Displaying publications 281 - 300 of 357 in total

Abstract:
Sort:
  1. Huq AK, Jamal JA, Stanslas J
    PMID: 24834098 DOI: 10.1155/2014/782830
    Persicaria hydropiper (L.) Delarbre, belonging to Polygonaceae family, is a common weed found in most of the temperate countries including Bangladesh, China, Malaysia, and Japan. The plant is also referred to as "marsh pepper" or "smart weed." It appears to be a useful herb with evidence-based medicinal properties. The present work addresses the botanical description, traditional uses, phytochemistry, pharmacology, and toxicology of P. hydropiper. All plant parts have been commonly used in the traditional systems of medicines. Flavonoids are the major group of phytochemical components followed by drimane-type sesquiterpenes and sesquiterpenoids, as well as phenylpropanoids. Different extracts and plant parts showed remarkable pharmacological activities including antioxidant, antibacterial, antifungal, antihelminth, antifeedant, cytotoxicity, anti-inflammatory, antinociceptive, oestrogenicity, antifertility, antiadipogenicity, and neuroprotection. Mutagenicity and acute and subchronic toxicities of the plant were also reported. P. hydropiper has tremendous medicinal properties that could further be investigated for the development of evidence-based herbal products.
    Matched MeSH terms: Phytochemicals
  2. Abd Jalil MA, Shuid AN, Muhammad N
    PMID: 22973405 DOI: 10.1155/2012/714512
    Popularly known as "the silent disease" since early symptoms are usually absent, osteoporosis causes progressive bone loss, which renders the bones susceptible to fractures. Bone fracture healing is a complex process consisting of four overlapping phases-hematoma formation, inflammation, repair, and remodeling. The traditional use of natural products in bone fractures means that phytochemicals can be developed as potential therapy for reducing fracture healing period. Located closely near the equator, Malaysia has one of the world's largest rainforests, which are homes to exotic herbs and medicinal plants. Eurycoma longifolia (Tongkat Ali), Labisia pumila (Kacip Fatimah), and Piper sarmentosum (Kaduk) are some examples of the popular ethnic herbs, which have been used in the Malay traditional medicine. This paper focuses on the use of natural products for treating fracture as a result of osteoporosis and expediting its healing.
    Matched MeSH terms: Phytochemicals
  3. Ishak NAIM, Kamarudin SK, Timmiati SN, Karim NA, Basri S
    J Adv Res, 2021 Feb;28:63-75.
    PMID: 33364046 DOI: 10.1016/j.jare.2020.06.025
    Platinum is the most commonly used catalyst in fuel cell application. However, platinum is very expensive, thus limits the commercialisation of fuel cell system due to the cost factor. This study introduces a biosynthesis platinum from plant extracts that can reduce the cost of platinum production compared to the conventional method and the hazardous during the production of the catalyst. The biogenic platinum was tested on a Direct Methanol Fuel Cell. Advanced biogenic of Pt nano-cluster was synthesized through a novel and facile of one-pot synthesis bio-reduction derived from natural source in the form of plant extracts as reducing agent. Several selected plant extracts drawn from agricultural waste such as banana peel, pineapple peels and sugarcane bagasse extracts were comparatively evaluated on the ability of phytochemical sources of polyphenols rich for the development of single-step synthesis for Pt NPs. Notably, the biogenic Pt NPs from sugar cane bagasse has superior electro-catalytic activity, the enhanced utilization efficiency of Pt and appreciable stability towards methanol oxidation reaction, whose ECSA value approximates 94.58 m2g-1, mass activity/specific activity (398.20 mAmg-1/0.8471 mA/cm2Pt) which greater than commercial Pt black (158.12 mAmg-1/1.41 mA/cm2Pt).
    Matched MeSH terms: Phytochemicals
  4. Mustaffa F, Indurkar J, Ismail S, Mordi MN, Ramanathan S, Mansor SM
    Pharmacognosy Res, 2010 Mar;2(2):76-81.
