Displaying publications 3581 - 3600 of 4701 in total

Abstract:
Sort:
  1. Yeh HY, Cheng CJ, Huang C, Zhan X, Wong WK, Mitchell PD
    Korean J Parasitol, 2019 Dec;57(6):595-599.
    PMID: 31914510 DOI: 10.3347/kjp.2019.57.6.595
    In this study we take a closer look at the diseases that afflicted Japanese police officers who were stationed in a remote mountainous region of Taiwan from 1921 to 1944. Samples were taken from the latrine at the Huabanuo police outpost, and analyzed for the eggs of intestinal parasites, using microscopy and ELISA. The eggs of Eurytrema sp., (possibly E. pancreaticum), whipworm and roundworm were shown to be present. True infection with Eurytrema would indicate that the policemen ate uncooked grasshoppers and crickets infected with the parasite. However, false parasitism might also occur if the policemen ate the uncooked intestines of infected cattle, and the Eurytrema eggs passed through the human intestines. These findings provide an insight into the diet and health of the Japanese colonists in Taiwan nearly a century ago.
    Matched MeSH terms: Platyhelminths/isolation & purification*
  2. Nafeesa K, Aziz-Ur-Rehman -, Abbasi MA, Siddiqui SZ, Rasool S, Ali Shah SA, et al.
    Pak J Pharm Sci, 2019 Nov;32(6):2651-2658.
    PMID: 31969298
    A series of 1, 2, 4-triazole derivatives bearing piperidine moiety has been introduced as new anti-diabetic drug candidates with least cytotoxicity. p-Chlorophenylsulfonyl chloride (1) and ethyl nipecotate (2) were the starting reagents that resulted into corresponding 3,4,5-trisubstituted-1,2,4-triazole (6) through a series of steps. A series of electrophiles, 9a-e, were synthesized by reacting 4-bromobutyryl chloride (7) with differently substituted aromatic amines (8a-e) under basic aqueous medium. Target derivatives, 10a-e, were synthesized by the reaction of compound 6 with N-aryl-4-bromobutanamides (9a-e) in an aprotic solvent. Structures of all the derivatives were verified by spectroscopic analysis using IR, 1H-NMR, 13C-NMR and EIMS. Most of the derivatives revealed moderate to good α-glucosidase inhibitory activity with reference to acarbose. The moderate hemolytic potential demonstrated least toxicity.
    Matched MeSH terms: Hemolytic Agents/isolation & purification
  3. Kämpfer P, Lai WA, Arun AB, Young CC, Rekha PD, Martin K, et al.
    Int J Syst Evol Microbiol, 2012 Nov;62(Pt 11):2750-2756.
    PMID: 22286908 DOI: 10.1099/ijs.0.039057-0
    A Gram-negative, coccoid-shaped bacterium, strain CC-CCM15-8(T), was isolated from a rhizosphere soil sample of the plant Crossostephium chinense (L.) Makino (Seremban) from Budai Township, Chiayi County, Taiwan. 16S rRNA gene sequence analysis clearly allocated strain CC-CCM15-8(T) to the Paracoccus cluster, showing highest similarities to the type strains of 'Paracoccus beibuensis' (98.8%), Paracoccus homiensis (97.6%), Paracoccus aestuarii (97.7%) and Paracoccus zeaxanthinifaciens (97.7%). The fatty acid profile, comprising C(18:1)ω7c as the major component and C(10:0) 3-OH as the characteristic hydroxylated fatty acid, supported the placement of strain CC-CCM15-8(T) within the genus Paracoccus. The polyamine pattern consisted of putrescine and spermidine as major components. Ubiqinone Q-10 was the major quinone type (95%); ubiquinone Q-9 was also detected (5%). The complex polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, and unidentified phospholipids, lipids and glycolipids. Levels of DNA-DNA relatedness between strain CC-CCM15-8(T) and 'P. beibuensis' LMG 25871(T), P. aestuarii DSM 19484(T), P. zeaxanthinifaciens LMG 21993(T) and P. homiensis KACC 11518(T) were 24.9% (34.8%, reciprocal analysis), 15.7% (17.5%), 17.7% (23.4%) and 16.0% (25.4%), respectively. Physiological and biochemical test results allowed the phenotypic differentiation of strain CC-CCM15-8(T) from its closest relatives in the genus Paracoccus. Based on the data presented, it is concluded that strain CC-CCM15-8(T) represents a novel species of the genus Paracoccus, for which the name Paracoccus rhizosphaerae sp. nov. is proposed. The type strain is CC-CCM15-8(T) (=LMG 26205(T)=CCM 7904(T)).
    Matched MeSH terms: Paracoccus/isolation & purification
  4. Zucchi TD, Tan GYA, Goodfellow M
    Int J Syst Evol Microbiol, 2012 Jan;62(Pt 1):168-172.
