Displaying publications 361 - 380 of 923 in total

Abstract:
Sort:
  1. Mohd Nawawi, Hariri Arifin M, Fathi M. Abdullah, Kayode J, Nuraddeen Usman, Arisona, et al.
    Sains Malaysiana, 2017;46:529-535.
    Development of hot spring touristic projects receives more interest in Malaysia in recent years since the country has a high potential of hot springs that are vital to the economy. However, such developmental activities could produce negative impacts if not accompanied with adequate knowledge of the subsurface conditions. Active multichannel analysis of surface waves (MASW) was applied to determine the subsurface shear wave velocities and Vs30. The inverted shear waves velocity models have then presented in both vertical cross-sectional plots and depth slices maps. Depth slices were chosen at about 5, 18.5 m and 32 m depths. Model obtained showed that the soil is stiffer near the highway side and turns to be softer as we go away in the scrub direction. Vs30 is also estimated and mapped to show the quality of the soil. Inverted parameters showed that the soil at the site ranges from soft soil to stiff one. Also, the result obtained proposed that the surface occurrence of the hot spring might be a result of intersection of faulted segments, where hot spring is located near the intersection points. Furthermore, the model helped in proposing a suitable for complex extension. The proposed is chosen such that it minimize any possible effects on the geothermal resources at the site.
    Matched MeSH terms: Environmental Monitoring
  2. Han Y, Bai J, Zhang Z, Wu T, Chen P, Sun G, et al.
    Sci Total Environ, 2019 Nov 10;690:748-759.
    PMID: 31302540 DOI: 10.1016/j.scitotenv.2019.06.508
    Many species of birds gradually adapt to urbanization and colonize cities successfully. However, their nest site selection and competitive relationship in an urban community remain little known. Understanding the impact of urbanization on birds and the competitive relationship has important implications for the conservation and management of wildlife in urban ecosystems. Here, we undertook a systematic study to quantify nests in all species of birds in an urbanizing area of Nanchang, China. A total of 363 nests were detected in surveys including 340 nests of 16 bird species and 23 unidentified species nests. We mainly analyzed 5 dominant breeding birds with a sample size of >10 during the two breeding seasons (From April to July in 2016 and 2017), which included the light-vented bulbul, Chinese blackbird, scaly-breasted munia, spotted dove and grey-capped greenfinch. Most birds (93.66%) nested in the tree of artificial green belts, which seems to be the best breeding habitat for urban birds. Our results suggested that birds' breeding success relies on the trade-off between the benefit and the expense of specific stresses from habitats. The nest site selection of birds is also affected by the life habit of urban predators. Furthermore, competition among species can influence their distributions and utilization of environmental resources when birds nest in cities. We confirmed that the niche differentiation of five bird species in an urban environment makes them coexist successfully by utilizing various resources.
    Matched MeSH terms: Environmental Monitoring
  3. Alipour M, Sarafraz M, Chavoshi H, Bay A, Nematollahi A, Sadani M, et al.
    J Environ Sci (China), 2021 Feb;100:167-180.
    PMID: 33279029 DOI: 10.1016/j.jes.2020.07.014
    The contamination of fish type products such as silver pomfret fish fillets by potentially toxic elements (PTEs) has raised global health concerns. Related studies regarding the concentration of PTEs in fillets of silver pomfret fish were retrieved among some international databases such as Scopus, PubMed and Embase between 1 January 1983 and 10 March 2020. The pooled (mean) concentration of PTEs in fillets of silver pomfret fish was meta-analyzed with the aid of a random-effect model (REM). Also, the non-carcinogenic risk was estimated via calculating the 95th percentile of the total target hazard quotient (TTHQ). The meta-analysis of 21 articles (containing 25 studies or data reports) indicated that the ranking of PTEs in fillets of silver pomfret fish was Fe (11,414.81 µg/kg wet weight, ww) > Zn (6055.72 µg/kg ww) > Cr (1825.79 µg/kg ww) > Pb (1486.44 µg/kg ww) > Se (1053.47 µg/kg ww) > Cd (992.50 µg/kg ww) > Ni (745.23 µg/kg ww) > Cu (669.71 µg/kg ww) > total As (408.24 µg/kg ww) > Co (87.03 µg/kg ww) > methyl Hg (46.58 µg/kg ww). The rank order of health risk assessment by country based on the TTHQ for adult consumers was Malaysia (2.500) > Bangladesh (0.886) > Iran (0.144) > China (0.045) > Pakistan (0.020) > India (0.015), while the corresponding values for child consumers was Malaysia (11.790) > Bangladesh (4.146) > Iran (0.675) > China (0.206) > Pakistan (0.096) > India (0.077). The adult consumers in Malaysia and children in Malaysia and Bangladesh were at considerable non-carcinogenic risk. Therefore, following the recommended control plans in order to reduce the health risk associated with the ingestion of PTEs via consumption of silver pomfret fish fillets is crucial.
