Displaying publications 321 - 340 of 594 in total

Abstract:
Sort:
  1. Rabiatul AAR, Fatihhi SJ, Md Saad AP, Zakaria Z, Harun MN, Kadir MRA, et al.
    Biomech Model Mechanobiol, 2021 Jun;20(3):957-968.
    PMID: 33547975 DOI: 10.1007/s10237-021-01423-x
    The present study has sought to investigate the fluid characteristic and mechanical properties of trabecular bone using fluid-structure interaction (FSI) approach under different trabecular bone orientations. This method imposed on trabecular bone structure at both longitudinal and transverse orientations to identify effects on shear stress, permeability, stiffness and stress regarded to the trabeculae. Sixteen FSI models were performed on different range trabecular cubes of 27 mm3 with eight models developed for each longitudinal and transverse direction. Results show that there was a moderate correlation between permeability and porosity, and surface area in the longitudinal and transverse orientations. For the longitudinal orientation, the permeability values varied between 3.66 × 10-8 and 1.9 × 10-7 and the sheer stress values varied between 0.05 and 1.8 Pa, whilst for the transverse orientation, the permeability values varied between 5.95 × 10-10 and 1.78 × 10-8 and the shear stress values varied between 0.04 and 3.1 Pa. Here, transverse orientation limits the fluid flow from passing through the trabeculae due to high shear stress disturbance generated within the trabecular bone region. Compared to physiological loading direction (longitudinal orientation), permeability is higher within the range known to trigger a response in bone cells. Additionally, shear stresses also increase with bone surface area. This study suggests the shear stress within bone marrow in real trabecular architecture could provide the mechanical signal to marrow cells that leads to bone anabolism and can depend on trabecular orientation.
  2. Low QJ, Hon SA, Garry Siow PW, Lim TH, Lee RA, Tan YA, et al.
    QJM, 2020 Oct 01;113(10):753-754.
    PMID: 31995198 DOI: 10.1093/qjmed/hcaa014
  3. Azmer MI, Aziz F, Ahmad Z, Raza E, Najeeb MA, Fatima N, et al.
    Talanta, 2017 Nov 01;174:279-284.
    PMID: 28738579 DOI: 10.1016/j.talanta.2017.06.016
    This research work demonstrates compositional engineering of an organic-inorganic hybrid nano-composites for modifying absolute threshold of humidity sensors. Vanadyl-2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO), an organic semiconductor, doped with Titanium-dioxide nanoparticles (TiO2NPs) has been employed to fabricate humidity sensors. The morphology of the VOPcPhO:TiO2nano-composite films has been analyzed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The sensors have been examined over a wide range of relative humidity i.e. 20-99% RH. The sensor with TiO2(90nm) shows reduced sensitivity-threshold and improved linearity. The VOPcPhO:TiO2(90nm) nano-composite film is comprised of uniformly distributed voids which makes the surface more favorable for adsorption of moisture content from environment. The VOPcPhO:TiO2nano-composite based sensor demonstrates remarkable improvement in the sensing parameter when equated with VOPcPhO sensors.
  4. Haris NIN, Ilyas RA, Hassan MZ, Sapuan SM, Afdzaluddin A, Jamaludin KR, et al.
    Polymers (Basel), 2021 Sep 29;13(19).
    PMID: 34641159 DOI: 10.3390/polym13193343
    This study investigates the mechanical, thermal, and chemical properties of basalt/woven glass fiber reinforced polymer (BGRP) hybrid polyester composites. The Fourier transform infrared spectroscopy (FTIR) was used to explore the chemical aspect, whereas the dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA) were performed to determine the mechanical and thermal properties. The dynamic mechanical properties were evaluated in terms of the storage modulus, loss modulus, and damping factor. The FTIR results showed that incorporating single and hybrid fibers in the matrix did not change the chemical properties. The DMA findings revealed that the B7.5/G22.5 composite with 7.5 wt% of basalt fiber (B) and 22.5 wt% of glass fiber (G) exhibited the highest elastic and viscous properties, as it exhibited the higher storage modulus (8.04 × 109 MPa) and loss modulus (1.32 × 109 MPa) compared to the other samples. All the reinforced composites had better damping behavior than the neat matrix, but no further enhancement was obtained upon hybridization. The analysis also revealed that the B22.5/G7.5 composite with 22.5 wt% of basalt fiber and 7.5 wt% of glass fiber had the highest Tg at 70.80 °C, and increased by 15 °C compared to the neat matrix. TMA data suggested that the reinforced composites had relatively low dimensional stabilities than the neat matrix, particularly between 50 to 80 °C. Overall, the hybridization of basalt and glass fibers in unsaturated polyester formed composites with higher mechanical and thermal properties than single reinforced composites.
