Displaying publications 21 - 40 of 45 in total

Abstract:
Sort:
  1. Fu C, Deng S, Koneski I, Awad MM, Akram Z, Matinlinna J, et al.
    J Mech Behav Biomed Mater, 2020 12;112:104082.
    PMID: 32979607 DOI: 10.1016/j.jmbbm.2020.104082
    OBJECTIVE: To investigate the effect of blue light photoactivated riboflavin modified universal adhesives on dentin collagen biodegradation resistance, dentin apparent elastic modulus, and resin-dentin bond strength with interfacial morphology.

    METHODS: Dentin slabs were treated with 0.1% riboflavin-5-phosphate modified (powder added slowly while shaking and then sonicated to enhance the dispersion process) Universal Adhesive Scotch Bond and Zipbond™ along with control (non-modified) and experimental adhesives, photoactivated with blue light for 20s. Hydroxyproline (HYP) release was assessed after 1-week storage. Elastic-modulus testing was evaluated using universal testing machine at 24 h. Resin-dentin interfacial morphology was assessed with scanning electron-microscope, after 6-month storage. 0.1% rhodamine dye was added into each adhesive and analyzed using CLSM. Detection of free amino groups was carried out using ninhydrin and considered directly proportional to optical absorbance. Collagen molecular confirmation was determined using spectropolarimeter to evaluate and assess CD spectra. For molecular docking studies with riboflavin (PDB ID file), the binding pocket was selected with larger SiteScore and DScore using Schrodinger PB software. After curing, Raman shifts in Amide regions were obtained at 8 μm levels. Data were analyzed using Two-way analysis of variance (ANOVA, p ≤ 0.05) and Tukey-Kramer multiple comparison post hoc tests.

    RESULTS: At baseline, bond strength reduced significantly (p ≤ 0.05) in control specimens. However, at 6 months' storage, UVA Zipbond™ had significantly higher μTBS. Resin was able to diffuse through the porous demineralized dentin creating adequate hybrid layers in both 0.1%RF modified adhesives in CLSM images. In riboflavin groups, hybrid layer and resin tags were more pronounced. The circular dichroism spectrum showed negative peaks for riboflavin adhesive specimens. Best fitted poses adopted by riboflavin compound are docked with MMP-2 and -9 proteases. Amide bands and CH2 peaks followed the trend of being lowest for control UA Scotch bond adhesive specimens and increasing in Amides, proline, and CH2 intensities in 0.1%RF modified adhesive specimens. All 0.1%RF application groups showed statistically significant (p 