    Matched MeSH terms: Environmental Monitoring
  4. Singh N, Banerjee T, Murari V, Deboudt K, Khan MF, Singh RS, et al.
    Chemosphere, 2021 Jan;263:128030.
    PMID: 33297051 DOI: 10.1016/j.chemosphere.2020.128030
    Size-segregated airborne fine (PM2.1) and coarse (PM>2.1) particulates were measured in an urban environment over central Indo-Gangetic plain in between 2015 and 2018 to get insights into its nature, chemistry and sources. Mean (±1σ) concentration of PM2.1 was 98 (±76) μgm-3 with a seasonal high during winter (DJF, 162 ± 71 μgm-3) compared to pre-monsoon specific high in PM>2.1 (MAMJ, 177 ± 84 μgm-3) with an annual mean of 170 (±69) μgm-3. PM2.1 was secondary in nature with abundant secondary inorganic aerosols (20% of particulate mass) and water-soluble organic carbon (19%) against metal enriched (25%) PM>2.1, having robust signature of resuspensions from Earth's crust and road dust. Ammonium-based neutralization of particulate acidity was essentially in PM2.1 with an indication of predominant H2SO4 neutralization in bisulfate form compared to Ca2+ and Mg2+-based neutralization in PM>2.1. Molecular distribution of n-alkanes homologues (C17-C35) showed Cmax at C23 (PM2.1) and C18 (PM>2.1) with weak dominance of odd-numbered n-alkanes. Carbon preference index of n-alkanes was close to unity (PM2.1: 1.4 ± 0.3; PM>2.1: 1.3 ± 0.4). Fatty acids (C12-C26) were characterized with predominance of even carbon with Cmax at n-hexadecanoic acid (C16:0). Low to high molecular weight fatty acid ratio ranged from 2.0 (PM>2.1) to 5.6 (PM2.1) with vital signature of anthropogenic emissions. Levoglucosan was abundant in PM2.1 (758 ± 481 ngm-3) with a high ratio (11.6) against galactosan, emphasizing robust contribution from burning of hardwood and agricultural residues. Receptor model resolves secondary aerosols and biomass burning emissions (45%) as the most influential sources of PM2.1 whereas, crustal (29%) and secondary aerosols (29%) were found responsible for PM>2.1; with significant variations among the seasons.
    Matched MeSH terms: Environmental Monitoring
  5. Wong YJ, Shimizu Y, He K, Nik Sulaiman NM
    Environ Monit Assess, 2020 Sep 16;192(10):644.
    PMID: 32935203 DOI: 10.1007/s10661-020-08543-4
    The assessment of surface water quality is often laborious, expensive and tedious, as well as impractical, especially for the developing and middle-income countries in the ASEAN region. The application of the water quality index (WQI), which depends on several independent key parameters, has great potential and is a useful tool in this region. Therefore, this study aims to find out the spatial variability of various water quality parameters in geographical information system (GIS) environment and perform a comparative study among the ASEAN WQI systems. At present, there are four ASEAN countries which have implemented the WQI system to evaluate their surface water quality, which are (i) Own WQI system-Malaysia, Thailand and Vietnam-and (ii) Adopted WQI system: Indonesia. A spatial distribution of 12 water quality parameters in the Selangor river basin, Malaysia, was plotted and then applied into the different ASEAN WQI systems. The WQI values obtained from the different WQI systems have an appreciable difference, even for the same water samples due to the disparity in the parameter selection and the standards among them. WQI systems which consider all biophysicochemical parameters provide a consistent evaluation (Very Poor), but the system which either considers physicochemical or biochemical parameters gives a relatively lenient evaluation (Fair-Poor). The Selangor river basin is stressed and impacted by all physical, biological and chemical parameters caused by both the aridity of the climate and anthropogenic activities. Therefore, it is crucial to include all these aspects into the evaluation and corresponding actions should be taken.