    PMID: 21378137 DOI: 10.1099/ijs.0.029256-0
    The taxonomic positions of two thermophilic actinomycetes isolated from an arid Australian soil sample were established based on an investigation using a polyphasic taxonomic approach. The organisms had chemical and morphological properties typical of members of the genus Amycolatopsis and formed distinct phyletic lines in the Amycolatopsis methanolica 16S rRNA subclade. The two organisms were distinguished from one another and from the type strains of related species of the genus Amycolatopsis using a range of phenotypic properties. Based on the combined genotypic and phenotypic data, it is proposed that the two isolates be classified in the genus Amycolatopsis as Amycolatopsis thermophila sp. nov. (type strain GY088(T)=NCIMB 14699(T)=NRRL B-24836(T)) and Amycolatopsis viridis sp. nov. (type strain GY115(T)=NCIMB 14700(T)=NRRL B-24837(T)).
    Matched MeSH terms: Actinomycetales/isolation & purification*
  5. Anwar A, Yi YP, Fatima I, Khan KM, Siddiqui R, Khan NA, et al.
    Parasitol Res, 2020 Jun;119(6):1943-1954.
    PMID: 32385711 DOI: 10.1007/s00436-020-06694-4
    Acanthamoeba causes diseases such as Acanthamoeba keratitis (AK) which leads to permanent blindness and granulomatous Acanthamoeba encephalitis (GAE) where there is formation of granulomas in the brain. Current treatments such as chlorhexidine, diamidines, and azoles either exhibit undesirable side effects or require immediate and prolonged treatment for the drug to be effective or prevent relapse. Previously, antifungal drugs amphotericin B, nystatin, and fluconazole-conjugated silver with nanoparticles have shown significantly increased activity against Acanthamoeba castellanii. In this study, two functionally diverse tetrazoles were synthesized, namely 5-(3-4-dimethoxyphenyl)-1H-tetrazole and 1-(3-methoxyphenyl)-5-phenoxy-1H-tetrazole, denoted by T1 and T2 respectively. These compounds were evaluated for anti-Acanthamoeba effects at different concentrations ranging from 5 to 50 μM. Furthermore, these compounds were conjugated with silver nanoparticles (AgNPs) to enhance their efficacy. Particle size analysis showed that T1-AgNPs and T2-AgNPs had an average size of 52 and 70 nm respectively. After the successful synthesis and characterization of tetrazoles and tetrazole-conjugated AgNPs, they were subjected to anti-Acanthamoeba studies. Amoebicidal assay showed that at concentration 10 μM and above, T2 showed promising antiamoebic activities between the two compounds while encystation and excystation assays reveal that both T1 and T2 have inhibited differentiation activity against Acanthamoeba castellanii. Conjugation of T1 and T2 to AgNP also increased efficacy of tetrazoles as anti-Acanthamoeba agents. This may be due to the increased bioavailability as AgNP allows better delivery of treatment compounds to A. castellanii. Human cell cytotoxicity assay revealed that tetrazoles and AgNPs are significantly less toxic towards human cells compared with chlorhexidine which is known to cause undesirable side effects. Cytopathogenicity assay also revealed that T2 conjugated with AgNPs significantly reduced cytopathogenicity of A. castellanii compared with T2 alone, suggesting that T2-conjugated AgNP is an effective and safe anti-Acanthamoeba agent. The use of a synthetic azole compound conjugated with AgNPs can be an alternative strategy for drug development against A. castellanii. However, mechanistic and in vivo studies are needed to explore further translational values.
    Matched MeSH terms: Acanthamoeba castellanii/isolation & purification
  6. Kabirnataj S, Nematzadeh GA, Talebi AF, Saraf A, Suradkar A, Tabatabaei M, et al.
    Int J Syst Evol Microbiol, 2020 May;70(5):3413-3426.
    PMID: 32375955 DOI: 10.1099/ijsem.0.004188
    Five cyanobacterial strains with Nostoc-like morphology from different localities of the Mazandaran province of Iran were characterized using a polyphasic approach. Three strains clustered within the Aliinostoc clade whereas one each of the remaining two strains clustered within the genera Desmonostoc and Desikacharya. The phylogenetic positioning of all the strains by the bayesian inference, neighbour joining and maximum parsimony methods inferred using 16S rRNA gene indicated them to represent novel species of the genera Aliinostoc, Desmonostoc and Desikacharya. The 16S-23S ITS secondary structure analysis revealed that all five strains under study represented novel species unknown to science. In accordance with the International Code of Nomenclature for algae, fungi and plants we describe three novel species of the genus Aliinostoc and one species each of the genera Desmonostoc and Desikacharya.