  2. Qasim SSB, Zafar MS, Niazi FH, Alshahwan M, Omar H, Daood U
    J Biomater Sci Polym Ed, 2020 06;31(9):1144-1162.
    PMID: 32202207 DOI: 10.1080/09205063.2020.1744289
    Design and development of novel therapeutic strategies to regenerate lost tissue structure and function is a serious clinical hurdle for researchers. Traditionally, much of the research is dedicated in optimising properties of scaffolds. Current synthetic biomaterials remain rudimentary in comparison to their natural counterparts. The ability to incorporate biologically inspired elements into the design of synthetic materials has advanced with time. Recent reports suggest that functionally graded material mimicking the natural tissue morphology can have a more exaggerated response on the targeted tissue. The aim of this review is to deliver an overview of the functionally graded concept with respect to applications in clinical dentistry. A comprehensive understanding of spatiotemporal arrangement in fields of restorative, prosthodontics, periodontics, orthodontics and oral surgery is presented. Different processing techniques have been adapted to achieve such gradients ranging from additive manufacturing (three dimensional printing/rapid prototyping) to conventional techniques of freeze gelation, freeze drying, electrospinning and particulate leaching. The scope of employing additive manufacturing technique as a reliable and predictable tool for the design and accurate reproduction of biomimetic templates is vast by any measure. Further research in the materials used and refinement of the synthesis techniques will continue to expand the frontiers of functionally graded membrane based biomaterials application in the clinical domain.
  3. Daood U, Aati S, Akram Z, Yee J, Yong C, Parolia A, et al.
    Biomater Sci, 2021 Jul 27;9(15):5344-5358.
    PMID: 34190236 DOI: 10.1039/d1bm00555c
    The aim of this study was to characterize multiscale interactions between high intensity focused ultrasound (HIFU) and dentin collagen and associated matrix-metalloproteinases, in addition to the analysis of the effect of HIFU on bacterial biofilms and biological properties. Dentin specimens were subjected to 5, 10 or 20 s HIFU. XPS spectra were acquired and TEM was performed on dentin slabs. Collagen orientation was performed using Raman spectroscopy. Calcium measurements in human dental pulpal cells (hDPCs) were carried out after 7 and 14 days. For macrophages, CD36+ and CD163+ were analysed. Biofilms were analyzed using CLSM. Tandem mass spectroscopy was performed for the detection of hydroxyproline sequences along with human MMP-2 quantification. Phosphorus, calcium, and nitrogen were detected in HIFU specimens. TEM images demonstrated the collagen network appearing to be fused together in the HIFU 10 and 20 s specimens. The band associated with 960 cm-1 corresponds to the stretching ν1 PO43-. The control specimens showed intensive calcium staining followed by HIFU 20 s > HIFU 10 s > HIFU 5 s specimens. Macrophages in the HIFU specimens co-expressed CD80+ and CD163+ cells. CLSM images showed the HIFU treatment inhibiting bacterial growth. SiteScore propensity determined the effect of HIFU on the binding site with a higher DScore representing better site exposure on MMPs. Multiscale mapping of dentin collagen after HIFU treatment showed no deleterious alterations on the organic structure of dentin.
  4. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p 
  5. Daood U, Tsoi JKH, Neelakantan P, Matinlinna JP, Omar HAK, Al-Nabulsi M, et al.
    Dent Mater, 2018 08;34(8):1175-1187.
    PMID: 29779627 DOI: 10.1016/j.dental.2018.05.005
    OBJECTIVE: Collagen fibrils aid in anchoring resin composite restorations to the dentine substrate. The aim of the study was to investigate effect of non-enzymatic glycation on bond strength and durability of demineralized dentine specimens in a modified two-step etch-and-rinse dentine adhesive.

    METHODS: Dentine surfaces were etched with 37% phosphoric acid, bonded with respective in vitro ethanol and acetone adhesives modified with (m/m, 0, 1%, 2% and 3% ribose), restored with restorative composite-resin, and sectioned into resin-dentine slabs and beams to be stored for 24h or 12 months in artificial saliva. Bond-strength testing was performed with bond failure analysis. Pentosidine assay was performed on demineralized ribose modified dentine specimens with HPLC sensitive fluorescent detection. The structural variations of ribose-modified dentine were analysed using TEM and human dental pulpal cells were used for cell viability. Three-point bending test of ribose-modified dentine beams were performed and depth of penetration of adhesives evaluated with micro-Raman spectroscopy. The MMP-2 and cathepsin K activities in ribose-treated dentine powder were also quantified using ELISA. Bond strength data was expressed using two-way ANOVA followed by Tukey's test. Paired T tests were used to analyse the specimens for pentosidine crosslinks. The modulus of elasticity and dentinal MMP-2 and cathepsin K concentrations was separately analyzed using one-way ANOVA.

    RESULTS: The incorporation of RB in the experimental two-step etch-and-rinse adhesive at 1% improved the adhesive bond strength without adversely affecting the degree of polymerisation. The newly developed adhesive increases the resistance of dentine collagen to degradation by inhibiting endogenous matrix metalloproteinases and cysteine cathepsins. The application of RB to acid-etched dentine helps maintain the mechanical properties.

    SIGNIFICANCE: The incorporation of 1%RB can be considered as a potential candidate stabilizing resin dentine bond.

