Displaying publications 321 - 340 of 1297 in total

Abstract:
Sort:
  1. Bhavani P, Manikandan A, Jaganathan SK, Shankar S, Antony SA
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1388-1395.
    PMID: 29448597 DOI: 10.1166/jnn.2018.14112
    Undoped and Mn2+ doped CoAl2O4 (MnxCo1-xAl2O4; x = 0.0 to 1.0) spinel nanoparticles were successfully synthesized by a microwave heating method using glycine as the fuel. X-ray powder diffraction (XRD) was confirmed the cubic spinel structure. The average crystallite size of the samples was found to be in the range of 16.46 nm to 20.25 nm calculated by Scherrer's formula. The nano-sized particle-like morphology of the samples was confirmed by high resolution scanning electron microscopy (HR-SEM) and transmission electron microscopy (HR-TEM) analysis. Energy dispersive X-ray (EDX) results showed the pure form of spinel aluminate structure. The band gap energy (Eg) of pure CoAl2O4 was estimated to be 3.68 eV from UV-Visible diffuse reflectance spectroscopy (DRS), and the Eg values increased with increase of Mn2+ ions, due to the smaller grain size. The magnetic hysteresis (M-H) loop showed the superparamagnetic nature, and the magnetization and coercivity values increased with increasing Mn2+ ions, which was confirmed by vibrating sample magnetometer (VSM). All compositions of the nano-catalysts were tested as catalyst successfully for the conversion of benzyl alcohol into benzaldehyde and observed good catalytic activity.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  2. Sarkar SM, Rashid SS, Karim KMR, Mustapha SNH, Lian YM, Zamri N, et al.
    J Nanosci Nanotechnol, 2019 05 01;19(5):2856-2861.
    PMID: 30501791 DOI: 10.1166/jnn.2019.16289
    Corn-cobs are an agro-industrial waste and composed of cellulose mostly. In this study cellulose was isolated from the waste corn-cobs and modified to polymeric hydroxamic acid palladium complex 1 and characterized by using a variety of spectroscopic methods such as field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The complex 1 exhibited high catalytic activity towards Suzuki and Heck coupling reactions of activated and deactivated aryl halides to give the respective coupling products with high yield. Moreover, the complex 1 was recovered and recycled five times with no considerable loss of catalytic overall performance.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  3. Suguna S, Shankar S, Jaganathan SK, Manikandan A
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1019-1026.
    PMID: 29448527 DOI: 10.1166/jnn.2018.13960
    Ni-doped cobalt aluminate NixCo1-xAl2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) spinel nanoparticles were successfully synthesized by a simple microwave combustion method using urea as the fuel and as well as reducing agent. X-ray powder diffraction (XRD) was confirmed the formation of single phase, cubic spinel cobalt-nickel aluminate structure without any other impurities. Average crystallite sizes of the samples were found to be in the range of 18.93 nm to 21.47 nm by Scherrer's formula. Fourier transform infrared (FT-IR) spectral analysis was confirmed the corresponding functional groups of the M-O, Al-O and M-Al-O (M = Co and Ni) bonds of spinel NixCo1-xAl2O4 structure. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images was confirmed the particle like nanostructured morphology. Energy band gap (Eg) value was calculated using UV-Visible diffuse reflectance spectra (DRS) and the Eg values increased with increasing Ni2+ dopant from x = 0.2 (3.58 eV) to x = 1.0 (4.15 eV). Vibrating sample magnetometer (VSM) measurements exposed that undoped and Ni-doped CoAl2O4 samples have superparamagnetic behavior and the magnetization (Ms) values were increased with increasing Ni2+ ions. Spinel NixCo1-xAl2O4 samples has been used for the catalytic oxidation of benzyl alcohol into benzaldehyde and was found that the sample Ni0.6Co0.4Al2O4 showed higher conversion 94.37% with 100% selectivity than other samples, which may be due to the smaller particle size and higher surface area.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  4. Kirubakari B, Chen Y, Sasidharan S
    PMID: 31113347 DOI: 10.2174/1871523018666190522112902
    BACKGROUND: Polyalthia longifolia is a popular medicinal plant and has been widely used as a traditional remedy for centuries in curing of various ailments. The purpose of this study was conducted to determine the in situ antimicrobial synergistic effects between Polyalthia longifolia leaf ethyl acetate fraction (PLEAF) and ampicillin against MRSA local isolate by using modern microscopy technique.