  5. Chua RAHW, Lim SK, Chee CF, Chin SP, Kiew LV, Sim KS, et al.
    Eur Rev Med Pharmacol Sci, 2022 Feb;26(3):828-845.
    PMID: 35179749 DOI: 10.26355/eurrev_202202_27991
    Sutures are used to facilitate wound healing and play an important role in ensuring the success of surgical interventions in healthcare facilities. Suture-associated surgical site infection (SSI) may develop when bacterial contaminants colonize the suture surface and establish biofilms that are highly resistant to antibiotic treatment. The outcome of SSI affects postoperative care, leading to high rates of morbidity and mortality, prolonged hospitalization, and increased financial burden. Antimicrobial sutures coated with antiseptics such as triclosan and chlorhexidine have been used to minimize the occurrence of SSI. However, as the efficacy of antiseptic-based sutures may be affected due to the emergence of resistant strains, new approaches for the development of alternative antimicrobial sutures are necessary. This review provides an update and outlook of various approaches in the design and development of antimicrobial sutures. Attaining a zero SSI rate will be possible with the advancement in suturing technology and implementation of good infection control practice in clinical settings.
  6. Asyraf MRM, Ishak MR, Norrrahim MNF, Nurazzi NM, Shazleen SS, Ilyas RA, et al.
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1587-1599.
    PMID: 34740691 DOI: 10.1016/j.ijbiomac.2021.10.221
    Biocomposites are materials that are easy to manufacture and environmentally friendly. Sugar palm fibre (SPF) is considered to be an emerging reinforcement candidate that could provide improved mechanical stiffness and strength to the biocomposites. Numerous studies have been recently conducted on sugar palm biocomposites to evaluate their physical, mechanical and thermal properties in various conditions. Sugar palm biocomposites are currently limited to the applications of traditional household products despite their good thermal stability as a prospective substitute candidate for synthetic fibres. Thus, thermal analysis methods such as TGA and DTG are functioned to determine the thermal properties of single fibre sugar palm composites (SPCs) in thermoset and thermoplastic matrix as well as hybrid SPCs. The biocomposites showed a remarkable change considering thermal stability by varying the individual fibre compositions and surface treatments and adding fillers and coupling agents. However, literature that summarises the thermal properties of sugar palm biocomposites is unavailable. Particularly, this comprehensive review paper aims to guide all composite engineers, designers, manufacturers and users on the selection of suitable biopolymers for sugar palm biocomposites for thermal applications, such as heat shields and engine components.
  7. Saufi SASA, Zuhri MYM, Dezaki ML, Sapuan SM, Ilyas RA, As'arry A, et al.
    Polymers (Basel), 2021 Dec 14;13(24).
    PMID: 34960939 DOI: 10.3390/polym13244388
    The bio-inspired structure (e.g., honeycomb) has been studied for its ability to absorb energy and its high strength. The cell size and wall thickness are the main elements that alter the structural ability to withstand load and pressure. Moreover, adding a secondary structure can increase the compressive strength and energy absorption (EA) capability. In this study, the bio-inspired structures are fabricated by fused deposition modelling (FDM) technology using polylactic acid (PLA) material. Samples are printed in the shape of a honeycomb structure, and a starfish shape is used as its reinforcement. Hence, this study focuses on the compression strength and EA of different cell sizes of 20 and 30 mm with different wall thicknesses ranging from 1.5 to 2.5 mm. Subsequently, the deformation and failure of the structures are determined under the compression loading. It is found that the smaller cell size with smaller wall thickness offered a crush efficiency of 69% as compared to their larger cell size with thicker wall thickness counterparts. It is observed that for a 20 mm cell size, the EA and maximum peak load increase, respectively, when the wall thickness increases. It can be concluded that the compression strength and EA capability increase gradually as the cell size and wall thickness increase.
