Displaying publications 301 - 320 of 586 in total

Abstract:
Sort:
  1. Hassan Z, Mustafa S, Rahim RA, Isa NM
    In Vitro Cell Dev Biol Anim, 2016 Mar;52(3):337-348.
    PMID: 26659392 DOI: 10.1007/s11626-015-9978-8
    Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
    Matched MeSH terms: Apoptosis/drug effects*
  2. Arul M, Roslani AC, Cheah SH
    In Vitro Cell Dev Biol Anim, 2017 May;53(5):435-447.
    PMID: 28120247 DOI: 10.1007/s11626-016-0126-x
    Tumor heterogeneity may give rise to differential responses to chemotherapy drugs. Therefore, unraveling tumor heterogeneity has an implication for biomarker discovery and cancer therapeutics. To test this phenomenon, we investigated the differential responses of three secondary colorectal cancer cell lines of different origins (HCT116, HT29, and SW620 cells) and four novel primary cell lines obtained from different colorectal cancer patients to 5-fluorouracil (5-FU) and oxaliplatin (L-OHP) and explored the differences in gene expression among the primary cell lines in response to exposure to cytotoxic drugs. Cells were exposed to different doses of 5-FU and L-OHP separately or in combinations of equitoxic drug or equimolar drug ratios (median effect of Chou-Talalay principle). Cell viability was assessed using MTT assay and the respective IC50values were determined. Changes in gene expression in primary cell lines after exposure to the same drug doses were compared using real-time PCR array. The sensitivities (IC50) of different cell lines, both secondary and primary, to 5-FU and L-OHP were significantly different, whether in monotherapy or combined treatment. Primary cell lines needed higher doses to reach IC50. There were variations in gene expression among the primary cell lines of different chemosensitivities to the challenge of the same combined dose of 5-FU and L-OHP. The results confirm the heterogeneous nature of colorectal cancer cells from different patient tumors. Studies using primary cancer cells established from patient's tumors rather than secondary cell lines will more closely reflect the actual character of the disease.
    Matched MeSH terms: Apoptosis/drug effects*
  3. Hammadi NI, Abba Y, Hezmee MNM, Razak ISA, Kura AU, Zakaria ZAB
    In Vitro Cell Dev Biol Anim, 2017 Dec;53(10):896-907.
    PMID: 28916966 DOI: 10.1007/s11626-017-0197-3
    Cockle shell-derived calcium carbonate nanoparticles have shown promising potentials as slow drug-releasing compounds in cancer chemotherapy. In this study, we evaluated the in vitro efficacy of docetaxel (DTX)-loaded CaCO3NP on 4T1 cell line. This was achieved by evaluating the following: cytotoxicity using MTT assay, fluorescence imaging, apoptosis with Annexin V assay, cell cycle analysis, scanning (SEM) and transmission electron microscopy (TEM), and scratch assay. Based on the results, DTX-CaCO3NP with a DTX concentration of 0.5 μg/mL and above had comparable cytotoxic effects with free DTX at 24 h, while all concentrations had similar cytotoxic effect on 4T1 cells at 48 and 72 h. Fluorescence and apoptosis assay showed a higher (p 
    Matched MeSH terms: Apoptosis/drug effects
  4. Halder A, Jethwa M, Mukherjee P, Ghosh S, Das S, Helal Uddin ABM, et al.
    Artif Cells Nanomed Biotechnol, 2020 Nov 17;48(1):1362-1371.
    PMID: 33284038 DOI: 10.1080/21691401.2020.1850465
    Cancer management presents multifarious problems. Triple negative breast cancer (TNBC) is associated with inaccurate prognosis and limited chemotherapeutic options. Betulinic acid (BA) prevents angiogenesis and causes apoptosis of TNBC cells. NIH recommends BA for rapid access in cancer chemotherapy because of its cell-specific toxicity. BA however faces major challenges in therapeutic practices due to its limited solubility and cellular entree. We report lactoferrin (Lf) attached BA nanoparticles (Lf-BAnp) for rapid delivery in triple negative breast (MDA-MB-231) and laryngeal (HEp-2) cancer cell types. Lf association was confirmed by SDS-PAGE and FT-IR analysis. Average hydrodynamic size of Lf-BAnp was 147.7 ± 6.20 nm with ζ potential of -28.51 ± 3.52 mV. BA entrapment efficiency was 75.38 ± 2.70% and the release mechanism followed non-fickian pattern. Impact of Lf-BAnp on cell cycle and cytotoxicity of triple negative breast cancer and its metastatic site laryngeal cancer cell lines were analyzed. Lf-BAnp demonstrated strong anti-proliferative and cytotoxic effects, along with increased sub-G1 population and reduced number of cells in G1 and G2/M phases of the cell cycle, confirming reduced cell proliferation and significant cell death. Speedy intracellular entry of Lf-BAnp occurred within 30 min. Lf-BAnp design was explored for the first time as safer chemotherapeutic arsenals against complex TNBC conditions.
    Matched MeSH terms: Apoptosis/drug effects
  5. Chien SY, Hsu CH, Lin CC, Chuang YC, Lo YS, Hsi YT, et al.
    Environ Toxicol, 2017 Aug;32(8):2085-2092.
    PMID: 28383207 DOI: 10.1002/tox.22423