    METHODS: Hence, the evaluation of the synergistic activity of PLEAF and ampicillin against MRSA local isolate was conducted with scanning electron microscopy (SEM).

    RESULTS: The combinational effect of PLEAF fraction and ampicillin exhibited significant antibacterial activity against MRSA. Bacterial cells observations showed invagination, impaired cell division, extensive wrinkles, cell shrinkage, the appearance of a rougher cell with fibrous matrix and clustered cells which confirmed the synergistic effect of PLEAF and ampicillin against MRSA local isolate by SEM.

    CONCLUSION: Conclusively, the in situ SEM observation proved the synergistic antimicrobial activity between PLEAF fraction and ampicillin to destroy the MRSA resistance bacteria which is an important aspect of PLEAF fraction to be used in the future combinational therapy.

    Matched MeSH terms: Microscopy, Electron, Scanning/methods
  5. Mohammed NJ, Othman NK, Taib MFM, Samat MH, Yahya S
    Molecules, 2021 Jun 09;26(12).
    PMID: 34207914 DOI: 10.3390/molecules26123535
    Extracts from plant materials have great potential as alternatives to inorganic corrosion inhibitors, which typically have harmful consequences. Experimental and theoretical methodologies studied the effectiveness of agricultural waste, namely, date palm seed extract as a green anti-corrosive agent in 0.5 M hydrochloric acid. Experimental results showed that immersion time and temperature are closely related to the effectivity of date palm seed as a corrosion inhibitor. The inhibition efficiency reduced from 95% to 91% at 1400 ppm when the immersion time was increased from 72 h to 168 h. The experimental results also indicated that the inhibition efficiency decreased as the temperature increased. The presence of a protective layer of organic matter was corroborated by scanning electron microscopy. The adsorption studies indicated that date palm seed obeyed Langmuir adsorption isotherm on the carbon steel surface, and Gibbs free energy values were in the range of -33.45 to -38.41 kJ·mol-1. These results suggested that the date palm seed molecules interacted with the carbon steel surface through mixture adsorption. Theoretical calculations using density functional theory showed that the capability to donate and accept electrons between the alloy surface and the date palm seed inhibitor molecules is critical for adsorption effectiveness. The HOMO and LUMO result indicated that the carboxyl (COOH) group and C=C bond were the most active sites for the electron donation-acceptance type of interaction and most auxiliary to the adsorption process over the Fe surface.
    Matched MeSH terms: Microscopy, Electron, Scanning/methods
  6. Kew PE, Wong SF, Lim PK, Mak JW
    Trop Biomed, 2014 Mar;31(1):63-76.
    PMID: 24862046 MyJurnal
    Edible bird nests (EBNs) are consumed worldwide for various health benefits. EBNs are nests built from the saliva of swiftlets of Aerodramus species. The global market for EBNs is on the rise, especially from Hong Kong and mainland China. In the past, EBNs were harvested mainly from natural caves; however in the recent years, there has been a rapid growth of swiftlet farming. Little is known about the actual composition of EBNs except for protein, carbohydrate, ash and lipid contents, amino acids, vitamins and macro/ micronutrients. Besides the biochemical components of EBNs, are there any other structures that are associated with EBNs? This paper reports on the structural analysis of raw unprocessed farm and processed commercial EBNs. The raw EBNs were purchased from swiftlet farms in five locations in Peninsula Malaysia: Kuala Sanglang (Perlis; 6° 16' 0"N, 100° 12' 0"E), Pantai Remis (Perak; 4º 27' 0" N, 100º 38' 0" E), Kluang (Johor; 02º 012 303N 103º 192 583E), Kajang (Selangor; 2º 59' 0"N, 101º 47' 0"E) and Kota Bharu (Kelantan; 6º 8' 0"N, 102º 15' 0"E). The commercial nests were purchased from five different Chinese traditional medicinal shops (Companies A-E). A portion of each EBN was randomly broken into small fragments, attached to carbon tape and coated with gold and palladium particles for examination and photography under a scanning electron microscope. Structural analysis revealed the presence of mites, fungi, bacteria and feather strands on both the raw and commercial nests. Mite eggshells and faecal pellets, and body parts of other arthropods were seen only in the raw nests. The commercial nests had a variety of unidentified structures and substances coated on the nests' surfaces that were not found on the raw nests. The presence of these contaminants may jeopardise the quality of EBNs and pose health risks to consumers. Further identification of the mites and their allergens, fungi and bacteria are on-going and will be reported separately.