  8. Zainul NH, Ma ZF, Besari A, Siti Asma H, Rahman RA, Collins DA, et al.
    Epidemiol Infect, 2017 Oct;145(14):3012-3019.
    PMID: 28891459 DOI: 10.1017/S0950268817002011
    Little is known about Clostridium difficile infection (CDI) in Asia. The aims of our study were to explore (i) the prevalence, risk factors and molecular epidemiology of CDI and colonization in a tertiary academic hospital in North-Eastern Peninsular Malaysia; (ii) the rate of carriage of C. difficile among the elderly in the region; (iii) the awareness level of this infection among the hospital staffs and students. For stool samples collected from hospital inpatients with diarrhea (n = 76) and healthy community members (n = 138), C. difficile antigen and toxins were tested by enzyme immunoassay. Stool samples were subsequently analyzed by culture and molecular detection of toxin genes, and PCR ribotyping of isolates. To examine awareness among hospital staff and students, participants were asked to complete a self-administered questionnaire. For the hospital and community studies, the prevalence of non-toxigenic C. difficile colonization was 16% and 2%, respectively. The prevalence of CDI among hospital inpatients with diarrhea was 13%. Out of 22 C. difficile strains from hospital inpatients, the toxigenic ribotypes 043 and 017 were most common (both 14%). In univariate analysis, C. difficile colonization in hospital inpatients was significantly associated with greater duration of hospitalization and use of penicillin (both P < 0·05). Absence of these factors was a possible reason for low colonization in the community. Only 3% of 154 respondents answered all questions correctly in the awareness survey. C. difficile colonization is prevalent in a Malaysian hospital setting but not in the elderly community with little or no contact with hospitals. Awareness of CDI is alarmingly poor.
  9. Mohd Kamil MK, Ngiu CS, Md Isa N, Yaacob Y Y, Deborah Chew CH, Wong ZQ, et al.
    Med J Malaysia, 2018 02;73(1):60-62.
    PMID: 29531208 MyJurnal
    Neuroendocrine neoplasm is an epithelial neoplasm with predominant neuroendocrine differentiation that can arise from many organs in the body. We reported a rare case of gastric neuroendocrine carcinoma which accounts for less than 1% of all gastric tumours that is associated with poor prognosis. The recognition of this rare tumour in early stage is challenging and high suspicious into it might bring to early detection and so forth might improve the prognostication.
  10. Balachandran A, Choi SB, Beata MM, Małgorzata J, Froemming GRA, Lavilla CA, et al.
    Molecules, 2023 Jan 20;28(3).
    PMID: 36770709 DOI: 10.3390/molecules28031043
    1. Diabetic chronic wounds, mainly foot ulcers, constitute one of the most common complications of poorly managed diabetes mellitus. The most typical reasons are insufficient glycemic management, latent neuropathy, peripheral vascular disease, and neglected foot care. In addition, it is a common cause of foot osteomyelitis and amputation of the lower extremities. Patients are admitted in larger numbers attributable to chronic wounds compared to any other diabetic disease. In the United States, diabetes is currently the most common cause of non-traumatic amputations. Approximately five percent of diabetics develop foot ulcers, and one percent require amputation. Therefore, it is necessary to identify sources of lead with wound-healing properties. Redox imbalance due to excessive oxidative stress is one of the causes for the development of diabetic wounds. Antioxidants have been shown to decrease the progression of diabetic neuropathy by scavenging ROS, regenerating endogenous and exogenous antioxidants, and reversing redox imbalance. Matrix metalloproteinases (MMPs) play vital roles in numerous phases of the wound healing process. Antioxidant and fibroblast cell migration activity of Marantodes pumilum (MP) crude extract has previously been reported. Through their antioxidant, epithelialization, collagen synthesis, and fibroblast migration activities, the authors hypothesise that naringin, eicosane and octacosane identified in the MP extract may have wound-healing properties. 