    Nasopharyngeal carcinoma (NPC), a tumor arising from epithelial cells that cover the surface and line the nasopharynx, is a rare malignancy worldwide but is prevalent in certain geographical areas, such as Southern Asia (Taiwan, Hong Kong, Singapore, Malaysia, and Southern China) and North Africa. Despite advances in diagnostic techniques and improvements in treatment modalities, the prognosis of NPC remains poor. Therefore, an effective chemotherapy regimen that enhances tumor sensitivity to chemotherapeutics is urgently required. Nimbolide, derived from Azadirachta indica, has a wide range of beneficial effects, including anti-inflammatory and anticancer properties. The present study evaluated the antitumor activity of nimbolide in NPC cells and its underlying mechanisms. Our results revealed that the treatment of HONE-1 cells with nimbolide potently inhibited cell viability. Moreover, nimbolide led to cell cycle arrest, which subsequently activated caspase-3, -8, and -9 and poly (ADP-ribose) polymerase to induce cell apoptosis. Moreover, nimbolide induced Bik, Bax, and t-Bid expression in HONE-1 cells. The results indicated that nimbolide induces apoptosis through the modulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways. Nimbolide induces apoptosis in human NPC cells and is a potential chemopreventive agent against NPC proliferation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2085-2092, 2017.
    Matched MeSH terms: Apoptosis/drug effects*
  6. Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, et al.
    Crit Rev Oncol Hematol, 2019 Nov;143:81-94.
    PMID: 31561055 DOI: 10.1016/j.critrevonc.2019.08.008
    Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.
    Matched MeSH terms: Apoptosis/drug effects
  7. Nna VU, Bakar ABA, Ahmad A, Mohamed M
    Arch Physiol Biochem, 2020 Dec;126(5):377-388.
    PMID: 30513216 DOI: 10.1080/13813455.2018.1543329
    Context: Metformin's effect on glycaemic control is well documented, but its effect on diabetes-induced testicular impairment has been scarcely reported.Objective: To investigate the effects of metformin on testicular oxidative stress, inflammation, and apoptosis, which largely contribute to fertility decline in diabetic state.Methods: Male Sprague-Dawley rats were divided into 3 groups (n = 6/group) namely: normal control (NC), diabetic control (DC), and metformin (300 mg/kg b.w./d)-treated diabetic groups. Metformin was administrated for 4 weeks.Results: Decreased mRNA expressions and activities of antioxidant enzymes were seen in the testes of DC group. mRNA and protein expressions of pro-inflammatory and pro-apoptotic markers increased, while interleukin-10 and proliferating cell nuclear antigen (PCNA) decreased in the testes of DC group. Treatment with metformin up-regulated antioxidant enzymes, down-regulated inflammation, and apoptosis and increased PCNA immunoexpression in the testes.Conclusions: Metformin protects the testes from diabetes-induced impairment and may improve male reproductive health in diabetic state.
    Matched MeSH terms: Apoptosis/drug effects*
  8. Che Mat MF, Mohamad Hanif EA, Abdul Murad NA, Ibrahim K, Harun R, Jamal R
    Mol Biol Rep, 2021 Feb;48(2):1493-1503.
    PMID: 33590411 DOI: 10.1007/s11033-021-06144-z
    Despite the advancements in primary brain tumour diagnoses and treatments, the mortality rate remains high, particularly in glioblastoma (GBM). Chemoresistance, predominantly in recurrent cases, results in decreased mean survival of patients with GBM. We aimed to determine the chemosensitisation and oncogenic characteristics of zinc finger protein 36-like 2 (ZFP36L2) in LN18 GBM cells via RNA interference (RNAi) delivery. We conducted a meta-analysis of microarray datasets and RNAi screening using pooled small interference RNA (siRNA) to identify the druggable genes responsive to GBM chemosensitivity. Temozolomide-resistant LN18 cells were used to evaluate the effects of gene silencing on chemosensitisation to the sub-lethal dose (1/10 of the median inhibitory concentration [IC50]) of temozolomide. ZFP36L2 protein expression was detected by western blotting. Cell viability, proliferation, cell cycle and apoptosis assays were carried out using commercial kits. A human apoptosis array kit was used to determine the apoptosis pathway underlying chemosensitisation by siRNA against ZFP36L2 (siZFP36L2). Statistical analyses were performed using one-way analysis of variance; p > 0.05 was considered significant. The meta-analysis and RNAi screening identified ZFP36L2 as a potential marker of GBM. ZFP36L2 knockdown significantly induced apoptosis (p 
    Matched MeSH terms: Apoptosis/drug effects
  9. Safi SZ, Shah H, Qvist R, Bindal P, Mansor M, Yan GOS, et al.
    Cell Physiol Biochem, 2018;51(3):1429-1436.
    PMID: 30485834 DOI: 10.1159/000495591
    BACKGROUND/AIMS: NF-κB induces transcription of a number of genes, associated with inflammation and apoptosis. In this study, we have investigated the effect of β-adrenergic receptor stimulation on NF-κB and IκBα in HUVECs.

    METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured in high and low glucose concentrations. All HUVECs were treated with different concentrations of isoproterenol and propranolol for different time periods. The analytical procedures consisted of Western Blot, ELISA, DCFH-DA and TUNEL assays.

    RESULTS: Isoproterenol (agonist of a beta-adrenergic receptor) significantly reduced phosphorylation at Ser-536 of NF-κB; and Ser-32 and Ser-36 of IκBα in hyperglycemic HUVECs. Isoproterenol also significantly reduced apoptosis and ROS generation. No effect of IκBα was observed on Tyr-42 phosphorylation. The effect of isoproterenol was reversed by the antagonist propranolol. We also checked if NF-κB inhibitor MG132 causes any change at the level of apoptosis. However, we observed an almost similar effect.

    CONCLUSION: Given data demonstrates that beta-adrenergic receptors stimulation has a protective effect on HUVECs that might be occuring via NF-κβ and IκBα pathway.

    Matched MeSH terms: Apoptosis/drug effects
  10. Muthuraju S, Pati S, Rafiqul M, Abdullah JM, Jaafar H
    J Biosci, 2013 Mar;38(1):93-103.
    PMID: 23385817
    Traumatic brain injury (TBI) causes significant mortality in most developing countries worldwide. At present, it is imperative to identify a treatment to address the devastating post-TBI consequences. Therefore, the present study has been performed to assess the specific effect of immediate exposure to normabaric hyperoxia (NBO) after fluid percussion injury (FPI) in the striatum of mice. To execute FPI, mice were anesthetised and sorted into (i) a TBI group, (ii) a sham group without injury and (iii) a TBI group treated with immediate exposure to NBO for 3 h. Afterwards, brains were harvested for morphological assessment. The results revealed no changes in morphological and neuronal damage in the sham group as compared to the TBI group. Conversely, the TBI group showed severe morphological changes as well as neuronal damage as compared to the TBI group exposed to NBO for 3 h. Interestingly, our findings also suggested that NBO treatment could diminish the neuronal damage in the striatum of mice after FPI. Neuronal damage was evaluated at different points of injury and the neighbouring areas using morphology, neuronal apoptotic cell death and pan-neuronal markers to determine the complete neuronal structure. In conclusion, immediate exposure to NBO following FPI could be a potential therapeutic approach to reduce neuronal damage in the TBI model.
    Matched MeSH terms: Apoptosis/drug effects
  11. Abushaala NM, Elfituri AM, Zulkifli SZ
    Open Vet J, 2021 02 08;11(1):112-120.
    PMID: 33898292 DOI: 10.4314/ovj.v11i1.17
    Background: Several types of research have been recently carried out on the biological effects of TBTs, including investigations of genitals in invertebrates in response to exposure to TBTs in marine water.