    Matched MeSH terms: Environmental Monitoring
  6. Al-Mutairi KA, Yap CK
    PMID: 33801910 DOI: 10.3390/ijerph18062798
    The heavy metal (HM) pollution in sediment is of serious concern, particularly in the Red Sea environment. This study aimed to review and compile data on the concentrations of four HMs (Cd, Cu, Pb, and Zn) in the coastal surface sediments from the Red Sea, mainly from Saudi Arabia, Egypt, and Yemen, published in the literature from 1992 to 2021. The coastal sediments included those from mangrove, estuaries, and intertidal ecosystems. It was found that the mean values of Cd, Cu, Pb, and Zn in coastal Red Sea sediments were elevated and localized in high human activity sites in comparison to the earth upper continental crust and to reference values for marine sediments. From the potential ecological risk index (PERI) aspect, 32 reports (47.1%) were categorized as 'considerable ecological risk' and 23 reports (33.8%) as 'very high ecological risk'. From the human health risk assessment (HHRA) aspect, the non-carcinogenic risk (NCR) values (HI values < 1.0) of Cd, Cu, Pb, and Zn represented no NCR for the ingestion and the dermal contact routes for sediments from the Red Sea countries. The reassessment of the HM data cited in the literature allowed integrative and accurate comparisons of the PERI and HHRA data, which would be useful in the management and sustainable development of the Red Sea area, besides being a helpful database for future use. This warrants extensive and continuous monitoring studies to understand the current and the projected HM pollution situation and to propose possible protective and conservative measures in the future for the resource-rich Red Sea ecosystem.
    Matched MeSH terms: Environmental Monitoring
  7. Lee CC, Tran MV, Choo CW, Tan CP, Chiew YS
    Environ Pollut, 2020 Oct;265(Pt A):115058.
    PMID: 32806396 DOI: 10.1016/j.envpol.2020.115058
    Due to the increase of the human population and the rapid industrial growth in the past few decades, air quality monitoring is essential to assess the pollutant levels of an area. However, monitoring air quality in a high-density area like Sunway City, Selangor, Malaysia is challenging due to the limitation of the local monitoring network. To establish a comprehensive data for air pollution in Sunway City, a mobile monitoring campaign was employed around the city area with a duration of approximately 6 months, from September 2018 to March 2019. Measurements of air pollutants such as carbon dioxide (CO2) and nitrogen dioxide (NO2) were performed by using mobile air pollution sensors facilitated with a GPS device. In order to acquire a more in-depth understanding on traffic-related air pollution, the measurement period was divided into two different time blocks, which were morning hours (8 a.m.-12 p.m.) and afternoon hours (3 p.m.-7 p.m.). The data set was analysed by splitting Sunway City into different zones and routes to differentiate the conditions of each region. Meteorological variables such as ambient temperature, relative humidity, and wind speed were studied in line with the pollutant concentrations. The air quality in Sunway City was then compared with various air quality standards such as Malaysian Air Quality Standards and World Health Organisation (WHO) guidelines to understand the risk of exposure to air pollution by the residence in Sunway City.
    Matched MeSH terms: Environmental Monitoring
  8. Garcia-Tenorio R, Rozmaric M, Harms A, Godoy JMO, Barsanti M, Schirone A, et al.
    Mar Pollut Bull, 2020 Oct;159:111490.
    PMID: 32738641 DOI: 10.1016/j.marpolbul.2020.111490
    Laboratories from 14 countries (with different levels of expertise in radionuclide measurements and 210Pb dating) participated in an interlaboratory comparison exercise (ILC) related to the application of 210Pb sediment dating technique within the framework of the IAEA Coordinated Research Project. The laboratories were provided with samples from a composite sediment core and were required to provide massic activities of several radionuclides and an age versus depth model from the obtained results, using the most suitable 210Pb dating model. Massic concentrations of Zn and Cu were also determined to be used for chronology validation. The ILC results indicated good analytical performances while the dating results didn't demonstrate the same degree of competence in part due to the different experience in dating of the participant laboratories. The ILC exercise enabled evaluation of the difficulties faced by laboratories implementing 210Pb dating methods and identified some limitations in providing reliable chronologies.