2. The present study aims to identify the bioactive components present in the dichloromethane (DCM) extract of M. pumilum and evaluate their antioxidant and wound healing activity. Bioactive components were identified using LCMS, HPTLC and GCMS. Excision wound on STZ-induced diabetic rat model, human dermal fibroblast (HDF) cell line and colorimetric antioxidant assays were used to evaluate wound healing and antioxidant activities, respectively. Molecular docking and pkCMS software would be utilised to predict binding energy and affinity, as well as ADME parameters. 3. Naringin (NAR), eicosane (EIC), and octacosane (OCT) present in MP displayed antioxidant action and wound excision closure. Histological examination HDF cell line demonstrates epithelialization, collagen production, fibroblast migration, polymorphonuclear leukocyte migration (PNML), and fibroblast movement. The results of molecular docking indicate a substantial attraction and contact between MMPs. pkCMS prediction indicates inadequate blood-brain barrier permeability, low toxicity, and absence of hepatotoxicity. 4. Wound healing properties of (NEO) naringin, eicosane and octacosane may be the result of their antioxidant properties and possible interactions with MMP.
  11. Rahman ARA, Magno JDA, Cai J, Han M, Lee HY, Nair T, et al.
    Am J Cardiovasc Drugs, 2024 Mar;24(2):141-170.
    PMID: 38332411 DOI: 10.1007/s40256-023-00625-1
    This article reviews available evidence regarding hypertension management in the Asia-Pacific region, focussing on five research questions that deal with specific aspects: blood pressure (BP) control, guideline recommendations, role of renin-angiotensin-aldosterone system (RAAS) inhibitors in clinical practice, pharmacological management and real-world adherence to guideline recommendations. A PubMed search identified 2537 articles, of which 94 were considered relevant. Compared with Europeans, Asians have higher systolic/diastolic/mean arterial BP, with a stronger association between BP and stroke. Calcium channel blockers are the most-commonly prescribed monotherapy in Asia, with significant variability between countries in the rates of angiotensin-converting enzyme inhibitors (ACEis)/angiotensin-receptor blockers (ARBs) and single-pill combination (SPC) use. In clinical practice, ARBs are used more commonly than ACEis, despite the absence of recommendation from guidelines and clinical evidence supporting the use of one class of drug over the other. Ideally, antihypertensive treatment should be tailored to the individual patient, but currently there are limited data on the characteristics of hypertension in Asia-Pacific individuals. Large outcome studies assessing RAAS inhibitor efficacy and safety in multi-national Asian populations are lacking. Among treated patients, BP control rates were ~ 35 to 40%; BP control in Asia-Pacific is suboptimal, and disproportionately so compared with Western nations. Strategies to improve the management of hypertension include wider access/availability of affordable treatments, particularly SPCs (which improve adherence), effective public health screening programs targeting patients to drive health-seeking behaviours, an increase in physician/patient awareness and early implementation of lifestyle changes. A unified Asia-Pacific guideline on hypertension management with pragmatic recommendations, particularly in resource-limited settings, is essential.
  12. Sanjaya GY, Fauziah K, Pratama RA, Fitriani NA, Setiawan MY, Fauziah IA, et al.
    Med J Malaysia, 2024 Mar;79(2):176-183.
    PMID: 38553923
    INTRODUCTION: Assessment of data quality in the era of big data is crucial for effective data management and use. However, there are gaps in data quality assessment for routine health data to ensure accountability. Therefore, this research aims to improve the routine health data quality that have been collected and integrated into Aplikasi Satu Data Kesehatan (ASDK) as the primary health data system in Indonesia.