    Aim: The objective of this research was to investigate the acute effects of tributyltin chloride (TBTCl) on gonads in the adult stage of Artemia salina by use normal histology and immunohistochemistry (IHC) (Caspase 3 and HSP70) to see specific apoptosis markers.

    Methods: After exposure of A. salina to different concentrations of TBTCl (25, 50, 100, 200, and 300 ng.l-1), 50 adult A. salina (25 male and 25 female) were selected randomly from each concentration to histologically study the gonads. The gonad tissue was sectioned (5 μm) and some slides were stained with hematoxylin and eosin and others were stained with IHC avidin-biotin complex, and were examined under a light microscope.

    Results: The results showed significant differences (p < 0.05) in histological lesions between different concentrations of TBTCl. The histological lesions in the testis and ovary section were undifferentiated cells, degenerating yolk globules, and follicle cells enveloping the oocyte which was then compared with control tissue, and these effects were found to be increased in females more than in males with the highest concentration of TBTCl. Immunohistochemistry (IHC) showed that positive immunostaining was observed in the testis and ovary as brownish deposits to Caspase 3 and HSP70 antibody after exposure to TBTCl, while the testis and ovary section in control tissue had no immunoreactivity to Caspase 3 and HSP70 antibody; these effects were profoundly increased with the highest concentration of TBTCl in females more than in males. Finally, the histological lesions and IHC (Caspase 3 and HSP70) revealed that the apoptosis and immune system stress of A. salina gonad tissue damage in females were more sensitive to TBTCl toxicity as compared to white males.

    Conclusion: In general, the present study aimed to observe the effects TBTCl on A. salina gonads by using histological sections and IHC (Caspase 3 and HSP70), which were evaluated for the first time and have been proven to possess an important function in apoptosis marker and immune system stress in Artemia. Finally, the specific mechanisms through which TBTCl affects A. salina Caspase 3 and HSP70 expression need further investigation.

    Matched MeSH terms: Apoptosis/drug effects*
  12. Waziri PM, Abdullah R, Yeap SK, Omar AR, Kassim NK, Malami I, et al.
    BMC Complement Altern Med, 2016 Jul 29;16:256.
    PMID: 27473055 DOI: 10.1186/s12906-016-1247-1
    BACKGROUND: Clausena excavata Burm.f. is a shrub traditionally used to treat cancer patients in Asia. The main bioactive chemical components of the plant are alkaloids and coumarins. In this study, we isolated clausenidin from the roots of C. excavata to determine its apoptotic effect on the colon cancer (HT-29) cell line.
    METHOD: We examined the effect of clausenidin on cell viability, ROS generation, DNA fragmentation, mitochondrial membrane potential in HT-29 cells. Ultrastructural analysis was conducted for morphological evidence of apoptosis in the treated HT-29 cells. In addition, we also evaluated the effect of clausenidin treatment on the expression of caspase 3 and 9 genes and proteins in HT-29 cells.
    RESULT: Clausenidin induced a G0/G1 cell cycle arrest in HT-29 cells with significant (p 
    Matched MeSH terms: Apoptosis/drug effects*
  13. Chung FF, Tan PF, Raja VJ, Tan BS, Lim KH, Kam TS, et al.
    Sci Rep, 2017 02 15;7:42504.
    PMID: 28198434 DOI: 10.1038/srep42504
    Precursor mRNA (pre-mRNA) splicing is catalyzed by a large ribonucleoprotein complex known as the spliceosome. Numerous studies have indicated that aberrant splicing patterns or mutations in spliceosome components, including the splicing factor 3b subunit 1 (SF3B1), are associated with hallmark cancer phenotypes. This has led to the identification and development of small molecules with spliceosome-modulating activity as potential anticancer agents. Jerantinine A (JA) is a novel indole alkaloid which displays potent anti-proliferative activities against human cancer cell lines by inhibiting tubulin polymerization and inducing G2/M cell cycle arrest. Using a combined pooled-genome wide shRNA library screen and global proteomic profiling, we showed that JA targets the spliceosome by up-regulating SF3B1 and SF3B3 protein in breast cancer cells. Notably, JA induced significant tumor-specific cell death and a significant increase in unspliced pre-mRNAs. In contrast, depletion of endogenous SF3B1 abrogated the apoptotic effects, but not the G2/M cell cycle arrest induced by JA. Further analyses showed that JA stabilizes endogenous SF3B1 protein in breast cancer cells and induced dissociation of the protein from the nucleosome complex. Together, these results demonstrate that JA exerts its antitumor activity by targeting SF3B1 and SF3B3 in addition to its reported targeting of tubulin polymerization.
    Matched MeSH terms: Apoptosis/drug effects
  14. Lee BK, Tiong KH, Chang JK, Liew CS, Abdul Rahman ZA, Tan AC, et al.
    BMC Genomics, 2017 01 25;18(Suppl 1):934.
    PMID: 28198666 DOI: 10.1186/s12864-016-3260-7
    BACKGROUND: The drug discovery and development pipeline is a long and arduous process that inevitably hampers rapid drug development. Therefore, strategies to improve the efficiency of drug development are urgently needed to enable effective drugs to enter the clinic. Precision medicine has demonstrated that genetic features of cancer cells can be used for predicting drug response, and emerging evidence suggest that gene-drug connections could be predicted more accurately by exploring the cumulative effects of many genes simultaneously.