    Matched MeSH terms: Cyanobacteria/isolation & purification
  7. Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, et al.
    Carbohydr Polym, 2021 Sep 01;267:118136.
    PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136
    Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.
    Matched MeSH terms: Nucleic Acids/isolation & purification
  8. Bronner U, Divis PC, Färnert A, Singh B
    Malar J, 2009 Jan 16;8:15.
    PMID: 19146706 DOI: 10.1186/1475-2875-8-15
    Plasmodium knowlesi is typically found in nature in macaques and has recently been recognized as the fifth species of Plasmodium causing malaria in human populations in south-east Asia. A case of knowlesi malaria is described in a Swedish man, who became ill after returning from a short visit to Malaysian Borneo in October 2006. His P. knowlesi infection was not detected using a rapid diagnostic test for malaria, but was confirmed by PCR and molecular characterization. He responded rapidly to treatment with mefloquine. Evaluation of rapid diagnostic kits with further samples from knowlesi malaria patients are necessary, since early identification and appropriate anti-malarial treatment of suspected cases are essential due to the rapid growth and potentially life-threatening nature of P. knowlesi. Physicians should be aware that knowlesi infection is an important differential diagnosis in febrile travellers, with a recent travel history to forested areas in south-east Asia, including short-term travellers who tested negative with rapid diagnostic tests.
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  9. Asyikha R, Sulaiman N, Mohd-Taib FS
    Trop Biomed, 2020 Dec 01;37(4):919-931.
    PMID: 33612746 DOI: 10.47665/tb.37.4.919
    Bacteria of the genus Bartonella have been known as emerging zoonotic pathogens for several human diseases including cat scratch disease, Carrion's disease and trench fever. Numerous species of small mammals have been reported to play a role as a suitable reservoir to many pathogenic Bartonella. These infections are thought to be transmitted through blood-feeding arthropod vectors such as ticks, fleas and lice. The purpose of this study is to detect the presence of Bartonella species from tick samples collected from small mammals in mangrove forests of Peninsular Malaysia. Herein, 38 individual ticks and their small mammals host were evaluated for the presence of Bartonella DNA by conventional PCR targeting the 16S rRNA intergenic spacer region (ITS) and partial sequencing of 460 bp from this locususing Bartonella genus-specific primers. Two tick individuals from Dermacentor auratus and Haemaphysalis hystricis collected from Rattus tiomanicus (host), were PCR-positive for Bartonella DNA amplification. No Bartonella amplification was possible in other tick species (Amblyomma sp.). Phylogenetic analysis of ITS fragments demonstrated that the sequences from ticks were closely related to Bartonella phoceensis, a species that has been reported from black rats (Rattus rattus) in Australia. This is the first report of a Bartonella bacteria detected in ticks from small mammals in Malaysia. Further research should be warranted to investigate the transmission of Bartonella and the potential impact of this zoonotic pathogen in animals and humans as this mangrove ecosystem is significant for local economy and tourism.
    Matched MeSH terms: Bartonella/isolation & purification*
  10. Yunihastuti E, Teeratakulpisarn N, Jeo WS, Nilasari H, Rachmadi L, Somia IKA, et al.
    AIDS, 2020 11 01;34(13):1933-1941.
    PMID: 32773478 DOI: 10.1097/QAD.0000000000002654
    OBJECTIVES: Persistent anal high-risk human papillomavirus (HR-HPV) infection is a major risk factor for anal cancer among MSM and transgender women (TGW). We aimed to estimate incidence, clearance, and persistence of anal HR-HPV in HIV-positive and HIV-negative MSM and TGW, and to assess factors for HR-HPV persistence.