    PMID: 21808545 DOI: 10.4103/0974-8490.62952
    Cinnomomum iners standardized leaves methanolic extract (CSLE) was subjected to analgesic, toxicity and phytochemical studies. The analgesic activity of CSLE was evaluated using formalin, hot plate and tail flick tests at doses of 100, 200 and 500 mg/kg. CSLE showed significant activity (P < 0.05) in the formalin model (late phase) on the rats at doses of 200 and 500 mg/kg. However, CSLE did not show activity in the hot plate and tail flick tests. The results obtained suggest that CSLE acts peripherally to relieve pain. For the toxicity study, CSLE was orally administered to the Swiss albino mice according to the Organization for Economic Co-Operation and Development (OECD) guideline 423. There was no lethality or toxic symptoms observed for all the tested doses throughout the 14-day period. Phytochemical screening of CSLE showed the presence of cardiac glycoside, flavonoid, polyphenol, saponin, sugar, tannin and terpenoid.
    Matched MeSH terms: Phytochemicals
  5. Christapher PV, Parasuraman S, Christina JM, Asmawi MZ, Vikneswaran M
    Pharmacognosy Res, 2015 Jan-Mar;7(1):1-6.
    PMID: 25598627 DOI: 10.4103/0974-8490.147125
    Polygonum minus (Polygonaceae), generally known as 'kesum' in Malaysia is among the most commonly used food additive, flavoring agent and traditionally used to treat stomach and body aches. Raw or cooked leaves of P. minus are used in digestive disorders in the form of a decoction and the oil is used for dandruff. The pharmacological studies on P. minus have demonstrated antioxidant, in vitro LDL oxidation inhibition, antiulcer activity, analgesic activity, anti-inflammatory activity, in vitro antiplatelet aggregation activity, antimicrobial activity, digestive enhancing property and cytotoxic activity. The spectroscopic studies of essential oil of P. minus showed the presence of about 69 compounds, which are responsible for the aroma. The phytochemical studies showed presence of flavonoids and essential oils. This review is an effort to update the botanical, phytochemical, pharmacological and toxicological data of the plant P. minus.
    Matched MeSH terms: Phytochemicals
  6. Vijayarathna S, Gothai S, Jothy SL, Chen Y, Kanwar JR, Sasidharan S
    Asian Pac J Cancer Prev, 2015;16(17):7435-9.
    PMID: 26625740
    A failure of a cell to self destruct has long been associated with cancer progression and development. The fact that tumour cells may not instigate cell arrest or activate cell death mechanisms upon cancer drug delivery is a major concern. Autophagy is a mechanism whereby cell material can be engulfed and digested while apoptosis is a self-killing mechanism, both capable of hindering multiplication after cell injury. In particular situations, autophagy and apoptosis seem to co-exist simultaneously or interdependently with the aid of mutual proteins. This review covers roles of microRNAs and chemopreventive agents and makes an attempt at outlining possible partnerships in maximizing cancer cell death with minimal normal cell damage.
    Matched MeSH terms: Phytochemicals/therapeutic use
  7. Lee JJ, Saiful Yazan L, Kassim NK, Che Abdullah CA, Esa N, Lim PC, et al.
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512700 DOI: 10.3390/molecules25112610
    Christia vespertilionis, commonly known as 'Daun Rerama', has recently garnered attention from numerous sources in Malaysia as an alternative treatment. Its herbal decoction was believed to show anti-inflammatory and anti-cancer effects. The present study investigated the cytotoxicity of the extract of root and leaf of C. vespertilionis. The plant parts were successively extracted using the solvent maceration method. The most active extract was further fractionated to afford F1-F8. The cytotoxic effects were determined using MTT assay against human breast carcinoma cell lines (MCF-7 and MDA-MB-231). The total phenolic content (TPC) of the extracts were determined. The antioxidant properties of the extract were also studied using DPPH and β-carotene bleaching assays. The ethyl acetate root extract demonstrated selective cytotoxicity especially against MDA-MB-231 with the highest TPC and antioxidant properties compared to others (p < 0.05). The TPC and antioxidant results suggest the contribution of phenolic compounds toward its antioxidant strength leading to significant cytotoxicity. F3 showed potent cytotoxic effects while F4 showed better antioxidative strength compared to others (p < 0.05). Qualitative phytochemical screening of the most active fraction, F3, suggested the presence of flavonoids, coumarins and quinones to be responsible toward the cytotoxicity. The study showed the root extracts of C. vespertilionis to possess notable anti-breast cancer effects.
    Matched MeSH terms: Phytochemicals/pharmacology*
  8. Loganathan R, Subramaniam KM, Radhakrishnan AK, Choo YM, Teng KT
    Nutr Rev, 2017 Feb 01;75(2):98-113.