    RESULTS: We developed DeSigN, a web-based tool for predicting drug efficacy against cancer cell lines using gene expression patterns. The algorithm correlates phenotype-specific gene signatures derived from differentially expressed genes with pre-defined gene expression profiles associated with drug response data (IC50) from 140 drugs. DeSigN successfully predicted the right drug sensitivity outcome in four published GEO studies. Additionally, it predicted bosutinib, a Src/Abl kinase inhibitor, as a sensitive inhibitor for oral squamous cell carcinoma (OSCC) cell lines. In vitro validation of bosutinib in OSCC cell lines demonstrated that indeed, these cell lines were sensitive to bosutinib with IC50 of 0.8-1.2 μM. As further confirmation, we demonstrated experimentally that bosutinib has anti-proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to robustly predict drug that could be beneficial for tumour control.

    CONCLUSIONS: DeSigN is a robust method that is useful for the identification of candidate drugs using an input gene signature obtained from gene expression analysis. This user-friendly platform could be used to identify drugs with unanticipated efficacy against cancer cell lines of interest, and therefore could be used for the repurposing of drugs, thus improving the efficiency of drug development.

    Matched MeSH terms: Apoptosis/drug effects
  15. Dai X, Wang L, Deivasigamni A, Looi CY, Karthikeyan C, Trivedi P, et al.
    Oncotarget, 2017 Feb 21;8(8):12831-12842.
    PMID: 28086233 DOI: 10.18632/oncotarget.14606
    A prior screening programme carried out using MTT assay by our group identified a series of novel benzimidazole derivatives, among which Methyl 2-(5-fluoro-2-hydroxyphenyl)-1H- benzo[d]imidazole-5-carboxylate (MBIC) showed highest anticancer efficacy compared to that of chemotherapeutic agent, cisplatin. In the present study, we found that MBIC inhibited cell viability in different hepatocellular carcinoma (HCC) cell lines without exerting significant cytotoxic effects on normal liver cells. Annexin V-FITC/PI flow cytometry analysis and Western blotting results indicated that MBIC can induce apoptosis in HCC cells, which was found to be mediated through mitochondria associated proteins ultimately leading to the activation of caspase-3. The exposure to MBIC also resulted in remarkable impairment of HCC cell migration and invasion. In addition, treatment with MBIC led to a rapid generation of reactive oxygen species (ROS) and substantial activation of c-Jun-N-terminal kinase (JNK). The depletion of ROS by N-Acetyl cysteine (NAC) partially blocked MBIC-induced apoptosis and JNK activation in HCC cells. Finally, MBIC significantly inhibited tumor growth at a dose of 25 mg/kg in an orthotopic HCC mouse model. Taken together, these results demonstrate that MBIC may inhibit cell proliferation via ROS-mediated activation of the JNK signaling cascade in HCC cells.
    Matched MeSH terms: Apoptosis/drug effects
  16. Waziri PM, Abdullah R, Rosli R, Omar AR, Abdul AB, Kassim NK, et al.
    Asian Pac J Cancer Prev, 2018 Apr 25;19(4):917-922.
    PMID: 29693341
    Clausena excavata Burm f. is used by traditional healers to treat cancer patients in South East Asia. The use of the
    plant and its compounds is based on Asian folklore with little or no scientific evidence supporting the therapeutic efficacy
    The current study aimed to determine the effect of pure clausenidin isolated from C. excavata on caspase-8-induced cell
    death as well as angiogenesis in the HepG2 hepatocellular carcinoma cell line. Caspase-8 and extrinsic death receptor
    protein expression was determined using spectrophotometry and protein profile arrays, respectively. Ultrastructural
    analysis of clausenidin-treated cells was conducted using transmission electron microscopy. In addition, anti-angiogenic
    effects of clausenidin were investigated by Western blot analysis. Clausenidin significantly (p<0.05) increased the
    activity of caspase-8 and expression of protein components of the death inducing signaling complex (DISC) in HepG2
    cells. Ultrastructural analysis of the clausenidin-treated HepG2 cells revealed morphological abnormalities typical of
    apoptosis. Furthermore, clausenidin significantly (p<0.05) decreased the expression of vascular endothelial growth
    factor (VEGF). Therefore, clausenidin is a potential anti-angiogenic agent which may induce apoptosis of hepatocellular
    carcinoma cells.
    Matched MeSH terms: Apoptosis/drug effects*
  17. Lai SL, Mustafa MR, Wong PF
    Phytomedicine, 2018 Mar 15;42:144-151.
    PMID: 29655680 DOI: 10.1016/j.phymed.2018.03.027
    BACKGROUND: Targeting autophagy is emerging as a promising strategy in cancer therapeutics in recent years. Autophagy can be modulated to drive cancer cell deaths that are notoriously resistant to apoptotic-inducing drugs. In addition, autophagy has been implicated as a prosurvival mechanism in mediating cancer chemoresistance. Our previous study has demonstrated that Panduratin A (PA), a plant-derived active compound exploits ER-stress-mediated apoptosis as its cytotoxic mechanism on melanoma.