  6. Daood U, Sauro S, Pichika MR, Omar H, Liang Lin S, Fawzy AS
    Dent Mater, 2020 01;36(1):145-156.
    PMID: 31818524 DOI: 10.1016/j.dental.2019.11.003
    OBJECTIVE: To modify a universal dentine adhesive with different concentrations of riboflavin and D-Alpha 1000 Succinate polyethylene (VE-TPGS) as a chemical enhancer and to assess the micro-tensile bond strength (24h/12 months), determine resin penetration, measurement of intermolecular interactions and cytotoxicity.

    MATERIALS AND METHODS: An experimental adhesive system based on bis-GMA, HEMA and hydrophobic monomer was doped with RF0.125 (RF - Riboflavin) or RF/VE-TPGS (0.25/0.50) and submitted to μTBS evaluation. Resin dentine slabs were prepared and examined using SEM and TEM. Adhesion force was analysed on ends of AFM cantilevers deflection. Quenched peptide assays were performed using fluorescence scanner and wavelengths set to 320nm and 405nm. Cytotoxicity was assessed using human peripheral blood mononuclear cell line. Molecular docking studies were carried out using Schrödinger small-molecule drug discovery suite 2018-2. Data from viable cell results was analyzed using one-way ANOVA. Bond strength values were analysed by two-way ANOVA. Nonparametric results were analyzed using a Kruskal-Wallis test at a 0.05 significance level.

    RESULTS: RF/VE-TPGS0.25 groups showed highest bond strength results after 24-h storage in artificial saliva (p<0.05). RF/VE-TPGS0.50 groups showed increased bond strength after 12-months of ageing. RF/VE-TPGS modified adhesives showed appreciable presence of a hybrid layer. Packing fraction indicated solid angle profiles describing well sized density and topology relations for the RF/VE-TPGS adhesives, in particular with the RF/VE-TPGS0.50 specimens. Qualitative analysis of the phenotype of macrophages was prominently CD163+ in the RF/VE-TPGS0.50. Both the compounds showed favourable negative binding energies as expressed in terms of 'XP GScore'.

    CONCLUSION: New formulations based on the incorporation of RF/VE-TPGS in universal adhesives may be of significant potential in facilitating penetration, distribution and uptake of riboflavin within the dentine surface.

  7. Daood U, Parolia A, Elkezza A, Yiu CK, Abbott P, Matinlinna JP, et al.
    Dent Mater, 2019 09;35(9):1264-1278.
    PMID: 31201019 DOI: 10.1016/j.dental.2019.05.020
    OBJECTIVE: To analyze effect of NaOCl+2% quaternary ammonium silane (QAS)-containing novel irrigant against bacteria impregnated inside the root canal system, and to evaluate its antimicrobial and mechanical potential of dentine substrate.

    METHODS: Root canal was prepared using stainless steel K-files™ and ProTaper™ and subjected to manual and ultrasonic irrigation using 6% NaOCl+2% CHX, 6% NaOCl+2% QAS and saline as control. For confocal-microscopy, Raman spectroscopy and SEM analysis before and after treatment, Enterococcus faecalis cultured for 7 days. Raman spectroscopy analysis was done across cut section of gutta percha/sealer-dentine to detect resin infiltration. Indentation of mechanical properties was evaluated using a Berkovich indenter. The contact angle of irrigants and surface free energy were evaluated. Mineralization nodules were detected through Alazarin red after 14 days.

    RESULTS: Control biofilms showed dense green colonies. Majority of E. faecalis bacteria were present in biofilm fluoresced red in NaOCl+2% QAS group. There was reduction of 484cm-1 Raman band and its intensity reached lowest with NaOCl+2% QAS. There was an increase in 1350-1420cm-1 intensity in the NaOCl+2% CHX groups. Gradual decrease in 1639cm-1 and 1609cm-1 Raman signal ratios were seen in the resin-depth region of 17μm>, 14.1μm> and 13.2μm for NaOCl+2% QAS, NaOCl+2% CHX and control groups respectively. All obturated groups showed an intact sealer/dentine interface with a few notable differences. 0.771 and 83.5% creep indentation distance for NaOCl+2% QAS ultrasonic groups were observed. Highest proportion of polar component was significantly found in the NaOCl+2% QAS groups which was significantly higher as compared to other groups. Mineralized nodules were increased in NaOCl+2% QAS.