    DESIGN: Prospective cohort study.

    METHODS: MSM and TGW aged at least 18 years, were enrolled from Indonesia, Malaysia, and Thailand, then followed up 6-monthly for 12 months. Anal swabs were collected at every visit for HR-HPV genotypes to define anal HR-HPV incidence, clearance, and persistence. Logistic regression was used to evaluate factors associated with HR-HPV persistence.

    RESULTS: Three hundred and twenty-five MSM and TGW were included in this study, of whom 72.3% were HIV-positive. The incidence of anal HR-HPV persistence was higher in HIV-positive than HIV-negative MSM participants (28.4/1000 vs. 13.9/1000 person-months). HIV-positive participants had HR-HPV lower clearance rate than HIV-negative participants (OR 0.3; 95% CI 0.1-0.7). The overall persistence of HR-HPV was 39.9% in HIV-positive and 22.8% HIV-negative participants. HPV-16 was the most persistent HR-HPV in both HIV-positive and HIV-negative participants. HIV infection (aOR 2.87; 95% CI 1.47-5.61), living in Kuala Lumpur (aOR 4.99; 95% CI 2.22-11.19) and Bali (aOR 3.39; 95% CI 1.07-10.75), being employed/freelance (aOR 3.99; 95% CI 1.48-10.77), and not being circumcised (aOR 2.29; 95% CI 1.07-4.88) were independently associated with anal HR-HPV persistence.

    CONCLUSION: HIV-positive MSM and TGW had higher risk of persistent anal HR-HPV infection. Prevention program should be made available and prioritized for HIV-positive MSM and TGW where resources are limited.

    Matched MeSH terms: Papillomaviridae/isolation & purification*
  11. Malijan RPB, Mechan F, Braganza JC, Valle KMR, Salazar FV, Torno MM, et al.
    Parasit Vectors, 2021 Jul 07;14(1):357.
    PMID: 34233742 DOI: 10.1186/s13071-021-04853-9
    BACKGROUND: A small number of human cases of the zoonotic malaria Plasmodium knowlesi have been reported in Palawan Island, the Philippines. Identification of potential vector species and their bionomics is crucial for understanding human exposure risk in this setting. Here, we combined longitudinal surveillance with a trap-evaluation study to address knowledge gaps about the ecology and potential for zoonotic spillover of this macaque malaria in Palawan Island.

    METHODS: The abundance, diversity and biting behavior of human-biting Anopheles mosquitoes were assessed through monthly outdoor human landing catches (HLC) in three ecotypes representing different land use (forest edge, forest and agricultural area) across 8 months. Additionally, the host preference and biting activity of potential Anopheles vectors were assessed through comparison of their abundance and capture time in traps baited with humans (HLC, human-baited electrocuting net-HEN) or macaques (monkey-baited trap-MBT, monkey-baited electrocuting net-MEN). All female Anopheles mosquitoes were tested for the presence of Plasmodium parasites by PCR.

    RESULTS: Previously incriminated vectors Anopheles balabacensis and An. flavirostris accounted for > 95% of anophelines caught in longitudinal surveillance. However, human biting densities were relatively low (An. balabacensis: 0.34-1.20 per night, An. flavirostris: 0-2 bites per night). Biting densities of An. balabacensis were highest in the forest edge, while An. flavirostris was most abundant in the agricultural area. The abundance of An. balabacensis and An. flavirostris was significantly higher in HLC than in MBT. None of the 357 female Anopheles mosquitoes tested for Plasmodium infection were positive.

    CONCLUSIONS: The relatively low density and lack of malaria infection in Anopheles mosquitoes sampled here indicates that exposure to P. knowlesi in this setting is considerably lower than in neighboring countries (i.e. Malaysia), where it is now the primary cause of malaria in humans. Although anophelines had lower abundance in MBTs than in HLCs, An. balabacensis and An. flavirostris were caught by both methods, suggesting they could act as bridge vectors between humans and macaques. These species bite primarily outdoors during the early evening, confirming that insecticide-treated nets are unlikely to provide protection against P. knowlesi vectors.