    Matched MeSH terms: Environmental Monitoring
  9. SOBIRATUL NADIA ABDULLAH, NOOR ZAITUN YAHAYA, WAN RAFIZAH WAN WAN ABDULLAH
    MyJurnal
    The concentrations of airborne particulate matter (PM) is often measured as a mass concentration. However, the other way to express particulate matter is by using the Particle Number Count ([PNC]) concentrations. This study aims to analyse the seasonal variation of airborne particulate matter in terms of [PNC] by using R packages and the Boosted Regression Trees (BRTs) technique. The study was conducted at IOES, Universiti of Malaya in Bachok, Kelantan. The monitoring was important to understand the variability of seasonal effects due to different seasons. In this work, only the datasets for three seasons (Inter Monsoon, North East Monsoon and South-West Monsoon) were analysed involving 25,958 data. The air quality monitoring equipment involved was the particle counter Environment Dust Monitor GRIMM Model 180 and a weather station for recording the meteorological parameters. The data analysis was completed by using R software and its package for evaluating seasonal variability and providing the statistical analysis. The relationship between variables was studied by using the Boosted Regression Tree (BRT) technique. The interaction between independent variables towards the [PNC] in different seasons was discussed. The best setting result of BRT model evaluation R² is 0.22 (North-East Monsoon), 0.87 (Intern monsoon 1), and 0.59 for South West Monsoon which indicated that the model developed is acceptable except for NEM and intern monsoon seasons. Temperature (57 %) and wind direction (67%) were found to be the highest factor influenced by the formation of [PNC] concentrations in this area. Finally, good results indicated that BRT technique is an acceptable way to analysed air pollution data.
    Matched MeSH terms: Environmental Monitoring
  10. Miyazono K, Yamashita R, Miyamoto H, Ishak NHA, Tadokoro K, Shimizu Y, et al.
    Mar Pollut Bull, 2021 Sep;170:112631.
    PMID: 34175698 DOI: 10.1016/j.marpolbul.2021.112631
    Floating plastic debris was investigated in the transition region in the North Pacific between 141°E and 165°W to understand its transportation process from Asian coast to central subtropical Pacific. Distribution was influenced primarily by the current system and the generation process of the high concentration area differed between the western and eastern areas. West of 180°, debris largely accumulated around nearshore convergent area and was transported by eddies and quasi-stationary jet from south to the subarctic region. The average was 15% higher than that previously reported in 1989, suggesting an increase in plastic debris in 30 years. East of 180°, debris concentrated in the calm water downstream of the Kuroshio Extension Bifurcation with considerably high concentration (505,032 ± 991,989 pieces km-2), due to the accumulation of small transparent film caused by calm weather conditions, suggesting a further investigation on small plastic (<1 mm) in the subsurface depth in the subtropical North Pacific.
    Matched MeSH terms: Environmental Monitoring
  11. Ramli NA, Md Yusof NFF, Zarkasi KZ, Suroto A
    PMID: 34360485 DOI: 10.3390/ijerph18158192
    Rice straw is commonly burned openly after harvesting in Malaysia and many other Asian countries where rice is the main crop. This operation emits a significant amount of air pollution, which can have severe consequences for indoor air quality, public health, and climate change. Therefore, this study focuses on determining the compositions of trace elements and the morphological properties of fine particles. Furthermore, the species of bacteria found in bioaerosol from rice burning activities were discovered in this study. For morphological observation of fine particles, FESEM-EDX was used in this study. Two main categories of particles were found, which were natural particles and anthropogenic particles. The zinc element was found during the morphological observation and was assumed to come from the fertilizer used by the farmers. ICP-OES identifies the concentration of trace elements in the fine particle samples. A cultured method was used in this study by using nutrient agar. From this study, several bacteria were identified: Exiguobavterium indicum, Bacillus amyloliquefaciens, Desulfonema limicola str. Jadabusan, Exiguobacterium acetylicum, Lysinibacillus macrolides, and Bacillus proteolyticus. This study is important, especially for human health, and further research on the biological composition of aerosols should be conducted to understand the effect of microorganisms on human health.
    Matched MeSH terms: Environmental Monitoring
  12. Wang X, Liu K, Zhu L, Li C, Song Z, Li D
    J Hazard Mater, 2021 07 15;414:125477.