    SIGNIFICANCE: Favorable antimicrobial and endodontic profile of the NaOCl+2% QAS solution might suggest clinical use for it for more predictable reduction of intracanal bacteria.

  8. Bijle MN, Pichika MR, Mak KK, Parolia A, Babar MG, Yiu C, et al.
    Molecules, 2021 Oct 31;26(21).
    PMID: 34771014 DOI: 10.3390/molecules26216605
    This study's objective was to examine L-arginine (L-arg) supplementation's effect on mono-species biofilm (Streptococcus mutans/Streptococcus sanguinis) growth and underlying enamel substrates. The experimental groups were 1%, 2%, and 4% arg, and 0.9% NaCl was used as the vehicle control. Sterilised enamel blocks were subjected to 7-day treatment with test solutions and S. mutans/S. sanguinis inoculum in BHI. Post-treatment, the treated biofilms stained for live/dead bacterial cells were analysed using confocal microscopy. The enamel specimens were analysed using X-ray diffraction crystallography (XRD), Raman spectroscopy (RS), and transmission electron microscopy (TEM). The molecular interactions between arg and MMP-2/MMP-9 were determined by computational molecular docking and MMP assays. With increasing arg concentrations, bacterial survival significantly decreased (p < 0.05). The XRD peak intensity with 1%/2% arg was significantly higher than with 4% arg and the control (p < 0.05). The bands associated with the mineral phase by RS were significantly accentuated in the 1%/2% arg specimens compared to in other groups (p < 0.05). The TEM analysis revealed that 4% arg exhibited an ill-defined shape of enamel crystals. Docking of arg molecules to MMPs appears feasible, with arg inhibiting MMP-2/MMP-9 (p < 0.05). L-arginine supplementation has an antimicrobial effect on mono-species biofilm. L-arginine treatment at lower (1%/2%) concentrations exhibits enamel hydroxyapatite stability, while the molecule has the potential to inhibit MMP-2/MMP-9.
  9. Neelakantan P, Romero M, Vera J, Daood U, Khan AU, Yan A, et al.
    Int J Mol Sci, 2017 Aug 11;18(8).
    PMID: 28800075 DOI: 10.3390/ijms18081748
    Microbiota are found in highly organized and complex entities, known as biofilms, the characteristics of which are fundamentally different from microbes in planktonic suspensions. Root canal infections are biofilm mediated. The complexity and variability of the root canal system, together with the multi-species nature of biofilms, make disinfection of this system extremely challenging. Microbial persistence appears to be the most important factor for failure of root canal treatment and this could further have an impact on pain and quality of life. Biofilm removal is accomplished by a chemo-mechanical process, using specific instruments and disinfecting chemicals in the form of irrigants and/or intracanal medicaments. Endodontic research has focused on the characterization of root canal biofilms and the clinical methods to disrupt the biofilms in addition to achieving microbial killing. In this narrative review, we discuss the role of microbial biofilms in endodontics and review the literature on the role of root canal disinfectants and disinfectant-activating methods on biofilm removal.
  10. Mahdi SS, Ahmed Z, Allana R, Amenta F, Agha D, Latif MW, et al.
    Int J Dent, 2021;2021:5574536.
    PMID: 34221016 DOI: 10.1155/2021/5574536
    MATERIALS AND METHODS: A cross-sectional study was carried out. A 27-item prepilot tested close-ended questionnaire was designed and administered online to collect data on knowledge of asepsis, sterilization, instrument handling, disinfection, hand-hygiene practices, dental practice, age, education, and experience level from March 2020 to June 2020.