    MATERIALS AND METHODS: This descriptive study utilises a desk review approach and employs the WHO Data Quality Assurance (DQA) Tool to assess data quality of ASDK. The analysis involves measuring eight health indicators from ASDK and Survei Status Gizi Indonesia (SSGI) conducted in 2022. The assessment focuses on various dimensions of data quality, including completeness of variables, consistency over time, consistency between indicators, outliers and external consistency.

    RESULTS: Current study shows that routine health data in Indonesia performs high-quality data in terms of completeness and internal consistency. The dimension of data completeness demonstrates high levels of variable completeness with most variables achieving 100% of the completeness.

    CONCLUSION: Based on the analysis of eight routine health data variables using five dimensions of data quality namely completeness of variables, consistency over time, consistency between indicators, outliers. and external consistency. It shows that completeness and internal consistency of data in ASDK has demonstrated a high data quality.

  13. Al-Fakih GOA, Ilyas RA, Atiqah A, Atikah MSN, Saidur R, Dufresne A, et al.
    Int J Biol Macromol, 2024 Sep 03.
    PMID: 39256123 DOI: 10.1016/j.ijbiomac.2024.135207
    The escalating need for a sustainable future has driven the advancement of renewable functional materials. Nanocellulose, derived from the abundant natural biopolymer cellulose, demonstrates noteworthy characteristics, including high surface area, crystallinity, mechanical strength, and modifiable chemistry. When combined with two-dimensional (2D) graphitic materials, nanocellulose can generate sophisticated hybrid materials with diverse applications as building blocks, carriers, scaffolds, and reinforcing constituents. This review highlights the progress of research on advanced functional materials based on the integration of nanocellulose, a versatile biopolymer with tailorable properties, and MXenes, a new class of 2D transition metal carbides/nitrides known for their excellent conductivity, mechanical strength, and large surface area. By addressing the challenges and envisioning future prospects, this review underscores the burgeoning opportunities inherent in MXene/nanocellulose composites, heralding a sustainable frontier in the field of materials science.
  14. Abotbina W, Sapuan SM, Ilyas RA, Sultan MTH, Alkbir MFM, Sulaiman S, et al.
    Materials (Basel), 2022 Oct 09;15(19).
    PMID: 36234333 DOI: 10.3390/ma15196992
    The rapid use of petroleum resources coupled with increased awareness of global environmental problems associated with the use of petroleum-based plastics is a major driving force in the acceptance of natural fibers and biopolymers as green materials. Because of their environmentally friendly and sustainable nature, natural fibers and biopolymers have gained significant attention from scientists and industries. Cassava (Manihot esculenta) is a plant that has various purposes for use. It is the primary source of food in many countries and is also used in the production of biocomposites, biopolymers, and biofibers. Starch from cassava can be plasticized, reinforced with fibers, or blended with other polymers to strengthen their properties. Besides that, it is currently used as a raw material for bioethanol and renewable energy production. This comprehensive review paper explains the latest developments in bioethanol compounds from cassava and gives a detailed report on macro and nano-sized cassava fibers and starch, and their fabrication as blend polymers, biocomposites, and hybrid composites. The review also highlights the potential utilization of cassava fibers and biopolymers for industrial applications such as food, bioenergy, packaging, automotive, and others.
  15. Scherret JH, Poidinger M, Mackenzie JS, Broom AK, Deubel V, Lipkin WI, et al.
    Emerg Infect Dis, 2001 Jul-Aug;7(4):697-705.
    PMID: 11585535
    Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four distinct groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses.
  16. Allai FM, Dar BN, Gul K, Adnan M, Ashraf SA, Hassan MI, et al.
    Front Nutr, 2022;9:870819.
    PMID: 35464008 DOI: 10.3389/fnut.2022.870819
    This study was aimed to use extrusion cooking as a pretreatment for non-conventional seeds (Indian horse chestnut flour) to blend them with whole grain flours (whole wheat flour, whole barley flour, and whole corn flour) for the development of a pregelatinized cereal bar (PCB). In this study, date paste (7.5-17.5%) and walnut grits (2.5-12.5%) were incorporated at varying levels to prepare PCB. The PCB was evaluated for its nutritional, color, textural (both three-point bending test and TPA), antioxidant activity, and sensory attributes. The flexural modulus, rupture stress, and fracture strain of PCB increased with the incorporation of a higher proportion of date paste. The protein and fiber content in PCB increased from 7.74 to 9.13% and 4.81 to 5.59% with the incorporation of walnut grits and date paste, respectively. The DPPH, total phenolic content, and water activity of PCB were determined, which progressively enhanced with increased levels of walnut grits and date paste. The correlation between sensory attributes and instrumental texture on PCB was also investigated. The correlation results showed a significant (p < 0.05) positive correlation between texture analysis and sensory hardness, springiness, adhesiveness, and negatively correlated to instrumental and sensory cohesiveness. For sensorial attributes, all PCB samples presented average scores of 7/10 and 4/5 for buying intention. Therefore, whole grain extrudates, date paste, and walnut grits can be efficiently used to develop PCB with improved nutritional, nutraceutical, and economic values.
  17. Ariffin RA, Ismail J, Abd Rahman FN, Wan Ismail WS, Ahmad N, Abdul Ghafar A, et al.
    Front Pediatr, 2024;12:1384292.
    PMID: 39764164 DOI: 10.3389/fped.2024.1384292
    INTRODUCTION: Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition diagnosed clinically based on phenotypic characteristics and criteria such as the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Due to its significant social, emotional, and psychological impacts, early identification and diagnosis are crucial for starting early intervention and improving outcomes. A screening tool is imperative in identifying young children at risk so timely intervention can be instituted. The Modified Checklist for Autism in Toddlers, Revised with Follow-up (M-CHAT-R/F) is a reliable and valid screening tool used worldwide, with the previous iteration used for a long time in Malaysia. To enhance ASD screening in Malaysia, the latest version of M-CHAT-R/F was translated into Malay and evaluated for reliability and validity, as majority of the population speaks Malay, while the tool is originally in English. This study is a cross-sectional study performed in the Universiti Kebangsaan Malaysia (UKM) hospitals, between May 1st, 2020, to June 30th, 2022.