    Matched MeSH terms: Microscopy, Electron, Scanning/veterinary
  7. Bidsorkhi HC, Riazi H, Emadzadeh D, Ghanbari M, Matsuura T, Lau WJ, et al.
    Nanotechnology, 2016 Oct 14;27(41):415706.
    PMID: 27607307 DOI: 10.1088/0957-4484/27/41/415706
    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  8. Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 Jul;91:366-377.
    PMID: 28463800 DOI: 10.1016/j.biopha.2017.04.112
    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  9. Mohd Basyaruddin Abdul Rahman, Uswatun Hasanah Zaidan, Mahiran Basri, Siti Salhah Othman, Raja Noor Zaliha Raja Abdul Rahman, Abu Bakar Salleh
    MyJurnal
    The land area of Tanah Putih, Gua Musang, Kelantan (Malaysia) is well-known for its wealth in industrial mineral resources, especially aluminosilicate of feldspar and mica. Natural feldspar and mica were physicochemically characterized with regard to X-ray diffraction (XRD), nitrogen sorption analysis and transmission electron microscopy (TEM) techniques for qualitative and quantitative identification of feldspar and mica. They show a good crystallinity, high surface area and uniformity of mesoporous structures. For the purpose of this experiment, the aluminosilicate of feldspar was modified either by acid treatment, or grafting the silanol groups present with various functional groups including aminopropyl-, octyl-, vinyl-, mercapto- and glycidoxy-triethoxysilanes, or activation of pre-treated support with glutaraldehyde. These support derivatives were used for further utilization in the immobilization of lipase from Candida rugosa and resulted in various interaction mechanisms between enzyme and introduced supports. It seemed that the features of the functionalized feldspar surfaces provide a preferable environmental host to enable the adsorption of lipase via interfacial adsorption method. Lipase immobilization onto feldspar support were further confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray microanalysis (EDX), transmission electron microscopy (TEM) and infra-red spectroscopy (FTIR) techniques. Enhancement of protein loading (up to 8.22 mg protein/g support) and immobilization yield (up to 78%) were shown by modified feldspar-lipase derivatives compared to unmodified feldspar support.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  10. Matmin J, Affendi I, Ibrahim SI, Endud S
    Nanomaterials (Basel), 2018 Sep 08;8(9).
    PMID: 30205567 DOI: 10.3390/nano8090702
    Nanostructured hematite materials for advanced applications are conventionally prepared with the presence of additives, tainting its purity with remnants of copolymer surfactants, active chelating molecules, stabilizing agents, or co-precipitating salts. Thus, preparing nanostructured hematite via additive-free and green synthesis methods remains a huge hurdle. This study presents an environmentally friendly and facile synthesis of spherical nanostructured hematite (Sp-HNP) using rice starch-assisted synthesis. The physicochemical properties of the Sp-HNP were investigated by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DR UV-Vis), and nitrogen adsorption⁻desorption analysis. The Sp-HNP showed a well-crystallized structure of pure rhombohedral phase, having a spherical-shaped morphology from 24 to 48 nm, and a surface area of 20.04 m²/g. Moreover, the Sp-HNP exhibited enhanced photocatalytic degradation of methylene blue dye, owing to the large surface-to-volume ratio. The current work has provided a sustainable synthesis route to produce spherical nanostructured hematite without the use of any hazardous agents or toxic additives, in agreement with the principles of green chemistry for the degradation of dye contaminant.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  11. Chan LL, Mak JW, Ambu S, Chong PY
    PLoS One, 2018;13(10):e0204732.