    RESULTS: Out of 70 dental assistants, the majority were aged between 21 and 29 years (44.30%), more than two-thirds (85.41%) of the dental assistants were working in a hospital, while 14.29% were working in private clinics, only 7.1% had a diploma in the dental assistant program, and 74% had more than 2 years of experience in practice. Dental assistants working in private practice (76.30) had a higher mean knowledge scores compared to those working in hospital (74.25), while those with less than 2 years of experience (75.61) had a higher scores compared to those with 2-5 years of experience (73.96).

    CONCLUSION: Better compliance with recommended infection control and waste management practices is needed for all dental assistants. Continuing education programs targeting such awareness are vital to improve the management of hazardous waste practices among dental assistants.

  11. Bapat RA, Mak KK, Pichika MR, Pang JC, Lin SL, Khoo SP, et al.
    BMC Oral Health, 2024 Mar 25;24(1):382.
    PMID: 38528501 DOI: 10.1186/s12903-024-04069-0
    AIMS AND OBJECTIVES: To analyze anti-MMP mode of action of Quaternary Ammonium Silane (QAS, codenamed as k21) by binding onto specific MMP site using computational molecular simulation and Anti-Sortase A (SrtA) mode of action by binding onto specific site using computational molecular simulation.

    MATERIALS AND METHODS: In silico Molecular Dynamics (MD) was used to determine the interactions of K21 inside the pocket of the targeted protein (crystal structure of fibroblast collagenase-1 complexed to a diphenyl-ether sulphone based hydroxamic acid; PDB ID: 966C; Crystal structure of MMP-2 active site mutant in complex with APP-derived decapeptide inhibitor. MD simulations were accomplished with the Desmond package in Schrödinger Drug Discovery Suite. Blood samples (~ 0.5 mL) collected into K2EDTA were immediately transferred for further processing using the Litron MicroFlow® PLUS micronucleus analysis kit for mouse blood according to the manufacturer's instructions. Bacterial Reverse Mutation Test of K21 Molecule was performed to evaluate K21 and any possible metabolites for their potential to induce point mutations in amino acid-requiring strains of Escherichia coli (E. coli) (WP2 uvrA (tryptophan-deficient)).

    RESULTS: Molecular Simulation depicted that K21 has a specific pocket binding on various MMPs and SrtA surfaces producing a classical clouting effect. K21 did not induce micronuclei, which are the result of chromosomal damage or damage to the mitotic apparatus, in the peripheral blood reticulocytes of male and female CD-1 mice when administered by oral gavage up to the maximum recommended dose of 2000 mg/kg. The test item, K21, was not mutagenic to Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2 uvrA in the absence and presence of metabolic activation when tested up to the limit of cytotoxicity or solubility under the conditions of the test.

    CONCLUSION: K21 could serve as a potent protease inhibitor maintaining the physical and biochemical properties of dental structures.

  12. Saxena K, Ann CM, Azwar MABM, Banavar SR, Matinlinna J, Peters OA, et al.
    Dent Mater, 2024 Mar 14.
    PMID: 38490919 DOI: 10.1016/j.dental.2024.02.010
    OBJECTIVES: Evaluate the ability of strontium fluoride on bond strength and enamel integrity after incorporation within orthodontic adhesive system as a delivery vehicle.

    METHODS: Experimental orthodontic adhesive system Transbond™ XT were modified with 1% Sr2+, 0.5% SrF2, 1% strontium, 0.5% Sr2+, 1% F-, 0.5% F-, and no additions were control. Mixing of formulation was monitored using Fourier transform infrared spectroscopy. Small-molecule drug-discovery suite was used to gain insights into Sr2+, F-, and SrF2 binding. Shear bond testing was performed after 6-months of ageing. Enamel blocks were cut, and STEM pictures were recorded. Specimens were indented to evaluate elastic modulus. Raman microscope was used to collect Raman spectra and inspected using a scanning electron microscope. Crystal structural analysis was performed using X-ray diffraction. Effect of material on cellular proliferation was determined. Confocal was performed to evaluate the effect of formulation on biofilms.