    METHODOLOGY: The English version of the M-CHAT-R/F was translated into Malay using forward and backward translation methods. Content and face validity were ascertained and a pilot study was performed for internal reliability. A total of 244 children attending clinics and wards in UKM hospitals aged 16-30 months were recruited based on three categories: children with typical development, suspected cases, and established cases of ASD. All caregivers of the recruited children were asked to complete the Malay M-CHAT-R/F. Reliability and validation assessments were performed.

    RESULTS: Malay M-CHAT-R/F was found to be a reliable tool with good internal consistency (Cronbach's alpha = 0.906, p < 0.001). The Receiver Operating Characteristic (ROC) curve showed that cut-off scores of 2 on Malay M-CHAT-R/F lead to successful ASD classification with Area Under the Curve (AUC) = 0.887, p < 0.001 with a 95% CI (0.840, 0.933).

    DISCUSSION: The assessment of the Malay M-CHAT-R/F showed satisfactory psychometric properties. Based on this study, the Malay M-CHAT-R/F is a reliable and valid screening tool to screen for ASD in children aged 16-30 months. Translating the M-CHAT-R/F into Malay is expected to improve community outreach and screening, which is essential for early diagnosis and timely intervention for children with ASD in Malaysia.

  18. Rosnah I, Noor DIZA, Asnarulkhadi AS, Fathiah J, Nor HM, Abdul KO, et al.
    Med J Malaysia, 2024 Nov;79(6):708-714.
    PMID: 39614788
    INTRODUCTION: Cardiorespiratory fitness is crucial for safe and efficient performance in executing firefighting tasks. The study aims to assess the effects of Phase 1 of a newly designed 4-week physical training regimen on changes in cardiorespiratory fitness, health parameters and other physical fitness elements. Phase 1 was crafted to primarily focus on improving firefighter recruits' cardiorespiratory fitness to prime their body for the subsequent phase of exercise.

    MATERIALS AND METHODS: A quasi-experimental study employing a one-group pre- and post-intervention was carried out involving 142 male firefighter recruits from a Fire and Rescue Academy in Malaysia. Various aspects of physical fitness changes, including speed, agility, and coordination (SAC), muscle strength, endurance, and power, were evaluated at baseline (Week 1) and upon completion of the first phase (Week 5). Changes in health parameters, such as blood pressure, resting heart rate, body weight, muscle mass, body fat percentage, and body mass index, were also assessed. A paired sample t-test was conducted with the significance level set at 0.05. The magnitude of changes was assessed using the following criteria: values of 0.3 were considered a small effect size, 0.5 indicated a moderate effect size, and 0.8 signified a large effect size.