    PMID: 28158744 DOI: 10.1093/nutrit/nuw054
    The fruit of the oil palm tree (Elaeis guineesis) is the source of antioxidant-rich red palm oil. Red palm oil is a rich source of phytonutrients such as tocotrienols, tocopherols, carotenoids, phytosterols, squalene, and coenzyme Q10, all of which exhibit nutritional properties and oxidative stability. Mutagenic, nutritional, and toxicological studies have shown that red palm oil contains highly bioavailable β-carotene and vitamin A and is reasonably stable to heat without any adverse effects. This review provides a comprehensive overview of the nutritional properties of red palm oil. The possible antiatherogenic, antihemorrhagic, antihypertensive, anticancer, and anti-infective properties of red palm oil are examined. Moreover, evidence supporting the potential effectiveness of red palm oil to overcome vitamin A deficiency in children and pregnant women, to improve ocular complications of vitamin A deficiency, to protect against ischemic heart disease, to promote normal reproduction in males and females, to aid in the management of diabetes, to ameliorate the adverse effects of chemotherapy, and to aid in managing hypobaric conditions is presented.
    Matched MeSH terms: Phytochemicals/analysis
  9. Khor BK, Chear NJ, Azizi J, Khaw KY
    Molecules, 2021 Mar 09;26(5).
    PMID: 33803330 DOI: 10.3390/molecules26051489
    The leaves of Carica papaya (CP) are rich in natural antioxidants. Carica papaya has traditionally been used to treat various ailments, including skin diseases. This study aims to decipher the antioxidant effects and phytochemical content of different CP leaf extracts (CPEs) obtained using supercritical carbon dioxide (scCO2) and conventional extraction methods. The antioxidant activities of CPEs were evaluated by cell-free (1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric-reduced antioxidative power (FRAP)) and cell-based (H2O2) assay. Both C. papaya leaf scCO2 extract with 5% ethanol (CPSCE) and C. papaya leaf scCO2 extract (CPSC) exhibited stronger DPPH radical scavenging activity than conventional extracts. In the FRAP assay, two hydrophilic extracts (C. papaya leaf ethanol extract (CPEE) and C. papaya freeze-dried leaf juice (CPFD)) showed relatively stronger reducing power compared to lipophilic extracts. Cell-based assays showed that CPFD significantly protected skin fibroblasts from H2O2-induced oxidative stress in both pre-and post-treatment. CPEE protected skin fibroblasts from oxidative stress in a dose-dependent manner while CPSCE significantly triggered the fibroblast recovery after treatment with H2O2. GC-MS analysis indicated that CPSCE had the highest α-tocopherol and squalene contents. By contrast, both CP hydrophilic extracts (CPEE and CPFD) had a higher total phenolic content (TPC) and rutin content than the lipophilic extracts. Overall, CPEs extracted using green and conventional extraction methods showed antioxidative potential in both cell-based and cell-free assays due to their lipophilic and hydrophilic antioxidants, respectively.
    Matched MeSH terms: Phytochemicals/analysis
  10. Saleem H, Zengin G, Ahmad I, Lee JTB, Htar TT, Mahomoodally FM, et al.
    J Pharm Biomed Anal, 2019 Jun 05;170:132-138.
    PMID: 30921647 DOI: 10.1016/j.jpba.2019.03.027
    The current research work was conducted in order to probe into the biochemical and toxicological characterisation of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (Choisy.) aerial parts. Biological fingerprints were assessed for in vitro antioxidant, key enzyme inhibitory and cytotoxicity potential. Total bioactive contents were determined spectrophotometrically and the secondary metabolite components of methanol extract was assessed by UHPLC mass spectrometric analysis. The antioxidant capabilities were evaluated via six different in vitro antioxidant assays namely DPPH, ABTS (free radical scavenging), FRAP, CUPRAC (reducing antioxidant power), phosphomolybdenum (total antioxidant capacity) and ferrous chelating activity. Inhibition potential against key enzymes urease, α-glucosidase and cholinesterases were also determined. Methanol extract exhibited higher phenolic (24.01 mg GAE/g extract) as well as flavonoid (41.51 mg QE/g extract) contents. Phytochemical profiling of methanol extract identified a total of twenty secondary metabolites and the major compounds belonged to flavonoids, phenolics and alkaloid derivatives. The findings of antioxidant assays revealed the methanol extract to exhibit stronger antioxidant (except phosphomolybdenum) activities. Similarly, the methanol extract showed highest butyrylcholinesterase and urease inhibition. The DCM extract was most active for phosphomolybdenum and α-glucosidase inhibition assays. Moreover, both extracts exhibited significant cytotoxic potential against five (MCF-7, MDA-MB-231, CaSki, DU-145, and SW-480) human carcinoma cell lines with half maximal inhibitory concentration values of 22.09 to 257.2 μg/mL. Results from the present study highlighted the potential of B. glabra aerial extracts to be further explored in an endeavour to discover novel phytotherapeutics as well as functional ingredients.