    Matched MeSH terms: Plasmodium knowlesi/isolation & purification
  12. Girish S, Kumar S, Aminudin N, Hashim NM
    Sci Rep, 2021 04 09;11(1):7833.
    PMID: 33837230 DOI: 10.1038/s41598-021-81418-x
    Blastocystis sp. infection, although many remain asymptomatic, there is growing data in recent studies that suggests it is a frequent cause of gastrointestinal symptoms in children and adults. This proposes that treatment against this infection is necessary however metronidazole (MTZ), which is the current choice of treatment, has expressed non-uniformity in its efficacy in combating this infection which has led to the study of alternative treatment. In our previous study, it was established that Tongkat Ali fractions exhibited promising anti-protozoal properties which leads to the current aim of the study, to further narrow down the purification process in order to identify the specific active compound promoting the anti-protozoal effect through HPLC analysis. Based on the data analysis and in-vitro susceptibility assay, the collected Tongkat Ali fraction that demonstrated anti-blastocystis property was shown to contain eurycomanone. Previous studies have suggested that there is a mechanism in Blastocystis sp. that regulates the apoptotic process to produce higher number of viable cells when treated. In reference to this, our current study also aims to investigate the apoptotic response of Tongkat Ali extract and eurycomanone across different subtype groups with comparison to MTZ. Based on our investigation, both Tongkat Ali extract and eurycomanone induced the high apoptotic rate however exhibited a reduction in viable cell count (p 
    Matched MeSH terms: Blastocystis/isolation & purification
  13. Baba ZA, Hamid B, Sheikh TA, Alotaibi SH, El Enshasy HA, Ansari MJ, et al.
    Molecules, 2021 Sep 23;26(19).
    PMID: 34641302 DOI: 10.3390/molecules26195758
    Soil potassium (K) supplement depends intensively on the application of chemical fertilizers, which have substantial harmful environmental effects. However, some bacteria can act as inoculants by converting unavailable and insoluble K forms into plant-accessible forms. Such bacteria are an eco-friendly approach for enhancing plant K absorption and consequently reducing utilization of chemical fertilization. Therefore, the present research was undertaken to isolate, screen, and characterize the K solubilizing bacteria (KSB) from the rhizosphere soils of northern India. Overall, 110 strains were isolated, but only 13 isolates showed significant K solubilizing ability by forming a halo zone on solid media. They were further screened for K solubilizing activity at 0 °C, 1 °C, 3 °C, 5 °C, 7 °C, 15 °C, and 20 °C for 5, 10, and 20 days. All the bacterial isolates showed mineral K solubilization activity at these different temperatures. However, the content of K solubilization increased with the upsurge in temperature and period of incubation. The isolate KSB (Grz) showed the highest K solubilization index of 462.28% after 48 h of incubation at 20 °C. The maximum of 23.38 µg K/mL broth was solubilized by the isolate KSB (Grz) at 20 °C after 20 days of incubation. Based on morphological, biochemical, and molecular characterization (through the 16S rDNA approach), the isolate KSB (Grz) was identified as Mesorhizobium sp. The majority of the strains produced HCN and ammonia. The maximum indole acetic acid (IAA) (31.54 µM/mL) and cellulase (390 µM/mL) were produced by the isolate KSB (Grz). In contrast, the highest protease (525.12 µM/mL) and chitinase (5.20 µM/mL) activities were shown by standard strain Bacillus mucilaginosus and KSB (Gmr) isolate, respectively.
    Matched MeSH terms: Mesorhizobium/isolation & purification
  14. Rauff-Adedotun AA, Mohd Zain SN, Farah Haziqah MT
    Parasitol Res, 2020 Nov;119(11):3559-3570.
    PMID: 32951145 DOI: 10.1007/s00436-020-06828-8
    Blastocystis is the most frequently observed eukaryotic gastrointestinal symbiont in humans and animals. Its low host specificity and zoonotic potential suggest that animals might serve as possible reservoirs for transmission. The prevalence and subtype distributions of Blastocystis sp. in animal populations in Southeast Asia, a hotspot for zoonotic diseases, are reviewed. Recommendations for future research aimed at understanding the zoonotic role of Blastocystis are also included. Seven countries have, so far, reported Blastocystis infection in various animals, such as livestock, poultry, companion animals, and non-human primates. Pigs were the most studied animals, and there were records of 100% prevalence in pigs, cattle, and ostriches. Using polymerase chain reaction (PCR)-based approaches, twelve Blastocystis sp. subtypes (STs), namely ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST8, ST9, ST10, ST12, and ST14 have been recognised infecting animals of Southeast Asia. ST1 and ST5 were the most frequently identified, and Malaysia observed the most diverse distribution of subtypes. Further investigations on Blastocystis sp. in various animal hosts, using adequate sample sizes and uniform detection methods, are essential for a better understanding of the distribution of this organism. Detailed genome studies, especially on STs shared by humans and animals, are also recommended.
    Matched MeSH terms: Blastocystis/isolation & purification*
  15. Zhang C, Park JS, Grce M, Hibbitts S, Palefsky JM, Konno R, et al.
    J Infect Dis, 2014 Nov 15;210(10):1600-4.
    PMID: 24879800 DOI: 10.1093/infdis/jiu310