    RESULTS: FTIR of modified adhesives depicted peak changes within range due to various functional groups existing within samples. TEM represented structurally optimized hexagonal unit-cell of hydroxyapatite. Mean shear bond strength is recorded highest for Transbond XT with 1% SrF2. Dead bacterial percentage appeared higher in 0.5% SrF2 and 1% F- specimens. Crystal lengths showed an increase in 0.5% and 1% SrF2 specimens. Phase contrast within TEM images showed a union of 0.5% SrF2 crystal with enamel crystal with higher elastic modulus and highly mineralized crystalline hydroxyapatite. Intensity of ν1 PO43- and ν1 CO32- along with carbonate - / ν1PO43- ratio displayed good association with strontium fluoride. The formulation showed acceptable cell biocompatibility (p 

  13. Bourgi R, Daood U, Bijle MN, Fawzy A, Ghaleb M, Hardan L
    Polymers (Basel), 2021 Feb 26;13(5).
    PMID: 33652596 DOI: 10.3390/polym13050704
    Enzymatic biodegradation of demineralized collagen fibrils could lead to the reduction of resin-dentin bond strength. Therefore, methods that provide protection to collagen fibrils appear to be a pragmatic solution to improve bond strength. Thus, the study's aim was to investigate the effect of ribose (RB) on demineralized resin-dentin specimens in a modified universal adhesive. Dentin specimens were obtained, standardized and then bonded in vitro with a commercial multi-mode adhesive modified with 0, 0.5%, 1%, and 2% RB, restored with resin composite, and tested for micro-tensile bond strength (µTBS) after storage for 24 h in artificial saliva. Scanning electron microscopy (SEM) was performed to analyze resin-dentin interface. Contact angles were analyzed using a contact angle analyzer. Depth of penetration of adhesives and nanoleakage were assessed using micro-Raman spectroscopy and silver tracing. Molecular docking studies were carried out using Schrodinger small-molecule drug discovery suite 2019-4. Matrix metalloproteinases-2 (MMP-2) and cathepsin-K activities in RB-treated specimens were quantified using enzyme-linked immunosorbent assay (ELISA). The significance level was set at α = 0.05 for all statistical analyses. Incorporation of RB at 1% or 2% is of significant potential (p < 0.05) as it can be associated with improved wettability on dentin surfaces (0.5% had the lowest contact angle) as well as appreciable hybrid layer quality, and higher resin penetration. Improvement of the adhesive bond strength was shown when adding RB at 1% concentration to universal adhesive (p < 0.05). Modified adhesive increased the resistance of collagen degradation by inhibiting MMP-2 and cathepsin-K. A higher RB concentration was associated with improved results (p < 0.01). D-ribose showed favorable negative binding to collagen. In conclusion, universal adhesive using 1% or 2% RB helped in maintaining dentin collagen scaffold and proved to be successful in improving wettability, protease inhibition, and stability of demineralized dentin substrates. A more favorable substrate is created which, in turn, leads to a more stable dentin-adhesive bond. This could lead to more advantageous outcomes in a clinical scenario where a stable bond may result in longevity of the dental restoration.
  14. Akram Z, Al-Shareef SA, Daood U, Asiri FY, Shah AH, AlQahtani MA, et al.
    Photomed Laser Surg, 2016 Apr;34(4):137-49.
    PMID: 26982216 DOI: 10.1089/pho.2015.4076
    The aim of this study was to assess the bactericidal efficacy of antimicrobial photodynamic dynamic therapy (aPDT) as an adjunct to scaling and root planing (SRP) against periodontal pathogens.
  15. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
  16. Daood U, Omar H, Qasim S, Nogueira LP, Pichika MR, Mak KK, et al.
    J Mech Behav Biomed Mater, 2020 10;110:103927.
    PMID: 32957222 DOI: 10.1016/j.jmbbm.2020.103927
    OBJECTIVE: Here we describe a novel formulation, based on quaternary ammonium (QA) and riboflavin (RF), which combines antimicrobial activities and protease inhibitory properties with collagen crosslinking without interference to bonding capabilities, was investigated.