    Matched MeSH terms: Phytochemicals/chemistry
  11. Shahzad MI, Anwar S, Ashraf H, Manzoor A, Naseer M, Rani U, et al.
    Trop Biomed, 2020 Dec 01;37(4):1129-1140.
    PMID: 33612765 DOI: 10.47665/tb.37.4.1129
    Herbal medicines are becoming more popular and acceptable day by day due to their effectiveness, limited side effects, and cost-effectiveness. Cholistani plants are reported as a rich source of antibacterial, antifungal, antiprotozoal, antioxidant, and anticancer agents. The current study has evaluated antiviral potential of selected Cholistani plants. The whole plants were collected, ground and used in extract formation with n-hexane, ethyl acetate and n-butanol. All the extracts were concentrated by using a rotary evaporator and concentrate was finally dissolved in an appropriate vol of the same solvent. All of the extracts were tested for their antiviral potential by using 9-11 days old chick embryonated eggs. Each extract was tested against the Avian Influenza virus H9N2 strain (AIV), New Castle Disease virus Lasoota strain (NDV), Infectious bronchitis virus (IBV) and an Infectious bursal disease virus (IBDV). Hemagglutination test (HA) and Indirect Hemagglutination (IHA) tests were performed for different viruses. The overall order of the antiviral potential of Cholistani plants against viruses was NDV>IBV>IBDV>AIV. In terms of antiviral activity from extracts, the order of activity was n-butanol>ethyl acetate>n-hexane. The medicinal plants Achyranthes aspera, Neuroda procumbens, Panicum antidotale, Ochthochloa compressa and Suaeda fruticose were very effective against all four poultry viruses through their extracts. The low IC50 values of these extracts confirm the high antiviral potential against these viruses. It is worth to mention that Achyranthes aspera was found positive against IBDV through all its extracts which overcome the problem of unavailability of any known drug against IBDV. In short, the study proved that Cholistani plants are rich source of antiviral agent and their extracts can be used as good source of antiviral drugs both in crude and in purified form.
    Matched MeSH terms: Phytochemicals/pharmacology
  12. Gan YL, Fu JY, Lai OM, Chew BH, Yuen KH, Teng KT, et al.
    Sci Rep, 2017 09 14;7(1):11542.
    PMID: 28912593 DOI: 10.1038/s41598-017-11813-w
    Tocotrienols, the unsaturated form of vitamin E, were reported to modulate platelet aggregation and thrombotic mechanisms in pre-clinical studies. Using a Food and Drug Administration (FDA)-approved cartridge-based measurement system, a randomised, double-blind, crossover and placebo-controlled trial involving 32 metabolic syndrome adults was conducted to investigate the effect of palm-based tocotrienols and tocopherol (PTT) mixture supplementation on platelet aggregation reactivity. The participants were supplemented with 200 mg (69% tocotrienols and 31% α-tocopherol) twice daily of PTT mixture or placebo capsules for 14 days in a random order. After 14 days, each intervention was accompanied by a postprandial study, in which participants consumed 200 mg PTT mixture or placebo capsule after a meal. Blood samples were collected on day 0, day 14 and during postprandial for the measurement of platelet aggregation reactivity. Subjects went through a 15-day washout period before commencement of subsequent intervention. Fasting platelet aggregation reactivity stimulated with adenosine diphosphate (ADP) did not show substantial changes after supplementation with PTT mixture compared to placebo (p = 0.393). Concomitantly, changes in postprandial platelet aggregation reactivity remained similar between PTT mixture and placebo interventions (p = 0.408). The results of this study highlight the lack of inhibitory effect on platelet aggregation after short-term supplementation of PTT mixture in participants with metabolic syndrome.