    PMID: 33647626 DOI: 10.1016/j.jhazmat.2021.125477
    The presence of microplastics (MPs) in the atmosphere is a global concern because of its environmental and health impacts; however, the monsoonal transport of atmospheric MPs has not yet been investigated. To fully understand the effect of the monsoon on atmospheric MP transport, we conducted a study along the southeast coast of China during the East Asian summer monsoon (EASM). We found that the EASM transports atmospheric MPs back onto the continent at a flux of up to 212.977-213.433 kg/EASM/year. The backward trajectory and wind field results indicate that the EASM provides an effective MP transport pathway from Vietnam, the Philippines, and Malaysia to southeastern China. This suggests that only some of the airborne MPs over the ocean enter the marine ecosystem. The average abundance of atmospheric MPs over the sampling area was 0.39 items/100 m3 (0.39 ± 0.43 items/100 m3) during the EASM season, with high variability among the sampling sites. This study improves our understanding of the impact of the EASM on atmospheric MP transport, which can help quantify the contributions of atmospheric MPs to marine or terrestrial ecosystems.
    Matched MeSH terms: Environmental Monitoring
  13. Wagner M, Andrew Lin KY, Oh WD, Lisak G
    J Hazard Mater, 2021 07 05;413:125325.
    PMID: 33601143 DOI: 10.1016/j.jhazmat.2021.125325
    The global population growth demands intensification of anthropogenic processes, thus leading to inter alia pollution of both land and aquatic environments with toxic organic compounds. Particularly harmful synthetic compounds are classified as persistent organic pollutants (POPs). Their relatively high chemical resistance resulted in a worldwide ban or strict control on the use of POPs. The majority of POPs were commonly used as pesticides, and unfortunately, some of them are still utilized as an aid in agricultural practices. Therefore, environmental monitoring in terms of reliable detection and quantification of pesticidal POPs is an ever-increasing need. Chemical sensors and adsorption materials crafted for specific pesticide operate on host-guest interactions should provide selectivity and sensitivity, thus leading to the detection of target molecule down to the nanomolar range. This could be achieved with materials exhibiting a very large active surface area, well-defined structure, and high stability. The novel materials studied in that context are metal-organic frameworks (MOFs). The structure of various MOFs can be functionalized to provide desired host-guest interactions. In this mini-review, we critically discuss the application of MOFs for the detection and adsorption of selected pesticides that are classified as POPs according to the Stockholm Convention.
    Matched MeSH terms: Environmental Monitoring
  14. Alahmad B, Al-Hemoud A, Kang CM, Almarri F, Kommula V, Wolfson JM, et al.
    Environ Pollut, 2021 Aug 01;282:117016.
    PMID: 33848912 DOI: 10.1016/j.envpol.2021.117016
    BACKGROUND: Kuwait and the Gulf region have a desert, hyper-arid and hot climate that makes outdoor air sampling challenging. The region is also affected by intense dust storms. Monitoring challenges from the harsh climate have limited data needed to inform appropriate regulatory actions to address air pollution in the region.

    OBJECTIVES: To compare gravimetric measurements with existing networks that rely on beta-attenuation measurements in a desert climate; determine the annual levels of PM2.5 and PM10 over a two-year period in Kuwait; assess compliance with air quality standards; and identify and quantify PM2.5 sources.

    METHODS: We custom-designed particle samplers that can withstand large quantities of dust without their inlet becoming overloaded. The samplers were placed in two populated residential locations, one in Kuwait City and another near industrial and petrochemical facilities in Ali Sabah Al-Salem (ASAS) to collect PM2.5 and PM10 samples for mass and elemental analysis. We used positive matrix factorization to identify PM2.5 sources and apportion their contributions.

    RESULTS: We collected 2339 samples during the period October 2017 through October 2019. The beta-attenuation method in measuring PM2.5 consistently exceeded gravimetric measurements, especially during dust events. The annual levels for PM2.5 in Kuwait City and ASAS were 41.6 ± 29.0 and 47.5 ± 27.6 μg/m3, respectively. Annual PM2.5 levels in Kuwait were nearly four times higher than the U.S. National Ambient Air Quality Standard. Regional pollution was a major contributor to PM2.5 levels in both locations accounting for 44% in Kuwait City and 46% in ASAS. Dust storms and re-suspended road dust were the second and third largest contributors to PM2.5, respectively.

    CONCLUSIONS: The premise that frequent and extreme dust storms make air quality regulation futile is dubious. In this comprehensive particulate pollution analysis, we show that the sizeable regional anthropogenic particulate sources warrant national and regional mitigation strategies to ensure compliance with air quality standards.