    PMID: 30356282 DOI: 10.1371/journal.pone.0204732
    The detection and identification of two endocytobiotic bacterial strains, one affiliated to the "Candidatus Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba", and another to the endosymbiont of Acanthamoeba UWC8 and "Ca. Jidaibacter acanthamoeba" are described. For endocytobiont screening, we developed a PCR method with a set of broad-range bacterial 16S rRNA primers to substitute the commonly used but technically demanding fluorescent in situ hybridization technique. Our PCR test alone without sequencing failed to discriminate the endocytobiont-containing and endocytobiont-free Acanthamoeba sp. due to the presence of mismatched primers to host mitochondrial DNA. We highlighted the need to perform bacterial primer checking against the Acanthamoeba genome to avoid false positive detection in PCR. Although the genetic aspect of "Ca. Caedibacter acanthamoebae"/"Ca. Paracaedimonas acanthamoeba" and the endosymbiont of Acanthamoeba UWC8/"Ca. Jidaibacter acanthamoeba" are well studied, knowledge pertaining to their morphologies are quite vague. Hence, we used transmission electron microscopy to examine our endocytobionts which are affiliated to previously described intracellular bacteria of Acanthamoeba sp. We used good-quality TEM images for the localization and the fate of the current endocytobionts inside different life stages of the hosts. Furthermore, to the best of our knowledge, our TEM findings are the first to provide morphological evidence for the clearance of defective Acanthamoeba endocytobionts via an autophagic-like process.
    Matched MeSH terms: Microscopy, Electron, Transmission/methods
  12. Luo Z, Hu Z, Tang Y, Mertens KN, Leaw CP, Lim PT, et al.
    J Phycol, 2018 10;54(5):744-761.
    PMID: 30144373 DOI: 10.1111/jpy.12780
    The genus Gymnodinium includes many morphologically similar species, but molecular phylogenies show that it is polyphyletic. Eight strains of Gymnodinium impudicum, Gymnodinium dorsalisulcum and a novel Gymnodinium-like species from Chinese and Malaysian waters and the Mediterranean Sea were established. All of these strains were examined with light microscopy, scanning electron microscopy and transmission electron microscopy. SSU, LSU and internal transcribed spacers rDNA sequences were obtained. A new genus, Wangodinium, was erected to incorporate strains with a loop-shaped apical structure complex (ASC) comprising two rows of amphiesmal vesicles, here referred to as a new type of ASC. The chloroplasts of Wangodinium sinense are enveloped by two membranes. Pigment analysis shows that peridinin is the main accessory pigment in W. sinense. Wangodinium differs from other genera mainly in its unique ASC, and additionally differs from Gymnodinium in the absence of nuclear chambers, and from Lepidodinium in the absence of Chl b and nuclear chambers. New morphological information was provided for G. dorsalisulcum and G. impudicum, e.g., a short sulcal intrusion in G. dorsalisulcum; nuclear chambers in G. impudicum and G. dorsalisulcum; and a chloroplast enveloped by two membranes in G. impudicum. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference with independent SSU and LSU rDNA sequences. Our results support the classification of Wangodinium within the Gymnodiniales sensu stricto clade and it is close to Lepidodinium. Our results also support the close relationship among G. dorsalisulcum, G. impudicum, and Barrufeta. Further research is needed to assign these Gymnodinium species to Barrufeta or to erect new genera.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  13. Nur Ain, A.R., Mohd Sabri, M.G., Wan Rafizah, W.A., Nurul Azimah, M.A., Wan Nik, W.B.
    ASM Science Journal, 2018;11(101):56-67.