    Matched MeSH terms: Phytochemicals/administration & dosage*
  13. Sayem ASM, Arya A, Karimian H, Krishnasamy N, Ashok Hasamnis A, Hossain CF
    Molecules, 2018 Jan 28;23(2).
    PMID: 29382104 DOI: 10.3390/molecules23020258
    Diabetes is associated with obesity, generally accompanied by a chronic state of oxidative stress and redox imbalances which are implicated in the progression of micro- and macro-complications like heart disease, stroke, dementia, cancer, kidney failure and blindness. All these complications rise primarily due to consistent high blood glucose levels. Insulin and glucagon help to maintain the homeostasis of glucose and lipids through signaling cascades. Pancreatic hormones stimulate translocation of the glucose transporter isoform 4 (GLUT4) from an intracellular location to the cell surface and facilitate the rapid insulin-dependent storage of glucose in muscle and fat cells. Malfunction in glucose uptake mechanisms, primarily contribute to insulin resistance in type 2 diabetes. Plant secondary metabolites, commonly known as phytochemicals, are reported to have great benefits in the management of type 2 diabetes. The role of phytochemicals and their action on insulin signaling pathways through stimulation of GLUT4 translocation is crucial to understand the pathogenesis of this disease in the management process. This review will summarize the effects of phytochemicals and their action on insulin signaling pathways accelerating GLUT4 translocation based on the current literature.
    Matched MeSH terms: Phytochemicals/pharmacology*
  14. Karunanidhi A, Ghaznavi-Rad E, Jeevajothi Nathan J, Joseph N, Chigurupati S, Mohd Fauzi F, et al.
    Molecules, 2019 Mar 13;24(6).
    PMID: 30871159 DOI: 10.3390/molecules24061003
    Antibiotic resistance is a problem that continues to challenge the healthcare sector, especially in clinically significant pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Herein is described the isolation and structure elucidation of a bioactive compound from Allium stipitatum with antimicrobial activity. Crude Allium stipitatum dichloromethane extract (ASDE) was subjected to systematic purification by chromatographic procedures to afford various bioactive fractions. A fraction that exhibited anti-MRSA activity (4 µg·mL-1) was further characterized to determine the structure. The structure of the compound was elucidated as 2-(methyldithio)pyridine-3-carbonitrile (2-Medpy-3-CN). The 2-Medpy-3-CN compound, which was screened for antimicrobial activity, exhibited minimum inhibitory concentrations (MICs) in the range of 0.5 to >64 µg·mL-1 for tested bacterial species and 0.25 to 2 µg·mL-1 for Candida spp. Further studies are important to confirm the drug target and mechanism of action.
    Matched MeSH terms: Phytochemicals/analysis
  15. Muhammad A, Tel-Çayan G, Öztürk M, Duru ME, Nadeem S, Anis I, et al.
    Pharm Biol, 2016 Sep;54(9):1649-55.
    PMID: 26866457 DOI: 10.3109/13880209.2015.1113992
    Context Dodonaea viscosa (L.) Jacq (Sapindaceae) has been used in traditional medicine as antimalarial, antidiabetic and antibacterial agent, but further investigations are needed. Objective This study determines the antioxidant and anticholinesterase activities of six compounds (1-6) and two crystals (1A and 3A) isolated from D. viscosa, and discusses their structure-activity relationships. Materials and methods Antioxidant activity was evaluated using six complementary tests, i.e., β-carotene-linoleic acid; DPPH(•), ABTS(•+), superoxide scavenging, CUPRAC and metal chelating assays. Anticholinesterase activity was performed using the Elman method. Results Clerodane diterpenoids (1 and 2) and phenolics (3-6) - together with three crystals (1A, 3A and 7A) - were isolated from the aerial parts of D. viscosa. Compound 3A exhibited good antioxidant activity in DPPH (IC50: 27.44 ± 1.06 μM), superoxide (28.18 ± 1.35% inhibition at 100 μM) and CUPRAC (A0.5: 35.89 ± 0.09 μM) assays. Compound 5 (IC50: 11.02 ± 0.02 μM) indicated best activity in ABTS assay, and 6 (IC50: 14.30 ± 0.18 μM) in β-carotene-linoleic acid assay. Compounds 1 and 3 were also obtained in the crystal (1A and 3A) form. Both crystals showed antioxidant activity. Furthermore, crystal 3A was more active than 3 in all activity tests. Phenol 6 possessed moderate anticholinesterase activity against acetylcholinesterase and butyrylcholinesterase enzymes (IC50 values: 158.14 ± 1.65 and 111.60 ± 1.28 μM, respectively). Discussion and conclusion This is the first report on antioxidant and anticholinesterase activities of compounds 1, 2, 5, 6, 1A and 3A, and characterisation of 7A using XRD. Furthermore, the structure-activity relationships are also discussed in detail for the first time.