    Matched MeSH terms: Environmental Monitoring
  15. Vaezzadeh V, Thomes MW, Kunisue T, Tue NM, Zhang G, Zakaria MP, et al.
    Chemosphere, 2021 Jan;263:128272.
    PMID: 33297216 DOI: 10.1016/j.chemosphere.2020.128272
    Barnacles are ubiquitous in coastal ecosystems of different geographical regions worldwide. This is the first study attempting to assess the suitability of barnacles as bioindicators of persistent organic pollutants (POPs) in coastal environments. Barnacles were collected from the coasts around Peninsular Malaysia and analyzed for POPs including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs). Among POPs, PCBs showed the highest concentrations with elevated contributions of CB28 and CB153. As for PBDEs, BDE47 was the most frequently detected congener, while BDE209 was detected in barnacles from two stations in Port Klang and the levels reached up to >70% of total PBDE concentrations. Concentrations of OCPs detected in barnacles were in the order of CHLs > DDTs > HCHs > HCB and 4,4'-DDE and cis- and trans-chlordane were the predominant OCP compounds. A comparison with previous studies in Malaysia showed consistent levels of POPs. Green mussels collected from selected barnacles' habitats, for the sake of a comparison, showed almost similar profiles but lower concentrations of POPs. The spatial distribution of POPs observed in barnacles and comparison of POP levels and profiles with mussels indicated that barnacles can be useful bioindicators for monitoring POPs contamination in the coastal ecosystems.
    Matched MeSH terms: Environmental Monitoring
  16. Wee WW, Siau MY, Arumugasamy SK, Muthuvelu KS
    Environ Monit Assess, 2021 Sep 09;193(10):638.
    PMID: 34505189 DOI: 10.1007/s10661-021-09412-4
    Synthetic dyes used in the textile and paper industries pose a major threat to the environment. In the present research work, the adsorption efficiency of the natural adsorbent Strychnos potatorum Linn (Fam: Loganiaceae) seeds were examined against the reactive orange-M2R dye from aqueous solution by varying the process conditions such as contact time, pH, adsorbent dosage, and initial dye concentration on adsorption of anionic azo dye. This study compares different types of artificial neural networks which are feedforward artificial neural network (FANN) and nonlinear autoregressive exogenous (NARX) model to predict the efficiency of a cost-effective natural adsorbent Strychnos potatorum Linn seeds on removing reactive orange-M2R dye from aqueous solution. Twelve training algorithms of neural network were compared, and the prediction on the adsorption performance of anionic azo dye from aqueous solution using Strychnos potatonum Linn seeds was evaluated by using the root mean squared error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and accuracy. For FANN model, Levenberg-Marquardt (LM) backpropagation with 19 hidden neurons was selected as the optimum FANN model, with R2 of 0.994 and accuracy of 87.20%, 98.21%, and 66.60% for training, testing, and validation datasets, respectively. For NARX model, LM with 8 hidden neurons was selected as the most suitable training algorithm, with R2 value of more than 0.99 and accuracy of 88.00%, 90.91%, and 75.00% for training, testing, and validation datasets, respectively. NARX model accurately predicted the adsorption of anionic azo dye from aqueous solution using Strychnos potatonum Linn seeds with better performance than FANN model.
    Matched MeSH terms: Environmental Monitoring
  17. Pang SY, Suratman S, Tay JH, Mohd Tahir N
    Mar Pollut Bull, 2021 Oct;171:112736.
    PMID: 34325152 DOI: 10.1016/j.marpolbul.2021.112736
    The distribution of aliphatic hydrocarbons in three sediment cores from Brunei Bay was investigated in order to understand their sources and the biogeochemical processes of these hydrocarbons. The total concentrations of C15 to C37n-alkanes ranged from 0.70 to 16.5 μg g-1. Traces of hopanes with C29-C31 carbon homologs were detected in the study area. The carbon preference index (CPI15-37) ranged from 1.23 to 3.42 coupled with the natural n-alkane ratio (NAR19-32) ratios (1.52 to 5.34), and the presence of unresolved complex mixtures and hopanes, suggested slight contamination by anthropogenic hydrocarbons, presumably derived from activities along the coasts. The presence of C27 trisnorhopene and diploptene, as well as their association with long-chain and short-chain n-alkanes, revealed a depositional environment of organic matter in the sediment cores.