    MyJurnal
    Corrosion is a natural deterioration process that destructs metal surface. Metal of highly
    protected by passivation layer such as Stainless Steel 316L also undergoes pitting corrosion
    when continuously exposed to aggressive environment. To overcome this phenomenon, application
    of epoxy based coating with addition of zinc oxide- poly (3,4-ethylenedioxythiophene)
    doped with poly (styrene sulphonate) hybrid nanocomposite additive was introduced as
    paint/metal surface coating. The compatibility between these two materials as additive
    was studied by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD),
    Field Emission Scanning Electron Microscopy/Energy-Dispersive X-ray spectroscopy (FESEM/EDX)
    and Transmission Electron Microscopy (TEM) analysis. The effect of nanocomposite
    wt.% in epoxy based coating with immersion duration in real environment on corrosion
    protection performance was analyzed through potentiodynamic polarization analysis. The
    main finding showed that addition of hybrid nanocomposite had increased corrosion protection
    yet enhanced corrosion process when excess additives was loaded into epoxy coating.
    Addition of 2 wt.% ZnO-PEDOT:PSS was found significantly provided optimum corrosion
    protection to stainless steel 316L as the corrosion rate for 0 day, 15 days and 30 days of
    immersion duration is 0.0022 mm/yr, 0.0004 mm/yr and 0.0015 mm/yr; respectively.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  14. Ardyani T, Mohamed A, Abu Bakar S, Sagisaka M, Umetsu Y, Hafiz Mamat M, et al.
    Carbohydr Polym, 2020 Jan 15;228:115376.
    PMID: 31635739 DOI: 10.1016/j.carbpol.2019.115376
    The effect of incorporating common dodecyl anionic and cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), dodecylethyldimethylammonium bromide (DDAB), and sodium dodecylsulfate (SDS) in nanocomposites of reduced graphene oxide and nanocellulose are described. The stabilization and electrical properties of the nanocomoposites of reduced graphene oxide (RGO) and nanofibrillated kenaf cellulose (NFC) were characterized using four-point probe electrical conductivity measurements. Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to investigate dispersion morphology and the quality of RGO inside the NFC matrices. Small-angle neutron scattering (SANS) was used to study the aggregation behavior of the aqueous surfactant systems and RGO dispersions. The cationic surfactant DTAB proved to be the best choice for stabilization of RGO in NFC, giving enhanced electrical conductivity five orders of magnitude higher than the neat NFC. The results highlight the effects of hydrophilic surfactant moieties on the structure, stability and properties of RGO/NFC composites.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  15. Zambri NDS, Taib NI, Abdul Latif F, Mohamed Z
    Molecules, 2019 Oct 22;24(20).
    PMID: 31652583 DOI: 10.3390/molecules24203803
    The present work reports the successful synthesis of biosynthesized iron oxide nanoparticles (Fe3O4-NPs) with the use of non-toxic leaf extract of Neem (Azadirachta indica) as a reducing and stabilizing agent. The successful synthesis was confirmed by infrared spectra analysis with strong peak observed between 400-600 cm-1 that corresponds to magnetite nanoparticles characteristics. X-ray diffraction (XRD) analysis revealed that iron oxide nanoparticles were of high purity with crystalline cubic structure phases in nature. Besides, the average size of magnetite nanoparticles was observed to be 9-12 nm with mostly irregular shapes using a transmission electron microscope (TEM) and was supported by field emission scanning electron microscope (FESEM). Energy dispersive X-ray analysis shown that the elements iron (Fe) and oxygen (O) were present with atomic percentages of 33.29% and 66.71%, respectively. From the vibrating sample magnetometer (VSM) analysis it was proven that the nanoparticles exhibited superparamagnetic properties with a magnetization value of 73 emu/g and the results showed superparamagnetic behavior at room temperature, suggesting potential applications for a magnetic targeting drug delivery system.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  16. Razali MH, Ismail NA, Mat Amin KA
    Int J Biol Macromol, 2020 Jun 15;153:1117-1135.