    PURPOSE: Our previous proteomics analysis revealed that treatment with PA resulted in the upregulation of an autophagy marker, LC3B in melanoma cells. Therefore, the present study sought to investigate the role of PA-induced autophagy in melanoma cells.

    METHODS: Transmission electron microscopy was performed for examination of autophagic ultra-structures in PA-treated A375 cells. Cytoplasmic LC3B and p62/SQSMT1 punctate structures were detected using immunofluorescene staining. Expression levels of LC3B II, p62/SQSMT1, ATG 12, Beclin 1, phospho S6 (ser235/236), phospho AMPK (Thr172) and cleaved PARP were evaluated by western blotting.

    RESULTS: Autophagosomes, autolysosomes and punctuates of LC3 proteins could be observed in PA-treated A375 cells. PA-induced autophagy in A375 melanoma cells was found to be mediated through the inhibition of mTOR signaling and activation of AMPK pathway. Furthermore, we showed that PA-induced apoptosis was increased in the presence of an autophagy inhibitor, signifying the cytoprotective effect of PA-induced autophagy in melanoma cells.

    CONCLUSION: Taken together, results from the present study suggest that the inhibition of autophagy by targeting mTOR and AMPK could potentiate the cytotoxicity effects of PA on melanoma cells.

    Matched MeSH terms: Apoptosis/drug effects
  18. Foo JB, Low ML, Lim JH, Lor YZ, Zainol Abidin R, Eh Dam V, et al.
    Biometals, 2018 08;31(4):505-515.
    PMID: 29623473 DOI: 10.1007/s10534-018-0096-4
    Copper complexes have been widely studied for the anti-tumour application as cancer cells are reported to take up greater amounts of copper than normal cells. Preliminary study revealed that the newly synthesised copper complex [Cu(SBCM)2] displayed marked anti-proliferative towards triple-negative MDA-MB-231 breast cancer cells. Therefore, Cu(SBCM)2 has great potential to be developed as an agent for the management of breast cancer. The present study was carried out to investigate the mode of cell death induced by Cu(SBCM)2 towards MDA-MB-231 breast cancer cells. The inhibitory and morphological changes of MDA-MB-231 cells treated with Cu(SBCM)2 was determined by using MTT assay and inverted light microscope, respectively. The safety profile of Cu(SBCM)2 was also evaluated towards human dermal fibroblast (HDF) normal cells. Confirmation of apoptosis and cell cycle arrest were determined by flow cytometry analysis. The expression of p53, Bax, Bcl-2 and MMP2 protein were detected with western blot analysis. Cu(SBCM)2 significantly inhibited the growth of MDA-MB-231 cells in a dose-dependent manner with GI50 18.7 ± 3.06 µM. Indeed, Cu(SBCM)2 was less toxic towards HDF normal cells with GI50 31.8 ± 4.0 µM. Morphological study revealed that Cu(SBCM)2-treated MDA-MB-231 cells experienced cellular shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies, suggesting that Cu(SBCM)2 induced apoptosis in the cells, which was confirmed by Annexin-V/PI flow cytometry analysis. It was also found that Cu(SBCM)2 induced G2/M phase cell cycle arrest towards MDA-MB-231 cells. The induction of apoptosis and cell cycle arrest in the present study is possibly due to the down-regulation of the mutant p53 and MMP2 protein. In conclusion, Cu(SBCM)2 can be developed as a targeted therapy for the treatment of triple-negative breast cancer.