    RESULTS: Upon completion of the first phase of the physical training regimen, there was a statistically significant improvement in cardiorespiratory fitness, with a mean increment of VO2max was 9 mL/kg/min (95% CI: 8.33, 9.58, p<0.001, large effect size of 2.40). Both pre-and postintervention assessments of abdominal and upper body muscle strength and endurance showed statistically significant improvement with the mean difference of 11 situps (95%CI: 10.08, 12.01; p<0.001, large effect size of 1.89) and 1.5 pull-ups (95%CI: 1.07, 1.86; p<0.001, moderate effect size of 0.63), respectively. Health parameters showed similar, except for systolic BP (SBP). There was a small increment in recruits' SBP following the 4-week training period with a mean difference of 4.3 mmHg (95%CI: 2.37, 6.24; effect size = 0.37, p<0.001).

    CONCLUSION: The first phase of the newly introduced fourweek physical training regimen has proven effective in enhancing cardiorespiratory fitness, as well as abdominal and upper body muscle strength and endurance. Additionally, the regimen has positively influenced several health parameters, except for systolic blood pressure. The observed increase in average systolic blood pressure indicates a necessity for continuous monitoring at the academy to address this issue effectively. confirm our findings.

  19. Wirawan WA, Wulansari A, Sabitah A, Putra MRF, Gapsari F, Sartika D, et al.
    Int J Biol Macromol, 2025 Jan 03;295:139459.
    PMID: 39756744 DOI: 10.1016/j.ijbiomac.2025.139459
    The aim of this study was to investigate the potential of Waru bark fiber (WBF) as a reinforcement material for composites. To achieve this aim, WBF was extracted using a conventional process, to ensure its purity, and then characterized for physical, mechanical, chemical, and thermal properties. Microstructure analysis was performed using Scanning Electron Microscope (SEM) to show uniform and exceptional fiber sheets with naturally woven fiber shapes. A high value of 152.77 MPa was found for fiber's tensile strength in the mechanical test. Following this discussion, the fiber's crystallinity index (CI) was 56.54 %, and the X-Ray Fluorescence (XRF) test showed a composition ratio of O = 48.63 % and C = 36.74 %. Thermal analysis using Differential Thermal Analysis-Thermogravimetric Analysis (DTA-TGA) showed that the cellulose fiber could withstand temperatures stability up to 312 °C. Finally, this study offered a sustainable solution to reduce the reliance on synthetic fiber in various industries by suggesting the use of reliable WBF as reinforcement.
  20. Aung MMT, Naing NN, Hassan MRA, Wan-Arfah N, Chan HK, Harman Shah H, et al.
    Med J Malaysia, 2025 Jan;80(1):43-49.
    PMID: 39812428
    INTRODUCTION: Pancreatic cancer incidence in Malaysia is steadily on the rise, now ranking as the 14th most common malignancy in the country. Despite this upward trend, research on prognostic factors affecting pancreatic cancer survival remains limited, highlighting the need for ongoing investigation to improve patient survival outcomes.

    MATERIALS AND METHODS: This study was conducted retrospectively by reviewing records of pancreatic cancer patients hospitalized between January 2011 and December 2018 across multiple health centres in Malaysia. Using Cox proportional hazards regression analysis, several prognostic factors were identified.

    RESULTS: The study revealed that being Chinese, having a family history of pancreatic cancer, having hepatitis C, presenting with jaundice, experiencing pale stools, having a palpable mass in the abdomen, the presence of ascites, receiving palliative care and end-of-life care were associated with higher mortality risk. Conversely, being female, having hypertension, and higher haemoglobin levels were linked to decreased mortality risk.

    CONCLUSIONS: These study findings offer valuable insights into prognostic factors for predicting patient outcomes and optimizing individual prognosis in pancreatic cancer cases within Malaysia context. Future research should build on these findings, exploring how these factors can be integrated into comprehensive care plans that address the specific needs of diverse patient populations.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links