    Human papillomavirus (HPV) genotype 52 is commonly found in Asian cases of cervical cancer but is rare elsewhere. Analysis of 611 isolates collected worldwide revealed a remarkable geographical distribution, with lineage B predominating in Asia (89.0% vs 0%-5.5%; P(corrected) < .001), whereas lineage A predominated in Africa, the Americas, and Europe. We propose that the name "Asian lineage" be used to denote lineage B, to signify this feature. Preliminary analysis suggested a higher disease risk for lineage B, although ethnogeographical confounders could not be excluded. Further studies are warranted to verify whether the reported high attribution of disease to HPV52 in Asia is due to the high prevalence of lineage B.
    Matched MeSH terms: Papillomaviridae/isolation & purification*
  16. Barber BE, Bird E, Wilkes CS, William T, Grigg MJ, Paramaswaran U, et al.
    J Infect Dis, 2015 Apr 1;211(7):1104-10.
    PMID: 25301955 DOI: 10.1093/infdis/jiu562
    BACKGROUND: Plasmodium knowlesi is the commonest cause of malaria in Malaysia, but little is known regarding infection during pregnancy.
    METHODS: To investigate comparative risk and consequences of knowlesi malaria during pregnancy, we reviewed (1) Sabah Health Department malaria-notification records created during 2012-2013, (2) prospectively collected data from all females with polymerase chain reaction (PCR)-confirmed malaria who were admitted to a Sabah tertiary care referral hospital during 2011-2014, and (3) malaria microscopy and clinical data recorded at a Sabah tertiary care women and children's hospital during 2010-2014.
    RESULTS: During 2012-2013, 774 females with microscopy-diagnosed malaria were notified, including 252 (33%), 172 (20%), 333 (43%), and 17 (2%) with Plasmodium falciparum infection, Plasmodium vivax infection, Plasmodium malariae/Plasmodium knowlesi infection, and mixed infection, respectively. Among females aged 15-45 years, pregnancy was reported in 18 of 124 (14.5%), 9 of 93 (9.7%), and 4 of 151 (2.6%) P. falciparum, P. vivax, and P. malariae/P. knowlesi notifications respectively (P = .002). Three females with knowlesi malaria were confirmed as pregnant: 2 had moderate anemia, and 1 delivered a preterm low-birth-weight infant. There were 17, 7, and 0 pregnant women with falciparum, vivax, and knowlesi malaria, respectively, identified from the 2 referral hospitals.
    CONCLUSIONS: Although P. knowlesi is the commonest malaria species among females in Sabah, P. knowlesi infection is relatively rare during pregnancy. It may however be associated with adverse maternal and pregnancy outcomes.
    KEYWORDS: Plasmodium knowlesi; malaria; maternal anemia; pregnancy; preterm delivery
    Matched MeSH terms: Plasmodium knowlesi/isolation & purification*
  17. Ngwe Tun MM, Muthugala R, Rajamanthri L, Nabeshima T, Buerano CC, Morita K
    Jpn J Infect Dis, 2021 Sep 22;74(5):443-449.
    PMID: 33642435 DOI: 10.7883/yoken.JJID.2020.854
    During the 2017 outbreak of severe dengue in Sri Lanka, dengue virus (DENV) serotypes 2, 3, and 4 were found to be co-circulating. Our previous study of 295 patients from the National Hospital Kandy in Sri Lanka between March 2017 and January 2018 determined that the dominant infecting serotype was DENV-2. In this study, we aimed to characterize the DENV-3 strains from non-severe and severe dengue patients from our previous study population. Patients' clinical records and previous laboratory tests, including dengue-specific nonstructural protein 1 antigen rapid test and IgM-capture and IgG enzyme-linked immunosorbent assays, were analyzed together with the present results of real-time reverse transcription polymerase chain reaction and next-generation sequencing of DENV-3. Complete genome analysis determined that DENV-3 isolates belonged to 2 different clades of genotype I and were genetically close to strains from Indonesia, China, Singapore, Malaysia, and Australia. There were 16 amino acid changes among DENV-3 isolates, and a greater number of changes were found in nonstructural proteins than in structural proteins. The emergence of DENV-3 genotype I was noted for the first time in Sri Lanka. Continuous monitoring of this newly emerged genotype and other DENV serotypes and genotypes is needed to determine their effects on future outbreaks and understand the molecular epidemiology of dengue.
    Matched MeSH terms: Dengue Virus/isolation & purification
  18. Loo KY, Leong KH, Sivasothy Y, Ibrahim H, Awang K
    Chem Biodivers, 2019 Jun;16(6):e1900032.
    PMID: 30957403 DOI: 10.1002/cbdv.201900032
    The inhibition of carbohydrate-hydrolyzing enzymes in human digestive organs is crucial in controlling blood sugar levels, which is important in treating type 2 diabetes. In the current study, pahangensin A (1), a bis-labdanic diterpene characterized previously in the rhizomes of Alpinia pahangensis Ridl., was identified as an active dual inhibitor for α-amylase (IC50 =114.80 μm) and α-glucosidase (IC50 =153.87 μm). This is the first report on the dual α-amylase and α-glucosidase inhibitory activities of a bis-labdanic diterpene. The Lineweaver-Burk plots of compound 1 indicate that it is a mixed-type inhibitor with regard to both enzymes. Based on molecular docking studies, compound 1 docked in a non-active site of both enzymes. The dual inhibitory activity of compound 1 makes it a suitable natural alternative in the treatment of type 2 diabetes.
    Matched MeSH terms: Diterpenes/isolation & purification
  19. Soopramanien M, Khan N, Neerooa BNHM, Sagathevan K, Siddiqui R
    Asian Pac J Cancer Prev, 2021 Mar 01;22(3):733-740.
    PMID: 33773536 DOI: 10.31557/APJCP.2021.22.3.733
    OBJECTIVES: The overall aim was to determine whether gut bacteria of Columbia livia are a potential source of antitumour molecules.