    Matched MeSH terms: Apoptosis/drug effects
  19. Jain A, Sharma G, Kushwah V, Garg NK, Kesharwani P, Ghoshal G, et al.
    Nanomedicine (Lond), 2017 Aug;12(15):1851-1872.
    PMID: 28703643 DOI: 10.2217/nnm-2017-0011
    AIM: This work was intended to investigate the targeting potential of fructose-tethered lipid-polymeric hybrid nanoparticles (F-BC-MTX-LPHNPs) co-loaded with beta carotene (BC) and methotrexate (MTX) in breast cancer therapeutics and find out the possible protective role of BC on MTX-induced toxicity.

    MATERIALS & METHODS: F-BC-MTX-LPHNPs were fabricated using self-assembled nano-precipitation technique. Fructose was conjugated on the surface of the particles. The in vitro cytotoxicity, sub-cellular localization and apoptotic activity of F-BC-MTX-LPHNPs were evaluated against MCF-7 breast cancer cells. The antitumor potential of F-BC-MTX-LPHNPs was further studied.

    RESULTS & CONCLUSION: Outcomes suggested that F-BC-MTX-LPHNPs induced the highest apoptosis index (0.89) against MCF-7 cells. Following 30 days of treatment, the residual tumor progression was assessed to be approximately 32%, in animals treated with F-BC-MTX-LPHNPs. F-BC-MTX-LPHNPs are competent to selectively convey the chemotherapeutic agent to the breast cancers. Beta carotene ameliorated MTX-induced hepatic and renal toxicity.

    Matched MeSH terms: Apoptosis/drug effects
  20. Nna VU, Ujah GA, Mohamed M, Etim KB, Igba BO, Augustine ER, et al.
    Biomed Pharmacother, 2017 Oct;94:109-123.
    PMID: 28756368 DOI: 10.1016/j.biopha.2017.07.087
    This study assessed the effect of quercetin (QE) on cadmium chloride (CdCl2) - induced testicular toxicity, as well as the effect of withdrawal of CdCl2 treatment on same. Thirty male Wistar rats aged 10 weeks old and weighing 270-300g were assigned into 5 groups and used for this study. Rats in groups 1-4 were administered vehicle, CdCl2 (5mg/kg bwt), CdCl2+QE (5mg/kg bwt and 20mg/kg bwt, respectively) or QE (20mg/kg bwt) orally for 4 weeks. Group 5 rats received CdCl2, with 4 weeks recovery period. Results showed that cadmium accumulated in serum, testis and epididymis, decreased body weight, testicular and epididymal weights, sperm count, motility and viability. Cadmium decreased serum concentrations of reproductive hormones, but increased testicular glucose, lactate and lactate dehydrogenase activity. Cadmium decreased testicular enzymatic (superoxide dismutase, catalase and glutathione peroxidase) and non-enzymatic (glutathione, vitamins C and E) antioxidants, and increased malondialdehyde and hydrogen peroxide. Cadmium down-regulated Bcl-2 protein, up-regulated Bax protein, increased Bax/Bcl-2 ratio and cleaved caspase-3 activity. Histopathology of the testis showed decreased Johnsen's score and Leydig cell count. These negative effects were attenuated by QE administration, while withdrawal of CdCl2 did not appreciably reverse toxicity. We conclude that QE better protected the testis from CdCl2 toxicity than withdrawal of CdCl2 administration.
    Matched MeSH terms: Apoptosis/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links