to 3 months of diabetes induction. In the same manner, inflammatory and oxidative stress markers were also found to be significantly increased. Notably, the histological analysis revealed the signs of nephropathy such as increased mesangial cell number, thickness of basement membrane, and renal artery. Inflammatory and oxidative stress markers positively correlated with elevated BP and BG, but the correlation was better with BP rather than BG.
CONCLUSION: Hypertension has a strong implication in the increased oxidative stress and inflammation of diabetic kidney at the very early stage of diabetes mellitus.
Methods: BZD9L1 and 5-FU either as single treatment or in combination were tested against CRC cells to evaluate synergism in cytotoxicity, senescence and formation of micronucleus, cell cycle and apoptosis, as well as the regulation of related molecular players. The effects of combined treatments at different doses on stress and apoptosis, migration, invasion and cell death mechanism were evaluated through two-dimensional and three-dimensional cultures. In vivo studies include investigation on the combination effects of BZD9L1 and 5-FU on colorectal tumour xenograft growth and an evaluation of tumour proliferation and apoptosis using immunohistochemistry.
Results: Combination treatments exerted synergistic reduction on cell viability on HCT 116 cells but not on HT-29 cells. Combined treatments reduced survival, induced cell cycle arrest, apoptosis, senescence and micronucleation in HCT 116 cells through modulation of multiple responsible molecular players and apoptosis pathways, with no effect in epithelial mesenchymal transition (EMT). Combination treatments regulated SIRT1 and SIRT2 protein expression levels differently and changed SIRT2 protein localization. Combined treatment reduced growth, migration, invasion and viability of HCT 116 spheroids through apoptosis, when compared with the single treatment. In addition, combined treatment was found to reduce tumour growth in vivo through reduction of tumour proliferation and necrosis compared with the vehicle control group. This highlights the potential therapeutic effects of BZD9L1 and 5-FU towards CRC.
Conclusion: This study may pave the way for use of BZD9L1 as an adjuvant to 5-FU in improving the therapeutic efficacy for the treatment of colorectal cancer.
Methods: Thirty Sprague-Dawley rats were randomly assigned to control (non-diabetic), PDN and non-PDN groups (n = 10). The rats were induced with diabetes by streptozotocin injection (60 mg/kg). Tactile allodynia and thermal hyperalgesia were assessed on day 0, 14 (week 2) and 21 (week 3) in the rats. The rats were sacrificed and the spinal cord tissue was collected for the measurement of oxidative stress (malondialdehyde (MDA), superoxide dismutase (SOD) and catalase) and pro-inflammatory markers (interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α)).
Results: PDN rats demonstrated a marked tactile allodynia with no thermal hyperalgesia whilst non-PDN rats exhibited a prominent hypo-responsiveness towards non-noxious stimuli and hypoalgesia towards thermal input. The MDA level and pro-inflammatory TNF-α was significantly increased in PDN rats whilst catalase was reduced in these rats. Meanwhile, non-PDN rats demonstrated reduced SOD enzyme activity and TNF-α level and increased MDA and catalase activity.
Conclusion: The changes in oxidative stress parameters and pro-inflammatory factors may contribute to the changes in behavioural responses in both PDN and non-PDN rats.
METHOD: Cleistanthins A and B were isolated from the leaves of Cleistanthus collinus. Both the compounds were administered orally for 90 days at the concentration of 12.5, 25 and 50 mg/kg, and the effects on blood pressure, biochemical parameters and histology were assessed. The dose for sub-chronic toxicology was determined by fixed dose method according to OECD guidelines.
RESULT: Sub-chronic toxicity study of cleistanthins A and B spanning over 90 days at the dose levels of 12.5, 25 and 50 mg/kg (once daily, per oral) revealed a significant dose dependant toxic effect in lungs. The compounds did not have any effect on the growth of the rats. The food and water intake of the animals were also not affected by both cleistanthins A and B. Both the compounds did not have any significant effect on liver and renal markers. The histopathological analysis of both cleistanthins A and B showed dose dependent morphological changes in the brain, heart, lung, liver and kidney. When compared to cleistanthin A, cleistanthin B had more toxic effect in Wistar rats. Both the compounds have produced a dose dependent increase of corpora amylacea in brain and induced acute tubular necrosis in kidneys. In addition, cleistanthin B caused spotty necrosis of liver in higher doses.
CONCLUSION: The present study concludes that both cleistanthin A and cleistanthin B exert severe toxic effects on lungs, brain, liver, heart and kidneys. They do not cause any significant pathological change in the reproductive system; neither do they induce neurodegenerative changes in brain. When compared to cleistanthin A, cleistanthin B is more toxic in rats.
Methods: Ascites and respective peripheral blood sera were collected from 18 patients with advanced EOC and soluble biomarkers, including IL-6, sTNFR2, IL-10, TGF-β, and TNF, were quantified using multiplexed bead-based immunoassay. Peripheral blood mononuclear cells (PBMC) from healthy donors were incubated with cell-free ascites for 48 h (or media as a negative control). In some experiments, IL-6 or TNF within the ascites were neutralized by using monoclonal antibodies. The phenotype of TNFR2(+) Tregs and TNFR2(-) Tregs were characterized post incubation in ascites. In some experiments, cell sorted Tregs were utilized instead of PBMC.