    PMID: 31751725 DOI: 10.1016/j.ijbiomac.2019.10.242
    The synthesized titanium dioxide nanotubes (TiO2-NTs) were emerged as wound healing enhancer as well as exhibited significant wound healing activity on Sprague Dawley rats. In our present study, the blends of GG and TiO2-NTs bio-nanocomposite film was characterised by fourier transform infrared (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis, atomic force microscopy (AFM). The morphology of TiO2-NTs was investigated using transmission electron microscopy (TEM). The mechanical properties study shows that the GG + TiO2-NTs (20 w/w %) bio-nanocomposite film possessed the highest tensile strength and young modulus which are (4.56 ± 0.15) MPa and (68 ± 1.63) MPa, respectively. GG + TiO2-NTs (20 w/w %) also displays the highest antibacterial activity with (16 ± 0.06) mm, (16 ± 0.06) mm, (14 ± 0.06) mm, and (12 ± 0.25) mm inhibition zone were recorded against Staphylococcus aureus, Streptococcus, Escherichia coli, and Pseudomonas aeruginosa. The prepared bio-nanocomposite films have good biocompatibility against 3T3 mouse fibroblast cells and caused accelerated healing of open excision type wounds on Sprague Dawley rat model. The synergistic effects of bio-nanocomposite film like good swelling and WVTR properties, excellent hydrophilic nature, biocompatibility, wound appearance and wound closure rate through in vivo test makes it a suitable candidate for wound healing applications.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  17. FARZAD AALA, UMI KALSOM YUSUF, ROSIMAH NULIT
    Sains Malaysiana, 2013;42:1585-1590.
    Trichophyton rubrum is one of dermatophytes that penetrates keratinized tissues such as skin, hair and nail of human and animals. Recently, antifungal drugs such as imodazole and triazole was found to cause side effects, toxicity to patients and also not very efficient due to resistance to these drugs. As an alternative, some plants extract had been used to treat dermatophytes. This studies was done using Garlic extract (Allium sativum) to evaluate its effects on the growth of hypha of Trichophyton using Electron miscroscopy. Garlic had been known to posses antimicrobial, antiinflammatory, antithrombotic and antitumor activities. This studies found that garlic extract as low as 4 mg/mL inhibit the growth of hypha. Scanning electron microscopy studies revealed that hypha treated with garlic extract showed shrinkage, flat and cell wall demolition, similar to hypha treated with allicin (positive control) having rough surface, shrinkage and distortion. The tip of hypa became large after treatment with garlic extract. Transmission electron microscopy studies also found that hypha treated with allicin display cell wall thickening, local thickening, destruction of cytoplasmic content, mean while hypha treated with garlic extract exhibited cell wall thickening, disordered hyphal tip and desolution of cytoplasmic compartments and similar with hypha treated with allicin. These results showed that garlic extract and pure allicin could be use as an alternative to treat dermatophytes.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  18. Akinyemi SA, Gitari WM, Petrik LF, Nyakuma BB, Hower JC, Ward CR, et al.
    Sci Total Environ, 2019 May 01;663:177-188.
    PMID: 30711584 DOI: 10.1016/j.scitotenv.2019.01.308
    Coal combustion and the disposal of combustion wastes emit enormous quantities of nano-sized particles that pose significant health concerns on exposure, particularly in unindustrialized countries. Samples of fresh and weathered class F fly ash were analysed through various techniques including X-ray fluorescence (XRF), X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), field-emission gun scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM) coupled with energy dispersive x-ray spectroscopy (EDS), and Raman Spectroscopy. The imaging techniques showed that the fresh and weathered coal fly ash nanoparticles (CFA-NPs) are mostly spherical shaped. The crystalline phases detected were quartz, mullite, ettringite, calcite, maghemite, hematite, gypsum, magnetite, clay residues, and sulphides. The most abundant crystalline phases were quartz mixed with Al-Fe-Si-K-Ti-O-amorphous phases whereas mullite was detected in several amorphous phases of Al, Fe, Ca, Si, O, K, Mg, Mn, and P. The analyses revealed that CFA-NPs are 5-500 nm in diameter and encapsulate several potentially hazardous elements (PHEs). The carbon species were detected as 5-50 nm carbon nanoballs of graphitic layers and massive fullerenes. Lastly, the aspects of health risks related to exposure to some detected ambient nanoparticles are also discussed.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  19. Ardyani T, Mohamed A, Bakar SA, Sagisaka M, Umetsu Y, Mamat MH, et al.
    J Colloid Interface Sci, 2019 Jun 01;545:184-194.