    METHODS: Faecal and gut microbiota of Columbia livia were isolated, identified and conditioned media were prepared containing metabolites. Growth inhibition, lactate dehydrogenase cytotoxicity and cell survival assays were accomplished against cervical cancer cells. Next, liquid-chromatography mass spectrometry was conducted to elucidate the molecules present.

    RESULTS: A plethora of bacteria from faecal matter and gastrointestinal tract were isolated. Selected conditioned media exhibited potent anticancer effects and displayed cytotoxicity to cervical cancer cells at IC50 concentration of 10.65 and 15.19 µg/ml. Moreover, cells treated with conditioned media exhibited morphological changes, including cell shrinking and rounding; indicative of apoptosis, when compared to untreated cells. A total of 111 and 71 molecules were revealed from these gut and faecal metabolites. The identity of 60 molecules were revealed including, dihydroxymelphalan. Nonetheless, 122 molecules remain unidentified and are the subject of future studies.

    CONCLUSION: These findings suggest that gut bacteria of Columbia livia possess molecules, which may have anticancer activities. Further in silico testing and/or high throughput screening will determine potential anticancer properties of these molecules.
    .

    Matched MeSH terms: Melphalan/isolation & purification
  20. Muhid A, Robertson I, Ng J, Yang R, Ryan U
    Vet J, 2012 Jan;191(1):135-7.
    PMID: 21339075 DOI: 10.1016/j.tvjl.2011.01.007
    Two hundred and forty calf faecal samples from 16 Malaysian farms were screened by PCR for Giardia spp. The overall prevalence was 12.5% and the overall farm prevalence was 68.8% (11/16 farms). The prevalence in pre-weaned and weaned calves was 16.7% and 8.3%, respectively. Sequence analysis of 25 isolates identified all as G. duodenalis assemblage E. Management factors associated with an increased risk of infection with Giardia spp. included keeping weaned calves in pens with sand floors and calf age. Keeping pre-weaned calves in pens with concrete floors and calving in single cow calving areas decreased the risk.
    Matched MeSH terms: Giardia/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links