    Matched MeSH terms: Environmental Monitoring
  18. Sabullah, M.K., Ahmad, S.A., Shukor, M.Y., Gansau, A.J., Syed, M.A., Sulaiman, M.R., et al.
    MyJurnal
    Due to the latest industrial development, many dangerous chemicals have been released directly or indirectly which resulted in the polluted water bodies. Water rehabilitation is an alternative way to restore the quality of water, followed by the environmental management to control the waste discharge to ensure the balance of the degradation rates or detoxifying by environmental factors. However, this process consumed a lot of time and cost. Besides, most of the metal ions, especially copper which is capable to bioaccumulate in aquatic organism and at the elevated level may cause physiological and biochemical alteration which leads to mortality. Environmental monitoring is the initial step presupposed evaluating the potential toxicity of effluent gushing at its purpose to discharge, avoiding the determining effects of contaminant in water bodies. Due to the high sensitivity of the aquatic life towards dissolving toxicant, the fish has been utilized as the biological measurement (Biomarker) to indicate the existence of toxicant exposure and/or the impact towards the evaluation of molecular, cellular to physiological level. Thus, this paper gives an overview of the manipulation of fish as a biomarker of heavy metals through behavior response, hepatocyte alteration, enzymatic reaction and proteomic studies which have proven to be very useful in the environmental pollution monitoring.
    Matched MeSH terms: Environmental Monitoring
  19. Hu J, Yew CT, Chen X, Feng S, Yang Q, Wang S, et al.
    Talanta, 2017 Apr 01;165:419-428.
    PMID: 28153277 DOI: 10.1016/j.talanta.2016.12.086
    The identification and quantification of chemicals play a vital role in evaluation and surveillance of environmental health and safety. However, current techniques usually depend on costly equipment, professional staff, and/or essential infrastructure, limiting their accessibility. In this work, we develop paper-based capacitive sensors (PCSs) that allow simple, rapid identification and quantification of various chemicals from microliter size samples with the aid of a handheld multimeter. PCSs are low-cost parallel-plate capacitors (~$0.01 per sensor) assembled from layers of aluminum foil and filter paper via double-sided tape. The developed PCSs can identify different kinds of fluids (e.g., organic chemicals) and quantify diverse concentrations of substances (e.g., heavy metal ions) based on differences in dielectric properties, including capacitance, frequency spectrum, and dielectric loss tangent. The PCS-based method enables chemical identification and quantification to take place much cheaply, simply, and quickly at the point-of-care (POC), holding great promise for environmental monitoring in resource-limited settings.
    Matched MeSH terms: Environmental Monitoring
  20. Khan A, Ali I, Ghani A, Khan N, Alsaqer M, Rahman AU, et al.
    Sensors (Basel), 2018 May 18;18(5).
    PMID: 29783686 DOI: 10.3390/s18051619
    Recent research in underwater wireless sensor networks (UWSNs) has gained the attention of researchers in academia and industry for a number of applications. They include disaster and earthquake prediction, water quality and environment monitoring, leakage and mine detection, military surveillance and underwater navigation. However, the aquatic medium is associated with a number of limitations and challenges: long multipath delay, high interference and noise, harsh environment, low bandwidth and limited battery life of the sensor nodes. These challenges demand research techniques and strategies to be overcome in an efficient and effective fashion. The design of routing protocols for UWSNs is one of the promising solutions to cope with these challenges. This paper presents a survey of the routing protocols for UWSNs. For the ease of description, the addressed routing protocols are classified into two groups: localization-based and localization-free protocols. These groups are further subdivided according to the problems they address or the major parameters they consider during routing. Unlike the existing surveys, this survey considers only the latest and state-of-the-art routing protocols. In addition, every protocol is described in terms of its routing strategy and the problem it addresses and solves. The merit(s) of each protocol is (are) highlighted along with the cost. A description of the protocols in this fashion has a number of advantages for researchers, as compared to the existing surveys. Firstly, the description of the routing strategy of each protocol makes its routing operation easily understandable. Secondly, the demerit(s) of a protocol provides (provide) insight into overcoming its flaw(s) in future investigation. This, in turn, leads to the foundation of new protocols that are more intelligent, robust and efficient with respect to the desired parameters. Thirdly, a protocol can be selected for the appropriate application based on its described merit(s). Finally, open challenges and research directions are presented for future investigation.
    Matched MeSH terms: Environmental Monitoring
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links