    PMID: 30878784 DOI: 10.1016/j.jcis.2019.03.012
    HYPOTHESIS: The compatibility of surfactants and graphene surfaces can be improved by increasing the number of aromatic groups in the surfactants. Including aniline in the structure may improve the compatibility between surfactant and graphene further still. Surfactants can be modified by incorporating aromatic groups in the hydrophobic chains or hydrophilic headgroups. Therefore, it is of interest to investigate the effects of employing anilinium based surfactants to disperse graphene nanoplatelets (GNPs) in natural rubber latex (NRL) for the fabrication of electrically conductive nanocomposites.

    EXPERIMENTS: New graphene-philic surfactants carrying aromatic moieties in the hydrophilic headgroups and hydrophobic tails were synthesized by swapping the traditional sodium counterion with anilinium. 1H NMR spectroscopy was used to characterize the surfactants. These custom-made surfactants were used to assist the dispersion of GNPs in natural rubber latex matrices for the preparation of conductive nanocomposites. The properties of nanocomposites with the new anilinium surfactants were compared with commercial sodium surfactant sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and the previously synthesized aromatic tri-chain sodium surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate). Structural properties of the nanocomposites were studied using Raman spectroscopy, field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between total number of aromatic groups in the surfactant molecular structure and nanocomposite properties. The self-assembly structure of surfactants in aqueous systems and GNP dispersions was assessed using small-angle neutron scattering (SANS).

    FINDINGS: Among these different surfactants, the anilinium version of TC3Ph3 namely TC3Ph3-AN (anilinium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly efficient for dispersing GNPs in the NRL matrices, increasing electrical conductivity eleven orders of magnitude higher than the neat rubber latex. Comparisons between the sodium and anilinium surfactants show significant differences in the final properties of the nanocomposites. In general, the strategy of increasing the number of surfactant-borne aromatic groups by incorporating anilinium ions in surfactant headgroups appears to be effective.

    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  20. Saleemi MA, Fouladi MH, Yong PVC, Wong EH
    Materials (Basel), 2020 Apr 03;13(7):6-6.
    PMID: 32260216 MyJurnal DOI: 10.3390/ma13071676
    Microorganisms have begun to develop resistance because of inappropriate and extensive use of antibiotics in the hospital setting. Therefore, it seems to be necessary to find a way to tackle these pathogens by developing new and effective antimicrobial agents. Carbon nanotubes (CNTs) have attracted growing attention because of their remarkable mechanical strength, electrical properties, and chemical and thermal stability for their potential applications in the field of biomedical as therapeutic and diagnostic nanotools. However, the impact of carbon nanotubes on microbial growth has not been fully investigated. The primary purpose of this research study is to investigate the antimicrobial activity of CNTs, particularly double-walled and multi-walled nanotubes on representative pathogenic strains such as Gram-positive bacteria Staphylococcus aureus, Gram-negative bacteria Pseudomonas aeruginosa, Klebsiella pneumoniae, and fungal strain Candida albicans. The dispersion ability of CNT types (double-walled and multi-walled) treated with a surfactant such as sodium dodecyl-benzenesulfonate (SDBS) and their impact on the microbial growth inhibition were also examined. A stock concentration 0.2 mg/mL of both double-walled and multi-walled CNTs was prepared homogenized by dispersing in surfactant solution by using probe sonication. UV-vis absorbance, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were used for the characterization of CNTs dispersed in the surfactant solution to study the interaction between molecules of surfactant and CNTs. Later, scanning electron microscopy (SEM) was used to investigate how CNTs interact with the microbial cells. The antimicrobial activity was determined by analyzing optical density growth curves and viable cell count. This study revealed that microbial growth inhibited by non-covalently dispersed CNTs was both depend on the concentration and treatment time. In conclusion, the binding of surfactant molecules to the surface of CNTs increases its ability to disperse in aqueous solution. Non-covalent method of CNTs dispersion preserved their structure and increased microbial growth inhibition as a result. Multi-walled CNTs exhibited higher antimicrobial activity compared to double-walled CNTs against selected pathogens.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links