AIM: This study aims to determine the use of one of three physical performance tests (2-minute step, 2-minute walk, and 1-minute sit to stand) to effectively estimate cardiorespiratory fitness among older adults with CF.
METHODS: In this cross-sectional study, community-dwelling individuals aged 60 years old and above in Klang Valley were screened for CF. The participants performed three physical performance tests (2-minute walk, 2-minute step, and 1-minute sit to stand) followed by treadmill-based maximal exercise testing on another day.
RESULTS: A total of 32 older adults with cognitive frailty (mean age; SD: 67.1;4.7 years) participated in this study. Nearly half of them had hypertension (43.5 %), hypercholesterolemia (43.5 %), and multimorbidity (47.8 %). Among the endurance tests performed, only the 2-minute walk test independently predicted VO2 max by sex-specific with men (R2 = 0.58, p = 0.03) and women (R2 = 0.34, p = 0.01). The 2-minute walk test had good agreement with VO2 max (ICC = 0.77, 95 % CI: -3.1-2.4).
CONCLUSION: The 2-minute walk test is a valid tool for estimating cardiorespiratory fitness among older adults with CF. However, it should be further tested across a larger population.
METHODS: the following databases: PubMed, CINAHL, Scopus, and Cochrane Library have been searched to retrieve randomized controlled trials that examine the impact of digital health intervention on blood pressure, body mass index, lipid profile, blood glucose, Six-Minute Walk Test, and peak oxygen consumption. filters were set to include studies published in English between 2000-2023.
RESULTS: Nineteen studies were included in this review. Six-Minute Walk Test (MD = 16.70; 95% CI: 6.00 to 27.39, p = 0.000) and maximal oxygen consumption (SMD = 0.27; 95% CI: 0.08 to 0.45, p = 0.004) significantly improved following digital health intervention, after employing the sensitivity analysis significant improvement was observed in systolic (MD = -2.54; 95% CI: -4.98 to -0.11, p = 0.04) and diastolic blood pressure (SMD = -2.0182; 95% CI: -3.9436 to -0.0928, p = 0.04) favoring experimental groups. Subgroup analysis revealed significant improvement in quality of life after three months of follow-up (SMD = 0.18; 95% CI: 0.05 to 0.31, p = 0.00), no significant differences have been observed in body mass index, lipid profile, and blood glucose.
CONCLUSION: The findings emphasize the significant impact of digital vs CBCR or usual care on physical capacity, blood pressure, and quality of life. Despite the non-statistically significant differences in body mass index and lipid profile, the comparable effect between the two methods suggests the superiority of digital over CBCR or usual care due to its convenient nature, accessibility, and cost-effectiveness.
METHODS: Ten male collegiate rowers and physically active untrained subjects were recruited. Muscle synergies were extracted from 16 rowing-specific muscles using Principal Component Analysis with varimax rotation. Incremental rowing VO2 max Test was performed on slides ergometer (SE). Rowing performance and physiological variables were analyzed.
RESULTS: Rowers exerted greater power output, more energy expenditure and better rowing economy compared to untrained subjects. Rowers preferred to row slower with longer strokes compared to the untrained subjects. Three muscle synergies with high indices of similarity of waveform patterns were extracted in both groups. Significant association was found between muscle synergies and rowing economy.
CONCLUSIONS: The findings of this study showed that muscle synergies were robust during aerobic-dominant activity for collegiate rowers and untrained subjects. Rowers and coaches could utilize the findings by emphasizing on muscle coordination training, which may enhance the rowing economy.
MATERIAL AND METHODS: Transmission and field emission scanning electron microscopy (TEM and FESEM) were used for the characterisation of CaCO3 nanocrystals. Cytotoxicity and genotoxic effect of calcium carbonate nanocrystals in cultured mouse embryonic fibroblast NIH 3T3 cell line using various bioassays including MTT, and Neutral red/Trypan blue double-staining assays. LDH, BrdU and reactive oxygen species were used for toxicity analysis. Cellular morphology was examined by scanning electron microscopy (SEM) and confocal fluorescence microscope.
RESULTS: The outcome of the analyses revealed a clear rod-shaped aragonite polymorph of calcium carbonate nanocrystal. The analysed cytotoxic and genotoxicity of CaCO3 nanocrystal on NIH 3T3 cells using different bioassays revealed no significance differences as compared to control. A slight decrease in cell viability was noticed when the cells were exposed to higher concentrations of 200 to 400 µg/ml, while increase in ROS generation and LDH released at 200 and 400 µg/ml was observed.
CONCLUSIONS: The study has shown that CaCO3 nanocrystal is biocompatible and non toxic to NIH 3T3 fibroblast cells. The analysed results offer a promising potential of CaCO3 nanocrystal for the development of intracellular drugs, genes and other macromolecule delivery systems.