    Matched MeSH terms: Phytochemicals/isolation & purification; Phytochemicals/pharmacology*
  16. Ahmad S, Sukari MA, Ismail N, Ismail IS, Abdul AB, Abu Bakar MF, et al.
    PMID: 25887035 DOI: 10.1186/s12906-015-0594-7
    Mangifera pajang Kosterm is a plant species from the mango family (Anacardiaceae). The fruits are edible and have been reported to have high antioxidant content. However, the detailed phytochemical studies of the plant have not been reported previously. This study investigates the phytochemicals and biological activities of different parts of Mangifera pajang.
    Matched MeSH terms: Phytochemicals/pharmacology; Phytochemicals/therapeutic use
  17. Islam MA, Alam F, Solayman M, Khalil MI, Kamal MA, Gan SH
    Oxid Med Cell Longev, 2016;2016:5137431.
    PMID: 27721914
    Cumulatively, degenerative disease is one of the most fatal groups of diseases, and it contributes to the mortality and poor quality of life in the world while increasing the economic burden of the sufferers. Oxidative stress and inflammation are the major pathogenic causes of degenerative diseases such as rheumatoid arthritis (RA), diabetes mellitus (DM), and cardiovascular disease (CVD). Although a number of synthetic medications are used to treat these diseases, none of the current regimens are completely safe. Phytochemicals (polyphenols, carotenoids, anthocyanins, alkaloids, glycosides, saponins, and terpenes) from natural products such as dietary fruits, vegetables, and spices are potential sources of alternative medications to attenuate the oxidative stress and inflammation associated with degenerative diseases. Based on in vitro, in vivo, and clinical trials, some of these active compounds have shown good promise for development into novel agents for treating RA, DM, and CVD by targeting oxidative stress and inflammation. In this review, phytochemicals from natural products with the potential of ameliorating degenerative disease involving the bone, metabolism, and the heart are described.
    Matched MeSH terms: Phytochemicals/administration & dosage*; Phytochemicals/isolation & purification
  18. Bello I, Usman NS, Dewa A, Abubakar K, Aminu N, Asmawi MZ, et al.
    J Ethnopharmacol, 2020 Mar 25;250:112461.
    PMID: 31830549 DOI: 10.1016/j.jep.2019.112461
    ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus niruri have a long history of use in the traditional treatment of various ailments including hypertension. Literature reports have indicated that it is a potent antihypertensive herbal medication used traditionally.

    AIM OF THE STUDY: This study was carried out to investigate the antihypertensive and vasodilatory activity of four solvents extracts of P. niruri namely; petroleum ether (PEPN), chloroform (CLPN), methanol (MEPN) and water (WEPN), with the aim of elucidating the mechanism of action and identifying the phytochemical constituents.

    MATERIALS AND METHODS: Male Spontaneous Hypertensive Rats (SHRs) were given oral gavage of P. niruri extract daily for two weeks and the blood pressure was recorded in vivo. We also determine the vasodilation effect of the extracts on rings of isolated thoracic aorta pre-contracted with phenylephrine (PE, 1 μM). Endothelium-intact or endothelium-denuded aorta rings were pre-incubated with various antagonists like 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM) and Methylene blue (MB 10 μM), sGC inhibitors; Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 μM) a nitric oxide synthase (NOS) inhibitor; atropine (10 μM), a cholinergic receptor blocker; indomethacin (10 μM), a cyclooxygenase inhibitor and various K+ channel blockers such as glibenclamide (10 μM) and tetraethyl ammonium (TEA 10 μM) for mechanism study.

    RESULTS: SHRs receiving P. niruri extracts showed a significant decrease in their blood pressure (BP) when compared to the baseline value, with PEPN being more potent. The extracts (0.125-4 mg/mL) also induced vasorelaxation on endothelium-intact aorta rings. PEPN elicited the most potent maximum relaxation effect (Rmax). Mechanism assessment of PEPN showed that its relaxation effect is significantly suppressed in endothelium-denuded aorta rings. Pre-incubation of aorta rings with atropine, L-NAME, ODQ, indomethacin, and propranolol also significantly attenuated its relaxation effect. Conversely, incubation with TEA and glibenclamide did not show a significant effect on PEPN-induced relaxation.