    METHODS: Experimental adhesives modified with different fractions of dioctadecyldimethyl ammonium bromide quaternary ammonium and riboflavin (QARF) were formulated. Dentine specimens were bonded to resincomposites with control or the experimental adhesives to be evaluated for bond strength, interfacial morphology, micro-Raman analysis, nano-CT and nano-leakage expression. In addition, the antibacterial and biocompatibilities of the experimental adhesives were investigated. The endogenous proteases activities and their molecular binding-sites were studied.

    RESULTS: Modifying the experimental adhesives with QARF did not adversely affect micro-tensile bond strength or the degree of conversion along with the demonstration of anti-proteases and antibacterial abilities with acceptable biocompatibilities. In general, all experimental adhesives demonstrated favourable bond strength with increased and improved values in 1% QARF adhesive at 24 h (39.2 ± 3.0 MPa) and following thermocycling (34.8 ± 4.3 MPa).

    SIGNIFICANCE: It is possible to conclude that the use of QARF with defined concentration can maintain bond strength values when an appropriate protocol is used and have contributed in ensuring a significant decrease in microbial growth of biofilms. Incorporation of 1% QARF in the experimental adhesive lead to simultaneous antimicrobial and anti-proteolytic effects with low cytotoxic effects, acceptable bond strength and interfacial morphology.

  17. Sidhu P, Sultan OS, Math SY, Malik NA, Wilson NHF, Lynch CD, et al.
    J Dent, 2021 07;110:103683.
    PMID: 33957189 DOI: 10.1016/j.jdent.2021.103683
    OBJECTIVE: To investigate the current and future teaching of posterior composite restorations in undergraduate curricula in Malaysian dental schools.

    METHODS: A 24-item validated questionnaire including closed and open questions on the teaching of posterior composites was emailed to faculty members in all 13 Dental Schools in Malaysia. Responses were compiled on Excel and analysed.

    RESULTS: All 13 dental schools responded to the survey yielding a 100 % response. All schools indicated the use of posterior composites for 2- and 3-surface cavities in premolars and molars. The didactic teaching time devoted to composites was greater than for amalgam (38 h vs 29 h). Clinically, most posterior restorations placed by students were composites (average 74.1 %, range 10 %-100 %); the remaining 25.9 % were amalgams (range, 0 %-50 %). Slot-type cavities were the preparation techniques most commonly taught (n = 11,84.6 %). The use of rubber dam for moisture control was mandatory in most schools (n = 11, 84.6 %). History of adverse reaction to composites was found to be the most common contraindication to composite placement. The phase down of teaching and use of amalgam in Malaysia is expected to occur within the next six years.

    CONCLUSION: The trend to increase the teaching of posterior composites reported for other countries is confirmed by the findings from Malaysian dental schools. Notwithstanding this trend, the use of amalgam is still taught, and future studies are required to investigate the implications of the phase down of amalgam in favour of posterior composites.

    CLINICAL SIGNIFICANCE: Notwithstanding the increase in the teaching of posterior composites there is a pressing need to update and refine clinical guidelines for the teaching of posterior composites globally.

  18. Daood U, Bapat RA, Sidhu P, Ilyas MS, Khan AS, Mak KK, et al.
    Dent Mater, 2021 10;37(10):1511-1528.
    PMID: 34420798 DOI: 10.1016/j.dental.2021.08.001
    OBJECTIVES: The aim of the current project was to study the antimicrobial efficacy of a newly developed irrigant, k21/E against E. faecalis biofilm.