Results: High levels of immunosuppressive (sTNFR2, IL-10, and TGF-β) and pro-inflammatory cytokines (IL-6 and TNF) were present in malignant ascites. TNFR2 expression on all T cell subsets was higher in post culture in ascites and highest on CD4(+)CD25(hi)FoxP3(+) Tregs, resulting in an increased TNFR2(+) Treg/effector T cell ratio. Furthermore, TNFR2(+) Tregs conditioned in ascites expressed higher levels of the functional immunosuppressive molecules programmed cell death ligand-1, CTLA-4, and GARP. Functionally, TNFR2(+) Treg frequency was inversely correlated with interferon-gamma (IFN-γ) production by effector T cells, and was uniquely able to suppress TNFR2(+) T effectors. Blockade of IL-6, but not TNF, within ascites decreased TNFR2(+) Treg frequency. Results indicating malignant ascites promotes TNFR2 expression, and increased suppressive Treg activity using PBMC were confirmed using purified Treg subsets.
Conclusion: IL-6 present in malignant ovarian cancer ascites promotes increased TNFR2 expression and frequency of highly suppressive Tregs.
BACKGROUND: Breast cancer is a heterogeneous disease involving complex mechanisms. TRAIL is a potential anticancer candidate for targeted treatment due to its selective killing effects on neoplastic cells. Nonetheless, resistance occurs in many cancers either intrinsically or after multiple treatments.
OBJECTIVE: Therefore, this research investigated whether the combination of Trichostatin A (TSA) and Zebularine (Zeb) (TZ) followed by TRAIL (TZT) could sensitize the human breast adenocarcinoma cells towards apoptosis.
METHODS: The breast adenocarcinoma cells, MDA-MB-231, MCF-7 and E-MDA-MB-231 (E-cadherin re-expressed MDA-MB-231) were treated with TSA, Zeb, TZ, TRAIL and TZT. The cells were subjected to hematoxylin and eosin (H & E) staining and FITC-Annexin V/Propidium Iodide apoptosis detection prior to proteome profiling.
RESULTS: Based on morphological observation, apoptosis was induced in all cells treated with all treatment regimens though it was more evident for the TZT-treated cells. In the apoptosis detection analysis, TZ increased early apoptosis significantly in MDA-MB-231 and MCF-7 while TRAIL induced late apoptosis significantly in E-MDA-MB-231. Based on the proteome profiling on MDA-MB-231, TRAIL R2 and Fas expression was increased. For E-MDA-MB- 231, down-regulation of catalase, paraoxonase-2 (PON2), clusterin, an inhibitor of apoptosis proteins (IAPs) and cell stress proteins validated the notion that E-cadherin re-expression enhances TZT anti-cancer efficacy. Similar trend was observed in MCF-7 whereby TZT treatment down-regulated the anti-apoptotic catalase and PON2, increased the proapoptotic, B cell lymphoma 2 (Bcl-2)-associated agonist of cell death (Bad) and Bcl-2-associated X (Bax), second mitochondria-derived activator of caspase (SMAC) and HtrA serine peptidase 2 (HTRA2) as well as TRAIL receptors (TRAIL R1 and TRAIL R2).
CONCLUSION: TZ treatment serves as an efficient treatment regimen for MDA-MB-231 and MCF-7, while TRAIL serves as a better treatment option for E-MDA-MB-231. Therefore, future studies on E-cadherin's positive regulatory role in TRAIL-induced apoptosis are warranted.
METHODS: Cytokines were measured using a commercial Bio-plex Pro Human Cytokine Grp I Panel 17-plex kit (BioRad, Hercules, CA, USA). Inflammation was assessed by measuring an array of plasma cytokines, and phenotypic alterations in CD4+ T cells including circulating Tfh cells, CD8+ T cells, and TCR iVα7.2+ MAIT cells in chronic HBV, HCV, and HIV-infected patients and healthy controls. The cells were characterized based on markers pertaining to immune activation (CD69, ICOS, and CD27) proliferation (Ki67), cytokine production (TNF-α, IFN-γ) and exhaustion (PD-1). The cytokine levels and T cell phenotypes together with cell markers were correlated with surrogate markers of disease progression.
RESULTS: The activation marker CD69 was significantly increased in CD4+hi T cells, while CD8+ MAIT cells producing IFN-γ were significantly increased in chronic HBV, HCV and HIV infections. Six cell phenotypes, viz., TNF-α+CD4+lo T cells, CD69+CD8+ T cells, CD69+CD4+ MAIT cells, PD-1+CD4+hi T cells, PD-1+CD8+ T cells, and Ki67+CD4+ MAIT cells, were independently associated with decelerating the plasma viral load (PVL). TNF-α levels showed a positive correlation with increase in cytokine levels and decrease in PVL.
CONCLUSION: Chronic viral infection negatively impacts the quality of peripheral MAIT cells and Tfh cells via differential expression of both activating and inhibitory receptors.