    CONCLUSION: This study indicates that the antihypertensive activity of P. niruri extract is mediated by vasoactive phytoconstituents that dilate the arterial wall via endothelium-dependent pathways and β-adrenoceptor activity which, in turn, cause vasorelaxation and reduce blood pressure.

    Matched MeSH terms: Phytochemicals/analysis; Phytochemicals/pharmacology
  19. Chua LS, Lau CH, Chew CY, Ismail NIM, Soontorngun N
    Phytomedicine, 2018 Jan 15;39:49-55.
    PMID: 29433683 DOI: 10.1016/j.phymed.2017.12.015
    BACKGROUND: Orthosiphon aristatus (Blume) Miq. is a medicinal herb which is traditionally used for the treatment of diabetes and kidney diseases in South East Asia. Previous studies reported higher concentration of antioxidative phytochemicals, especially rosmarinic acid (ester of caffeic acid) and other caffeic acid derivatives in this plant extract than the other herbs such as rosemary and sage which are usually used as raw materials to produce rosmarinic acid supplement in the market.

    PURPOSE: The phytochemical profile of O. aristatus was investigated at different storage durations for quality comparison.

    METHODS: The phytochemicals were extracted from the leaves and stems of O. aristatus using a reflux reactor. The extracts were examined for total phenolic and flavonoid contents, as well as their antioxidant capacities, in terms of radical scavenging, metal chelating and reducing power. The phytochemical profiles were also analyzed by unsupervised principal component analysis and hierarchical cluster analysis, in relation to the factor of storage at 4 °C for 5 weeks.

    RESULTS: The leaf extract was likely to have more phytochemicals than stem extract, particularly caffeic acid derivatives including glycosylated and alkylated caffeic acids. This explains higher ratio of total phenolic content to total flavonoid content with higher antioxidant capacities for the leaf extracts. Rosmarinic acid dimer and salvianolic acid B appeared to be the major constituents, possibly contributing to the previously reported pharmacological properties. However, the phytochemical profiles were found changing, even though the extracts were stored in the refrigerator (4 °C). The change was significantly observed at the fifth week based on the statistical pattern recognition technique.

    CONCLUSION: O. aristatus could be a promising source of rosmarinic acid and its dimer, as well as salvianolic acid B with remarkably antioxidant properties. The phytochemical profile was at least stable for a month stored at 4 °C. It is likely to be a good choice of herbal tea with comparable radical scavenging activity, but lower caffeine content than other tea samples.

    Matched MeSH terms: Phytochemicals/analysis*; Phytochemicals/chemistry
  20. Doreddula SK, Bonam SR, Gaddam DP, Desu BS, Ramarao N, Pandy V
    ScientificWorldJournal, 2014;2014:519848.
    PMID: 25401145 DOI: 10.1155/2014/519848
    Abelmoschus esculentus L. (ladies finger, okra) is a well-known tropical vegetable, widely planted from Africa to Asia and from South Europe to America. In the present study, we investigated the in vitro antioxidant capacity and in vivo protective effect of the aqueous and methanolic seed extracts of Abelmoschus esculentus against scopolamine-induced cognitive impairment using passive avoidance task and acute restraining stress-induced behavioural and biochemical changes using elevated plus maze (EPM) and forced swimming test (FST) in mice. Our results demonstrated that the pretreatment of mice with aqueous and methanolic seed extracts of Abelmoschus esculentus (200 mg/kg, p.o.) for seven days significantly (P < 0.01) attenuated scopolamine-induced cognitive impairment in the passive avoidance test. In addition, these extracts significantly reduced the blood glucose, corticosterone, cholesterol, and triglyceride levels elevated by acute restraint stress and also significantly increased the time spent in open arm in EPM and decreased the immobility time in FST. It has also been revealed that these extracts showed a significant antioxidant activity and no signs of toxicity or death up to a dose of 2000 mg/kg, p.o. These results suggest that the seed extracts of Abelmoschus esculentus L. possess antioxidant, antistress, and nootropic activities which promisingly support the medicinal values of ladies finger as a vegetable.
    Matched MeSH terms: Phytochemicals/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links