    METHODS: Root canals were instrumented and randomly divided into the following groups: irrigation with saline, 6% NaOCl (sodium hypochlorite), 6% NaOCl+2% CHX (Chlorhexidine), 2% CHX, 0.5% k21/E (k21 - quaternary ammonium silane) and 1% k21/E. E. faecalis were grown (3-days) (1×107CFU mL-1), treated, and further cultured for 11-days. Specimens were subjected to SEM, confocal and Raman analysis and macrophage vesicles characterized along with effect of lipopolysaccharide treatment. 3T3 mouse-fibroblasts were cultured for alizarin-red with Sortase-A active sites and Schrödinger docking was performed. TEM analysis of root dentin substrate with matrix metalloproteinases profilometry was also included. A cytotoxic test analysis for cell viability was measured by absorbance of human dental pulp cells after exposure to different irrigant solutions for 24h. The test percentages have been highlighted in Table 1.

    RESULTS: Among experimental groups, irrigation with 0.5% k21/E showed phase separation revealing significant bacterial reduction and lower phenylalanine 1003cm-1 and Amide III 1245cm-1 intensities. Damage was observed on bacterial cell membrane after use of k21/E. No difference in exosomes distribution between control and 0.5%k21/E was observed with less TNFα (*p<0.05) and preferential binding of SrtA. TEM images demonstrated integrated collagen fibers in control and 0.5%k21/E specimens and inner bacterial membrane damage after k21/E treatment. The k21 groups appeared to be biocompatible to the dental pulpal cells grown for 24h.

    SIGNIFICANCE: Current investigations highlight potential advantages of 0.5% k21/E as irrigation solution for root canal disinfection.

  19. Bapat RA, Muthusamy SK, Sidhu P, Mak KK, Parolia A, Pichika MR, et al.
    Macromol Biosci, 2021 Dec 06.
    PMID: 34870895 DOI: 10.1002/mabi.202100326
    Novel 3D-biomaterial scaffold is constructed having a combination of a new quaternary ammonium silane (k21) antimicrobial impregnated in 3D collagen printed scaffolds cross linked with Riboflavin in presence of d-alpha-tocopheryl poly(ethyleneglycol)-1000-succinate. Groups of "0.1% and 0.2% k21", and "0.1% and 0.2% Chlorhexidine (CHX)" are prepared. k21/CHX with neutralized collagen is printed with BioX. Riboflavin is photo-activated and examined using epifluorescence for Aggregatibacter actinomycetemcomitans (7-days). Collagen is examined using TEM and measured for porosity, and shape-fitting. Raman and tandem mass/solid-state are performed with molecular-docking and circular-dichroism. X-ray diffractions, rheological tests, contact angle, and ninhydrin assay are conducted. k21 samples demonstrated collagen aggregates while 0.1% CHX and 0.2% CHX showed irregularities. Porosity of control and "0.1% and 0.2% k21" scaffolds show no differences. Low contact angle, improved elastic-modulus, rigidity, and smaller strain in k21 groups are seen. Bacteria are reduced and strong organic intensities are seen in k21 scaffolds. Simulation shows hydrophobicity/electrostatic interaction. Crosslinking is observed in 0.2% CHX/79% and 0.2% k21/80%. Circular dichroism for k21 are suggestive of triple helix. XRD patterns appear at d = 5.97, 3.03, 2.78, 2.1, and 2.90 A°. 3D-printing of collagen impregnated with quaternary ammonium silane produces a promising scaffold with antimicrobial potency and structural stability.
  20. Kohli S, Bhatia S, Banavar SR, Al-Haddad A, Kandasamy M, Qasim SSB, et al.
    Sci Rep, 2023 Mar 13;13(1):4181.
    PMID: 36914760 DOI: 10.1038/s41598-023-31125-6
    To formulate a dental bleaching agent with strawberry extract that has potent bleaching properties and antimicrobial efficacy. Enamel specimens (3 × 3 × 2 mm3) were prepared. Quaternary Ammonium Silane (CaC2 enriched) was homogenized with fresh strawberries: Group 1: supernatant strawberry (10 g) extract 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links